Navigation

Researchers at UCD

researcher

Nina Snigireva

School of Mathematics & Statistics
S3.07
Science Centre South
University College Dublin
Belfield
Dublin 4

Tel: +353-1-716-2502
Email:

Publications

     

Peer Reviewed Journals

Snigirev, A.M.; Snigireva N.A.; Zinovjev G.M. (2014) 'Perturbative and nonperturbative correlations in double parton distributions'. Physical Review D: Particles and fields, . [DOI] [Details]
Roychowdhury, Mrinal Kanti; Snigireva, Nina (2015) 'Asymptotic of the geometric mean error in the quantization of recurrent self-similar measures'. Journal of Mathematical Analysis and Applications, 431 :737-751. [Details]
Samuel, Tony; Snigireva, Nina; Vince, Andrew (2014) 'Embedding the symbolic dynamics of Lorenz maps'. Mathematical Proceedings of the Cambridge Philosophical, 156 (03):505-519. Available Online [Details]
Bisbas, Antonis; Snigireva, Nina (2012) 'Divergence points and normal numbers'. Monatshefte Fur Mathematik, 166 :341-356. Available Online [Details]
Hille, Martial; Snigireva, Nina (2012) 'Teichmuller space for iterated function systems'. Conformal Geometry and Dynamics, 16 :132-160. Available Online [Details]
Olsen, L.; Snigireva N. (2008) 'In-homogeneous self-similar measures and their Fourier transforms'. Mathematical Proceedings of the Cambridge Philosophical, 144 :465-493. Available Online [Details]
Olsen, L.; Snigireva N. (2008) 'Multifractal spectra of in-homogeneous self-similar measures'. Indiana University Mathematics Journal, 57 :1789-1844. Available Online [Details]
Olsen, L.; Snigireva, N. (2007) '$L^{q}$ spectra and R\'enyi dimensions of in-homogeneous self-similar measures'. Nonlinearity, 20 :151-175. Available Online [Details]
Baek, I. S.; Olsen, L.; Snigireva, N. (2007) 'Divergence points of self-similar measures and packing dimension'. Advances in Mathematics, 214 :267-287. Available Online [Details]
                                                                                                                     

Research

Research Interests

Dynamical systems (Ergodic theory, Symbolic dynamics). Fractal geometry. Quantization.  Multifractal analysis. Dimension theory. Fourier analysis.