Linear Diophantine Equations (LDEs)

Definition 1

An equation of the form

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b \tag{1}
\end{equation*}
$$

with $a_{1}, a_{2}, \ldots, a_{n}, b$ integers, is called a linear Diophantine equation (LDE).

Theorem 2
The LDE

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

has a solution $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ if and only if $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid b$

Quadratic Diophantine Equations (QDEs)

Definition 3

An equation of the form

$$
\begin{equation*}
\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}=b \tag{2}
\end{equation*}
$$

with $a_{i j}, b$ integers, is called a quadratic Diophantine equation (QDE).

Example 4 (Pythagorean Equations)
The equation

$$
x^{2}+y^{2}=z^{2}
$$

is a QDE. Any solution (x, y, z) of this equation for integers x, y, z is called a Pythagorean triple.

Pythagorean Equations

Consider the Pythagorean equation:

$$
\begin{equation*}
x^{2}+y^{2}=z^{2} \tag{3}
\end{equation*}
$$

- A solution $\left(x_{0}, y_{0}, z_{0}\right)$ of Eq. (3) where x_{0}, y_{0}, z_{0} are pairwise relatively prime is called a primitive solution.
- If $\left(x_{0}, y_{0}, z_{0}\right)$ is a solution of Eq. (3) then so are

$$
\left(\pm x_{0}, \pm y_{0}, \pm z_{0}\right) \text { and }\left(k x_{0}, k y_{0}, k z_{0}\right)
$$

- Therefore we are most interested in solutions (x, y, z) of Eq. (3) with all components positive.

Pythagorean Equations

Theorem 5
Any primitive solution of

$$
x^{2}+y^{2}=z^{2}
$$

is of the form

$$
\begin{equation*}
x=m^{2}-n^{2}, y=2 m n, z=m^{2}+n^{2} \tag{4}
\end{equation*}
$$

Where $m, n \geq 1$ are relatively prime positive integers.

Pell's Equation

Definition 6
Pell's equation has the form

$$
\begin{equation*}
x^{2}-d y^{2}=1 \tag{5}
\end{equation*}
$$

where d not a perfect square.
Definition 7
We say that $\left(x_{0}, y_{0}\right)$ is a fundamental solution of Pell's equation if x_{0}, y_{0} are positive integers that are minimal amongst all solutions.

The Graph of Pell's Equation

The equation has the fundamental solution $\left(x_{0}, y_{0}\right)=(3,2)$.

Pell's Equation

Theorem 8
Pell's equation has infinitely many solutions. Given the solution $\left(x_{0}, y_{0}\right)$ the solution $\left(x_{n+1}, y_{n+1}\right)$ is given by

$$
\left\{\begin{array}{l}
x_{n+1}=x_{0} x_{n}+d y_{0} y_{n}, \quad x_{1}=x_{0}, \quad n \geq 1 \tag{6}\\
y_{n+1}=y_{0} x_{n}+x_{0} y_{n}, \quad y_{1}=y_{0}, \quad n \geq 1
\end{array}\right.
$$

Example 9

The equation $x^{2}-2 y^{2}=1$, has the fund. sol. $\left(x_{0}, y_{0}\right)=(3,2)$. So

$$
x_{2}=x_{0}^{2}+d y_{0}^{2}=9+2.4=17, \quad y_{2}=y_{0} x_{0}+x_{0} y_{0}=6+6=12
$$

is also a solution: $17^{2}-2.12^{2}=1$.

General Solution of Pell's Equation

Theorem 10
Let Pell's equation $x^{2}-d y^{2}=1$, have the fundamental solution $\left(x_{0}, y_{0}\right)$. Then $\left(x_{n}, y_{n}\right)$ is also a solution, given by

$$
\left\{\begin{array}{l}
x_{n}=\frac{1}{2}\left[\left(x_{0}+y_{0} \sqrt{d}\right)^{n}+\left(x_{0}-y_{0} \sqrt{d}\right)^{n}\right] \tag{7}\\
y_{n}=\frac{1}{2 \sqrt{d}}\left[\left(x_{0}+y_{0} \sqrt{d}\right)^{n}-\left(x_{0}-y_{0} \sqrt{d}\right)^{n}\right]
\end{array}\right.
$$

Example 11

Solve $x^{2}-2 y^{2}=1$. The fund. sol. is $(3,2)$. The general solution is:

$$
x_{n}=\frac{1}{2}\left[(3+2 \sqrt{2})^{n}+(3-2 \sqrt{2})^{n}\right], \quad y_{n}=\frac{1}{2 \sqrt{2}}\left[(3+2 \sqrt{2})^{n}-(3-2 \sqrt{2})^{n}\right]
$$

The General Form of Pell's Equation

Definition 12

The general Pell's equation has the form

$$
\begin{equation*}
a x^{2}-b y^{2}=1 \tag{8}
\end{equation*}
$$

where $a b$ not a perfect square.
The equation

$$
\begin{equation*}
u^{2}-a b v^{2}=1 \tag{9}
\end{equation*}
$$

is called the Pell's resolvent of Eq. (8)

The General Form of Pell's Equation

Theorem 13
Let

$$
a x^{2}-b y^{2}=1
$$

have an integral solution. Let (A, B) solution for least positive A, B. The general solution is

$$
\begin{align*}
& x_{n}=A u_{n}+b B v_{n} \tag{10}\\
& y_{n}=B u_{n}+a A v_{n}
\end{align*}
$$

Where $\left(u_{n}, v_{n}\right)$ is the general solution of Pell's resolvent $u^{2}-a b v^{2}=1$.

The General Form of Pell's Equation

Example 14

Solve

$$
\begin{equation*}
6 x^{2}-5 y^{2}=1 \tag{11}
\end{equation*}
$$

The fund. sol. is $(x, y)=(A, B)=(1,1)$. The resolvent is $u^{2}-30 v^{2}=1$, with fund. sol. $\left(u_{0}, v_{0}\right)=(11,2)$. The general solution of the resolvent is

$$
\left\{\begin{array}{l}
u_{n}=\frac{1}{2}\left[(11+2 \sqrt{30})^{n}+(11-2 \sqrt{30})^{n}\right] \\
v_{n}=\frac{1}{2 \sqrt{30}}\left[(11+2 \sqrt{30})^{n}-(11-2 \sqrt{30})^{n}\right]
\end{array}\right.
$$

The general solution of Eq. (11) is

$$
x_{n}=u_{n}+5 v_{n}, \quad y_{n}=u_{n}+6 v_{n}
$$

Training Problem 1

Problem 1
Find all integers $n \geq 1$ such that $2 n+1$ and $3 n+1$ are both perfect squares.

Training Problem 1

Problem 1

Find all integers $n \geq 1$ such that $2 n+1$ and $3 n+1$ are both perfect squares.
Observe that

$$
2 n+1=x^{2}, 3 n+1=y^{2} \Longrightarrow 3 x^{2}-2 y^{2}=1
$$

with $3.2=6$ not a square in \mathbb{Z}.
So solving this amounts to solving the general form of Pell's equation.

The Negative Pell's Equation

Definition 15

The negative Pell's equation has the form

$$
\begin{equation*}
x^{2}-d y^{2}=-1 \tag{12}
\end{equation*}
$$

where d not a perfect square.

The Negative Pell's Equation

Definition 15

The negative Pell's equation has the form

$$
\begin{equation*}
x^{2}-d y^{2}=-1 \tag{12}
\end{equation*}
$$

where d not a perfect square.
Theorem 16
Let (A, B) be the smallest positive solution to Eq. (12). Then the general solution to Eq. (12) is given by

$$
\left\{\begin{array}{l}
x_{n}=A u_{n}+d B v_{n} \tag{13}\\
y_{n}=A u_{n}+B v_{n}
\end{array}\right.
$$

where $\left(u_{n}, v_{n}\right)$ is the general solution of $u^{2}-d v^{2}=1$.

Training Problem 2

Problem 2
Find all pairs (k, m) such that

$$
1+2+\cdots+k=(k+1)+(k+2)+\cdots+m .
$$

Training Problem 2

Problem 2
Find all pairs (k, m) such that

$$
1+2+\cdots+k=(k+1)+(k+2)+\cdots+m
$$

Adding $1+2+\cdots+k$ to both sides of the above equality we get

$$
2 k(k+1)=m(m+1) \Longleftrightarrow(2 m+1)^{2}-2(2 k+1)^{2}=-1
$$

Training Problem 2

Problem 2
Find all pairs (k, m) such that

$$
1+2+\cdots+k=(k+1)+(k+2)+\cdots+m
$$

Adding $1+2+\cdots+k$ to both sides of the above equality we get

$$
2 k(k+1)=m(m+1) \Longleftrightarrow(2 m+1)^{2}-2(2 k+1)^{2}=-1
$$

The associated negative Pell's equation is $x^{2}-2 y^{2}=-1$ with the minimal solution $(A, B)=(1,1)$.

Training Problem 3

Problem 3 (Romanian M. Olympiad, 1999)
Show that the equation $x^{2}+y^{3}+z^{3}=t^{4}$ has infinitely many solutions $x, y, z, t, \in \mathbb{Z}$ with the greatest common divisor 1 .

Training Problem 3

Problem 3 (Romanian M. Olympiad, 1999)
Show that the equation $x^{2}+y^{3}+z^{3}=t^{4}$ has infinitely many solutions $x, y, z, t, \in \mathbb{Z}$ with the greatest common divisor 1 .
Start from the equality

$$
\begin{aligned}
{\left[1^{3}+2^{3}+\cdots+(n-2)^{3}\right]+(n-1)^{3}+n^{3} } & =\left(\frac{n(n+1)}{2}\right)^{2} \\
{\left[\frac{(n-2)(n-1)}{2}\right]^{2}+(n-1)^{3}+n^{3} } & =\left(\frac{n(n+1)}{2}\right)^{2} .
\end{aligned}
$$

Training Problem 3

Problem 3 (Romanian M. Olympiad, 1999)
Show that the equation $x^{2}+y^{3}+z^{3}=t^{4}$ has infinitely many solutions $x, y, z, t, \in \mathbb{Z}$ with the greatest common divisor 1 .
Start from the equality

$$
\begin{aligned}
{\left[1^{3}+2^{3}+\cdots+(n-2)^{3}\right]+(n-1)^{3}+n^{3} } & =\left(\frac{n(n+1)}{2}\right)^{2} \\
{\left[\frac{(n-2)(n-1)}{2}\right]^{2}+(n-1)^{3}+n^{3} } & =\left(\frac{n(n+1)}{2}\right)^{2}
\end{aligned}
$$

Do there exist infinitely many integers $n \geq 1$ such that $\frac{n(n+1)}{2}$ is a perfect square?

Training Problem 3

Problem 3 (Romanian M. Olympiad, 1999)
Show that the equation $x^{2}+y^{3}+z^{3}=t^{4}$ has infinitely many solutions $x, y, z, t, \in \mathbb{Z}$ with the greatest common divisor 1 .
Start from the equality

$$
\begin{aligned}
{\left[1^{3}+2^{3}+\cdots+(n-2)^{3}\right]+(n-1)^{3}+n^{3} } & =\left(\frac{n(n+1)}{2}\right)^{2} \\
{\left[\frac{(n-2)(n-1)}{2}\right]^{2}+(n-1)^{3}+n^{3} } & =\left(\frac{n(n+1)}{2}\right)^{2}
\end{aligned}
$$

Do there exist infinitely many integers $n \geq 1$ such that $\frac{n(n+1)}{2}$ is a perfect square?

$$
\begin{aligned}
n(n+1)=n^{2}+n=2 m^{2} & \Longleftrightarrow 4 n^{2}+4 n=8 m^{2} \\
& \Longleftrightarrow(2 n+1)^{2}-2(2 m)^{2}=1
\end{aligned}
$$

This is Pell's equation, which has infinitely many solutions.

Training Problem 4

Problem 4 (Irish M. Olympiad, 1995)
Determine all integers a such that the equation $x^{2}+a x y+y^{2}=1$ has infinitely many solutions.

Training Problem 4

Problem 4 (Irish M. Olympiad, 1995)
Determine all integers a such that the equation $x^{2}+a x y+y^{2}=1$ has infinitely many solutions.
Rewrite the given equation in the form

$$
\begin{equation*}
(2 x+a y)^{2}-\left(a^{2}-4\right) y^{2}=4 \tag{14}
\end{equation*}
$$

Training Problem 4

Problem 4 (Irish M. Olympiad, 1995)
Determine all integers a such that the equation $x^{2}+a x y+y^{2}=1$ has infinitely many solutions.
Rewrite the given equation in the form

$$
\begin{equation*}
(2 x+a y)^{2}-\left(a^{2}-4\right) y^{2}=4 \tag{14}
\end{equation*}
$$

1. If $a^{2}-4<0$ then we have a finite number of solutions.

Training Problem 4

Problem 4 (Irish M. Olympiad, 1995)
Determine all integers a such that the equation $x^{2}+a x y+y^{2}=1$ has infinitely many solutions.
Rewrite the given equation in the form

$$
\begin{equation*}
(2 x+a y)^{2}-\left(a^{2}-4\right) y^{2}=4 \tag{14}
\end{equation*}
$$

1. If $a^{2}-4<0$ then we have a finite number of solutions.
2. If $a^{2}-4=0$ the equation becomes $2 x+a y= \pm 2$ with infinitely many solutions.

Training Problem 4

Problem 4 (Irish M. Olympiad, 1995)
Determine all integers a such that the equation $x^{2}+a x y+y^{2}=1$ has infinitely many solutions.
Rewrite the given equation in the form

$$
\begin{equation*}
(2 x+a y)^{2}-\left(a^{2}-4\right) y^{2}=4 \tag{14}
\end{equation*}
$$

1. If $a^{2}-4<0$ then we have a finite number of solutions.
2. If $a^{2}-4=0$ the equation becomes $2 x+a y= \pm 2$ with infinitely many solutions.
3. If $a^{2}-4>0$, then $a^{2}-4$ cannot be a perfect square and so the Pell's equation $u^{2}-\left(a^{2}-4\right) v^{2}=1$ has infinitely many solutions. Letting $x=u-a v, y=2 v$, we also have infinitely many solutions for $a^{2}-4 \geq 0$

Training Problem 5

Problem 5 (Bulgarian M. Olympiad, 1999)
Solve $x^{3}=y^{3}+2 y^{2}+1$ for integers x, y.

Training Problem 5

Problem 5 (Bulgarian M. Olympiad, 1999)
Solve $x^{3}=y^{3}+2 y^{2}+1$ for integers x, y.
If $y^{2}+3 y>0$ then
$y^{3}<x^{3}=y^{3}+2 y^{2}+1<\left(y^{3}+2 y^{2}+1\right)+\left(y^{2}+3 y\right)=(y+1)^{3}$,
which is impossible.

Training Problem 5

Problem 5 (Bulgarian M. Olympiad, 1999)
Solve $x^{3}=y^{3}+2 y^{2}+1$ for integers x, y.
If $y^{2}+3 y>0$ then
$y^{3}<x^{3}=y^{3}+2 y^{2}+1<\left(y^{3}+2 y^{2}+1\right)+\left(y^{2}+3 y\right)=(y+1)^{3}$,
which is impossible.
Therefore

$$
y^{2}+3 y \leq 0 \Longrightarrow y=0,-1,-2,-3 .
$$

The solution set is $(1,0),(1,-2),(-2,-3)$.

Training Problem 6

Problem 6
Find positive integers x, y, z such that $x y+y z+z x-x y z=2$

Training Problem 6

Problem 6
Find positive integers x, y, z such that $x y+y z+z x-x y z=2$
We may assume that $x \leq y \leq z$.

Training Problem 6

Problem 6
Find positive integers x, y, z such that $x y+y z+z x-x y z=2$
We may assume that $x \leq y \leq z$.

1. If $x=1$ then the equation is $y+z=2 \Longrightarrow(x, y, z)=(1,1,1)$

Training Problem 6

Problem 6
Find positive integers x, y, z such that $x y+y z+z x-x y z=2$
We may assume that $x \leq y \leq z$.

1. If $x=1$ then the equation is $y+z=2 \Longrightarrow(x, y, z)=(1,1,1)$
2. If $x=2$ then the equation is

$$
2 y+2 z-y z=2=(z-2)(y-2) \Longrightarrow z=4, y=3
$$

Training Problem 6

Problem 6
Find positive integers x, y, z such that $x y+y z+z x-x y z=2$
We may assume that $x \leq y \leq z$.

1. If $x=1$ then the equation is $y+z=2 \Longrightarrow(x, y, z)=(1,1,1)$
2. If $x=2$ then the equation is

$$
2 y+2 z-y z=2=(z-2)(y-2) \Longrightarrow z=4, y=3
$$

3. If $x \geq 3$ then $x, y, z, \geq 3$ which yield

$$
\begin{aligned}
& x y z \geq 3 x y \\
& x y z \geq 3 y z \\
& x y z \geq 3 z x
\end{aligned}
$$

Training Problem 6

Problem 6
Find positive integers x, y, z such that $x y+y z+z x-x y z=2$
We may assume that $x \leq y \leq z$.

1. If $x=1$ then the equation is $y+z=2 \Longrightarrow(x, y, z)=(1,1,1)$
2. If $x=2$ then the equation is

$$
2 y+2 z-y z=2=(z-2)(y-2) \Longrightarrow z=4, y=3
$$

3. If $x \geq 3$ then $x, y, z, \geq 3$ which yield

$$
\begin{aligned}
& x y z \geq 3 x y \\
& x y z \geq 3 y z \\
& x y z \geq 3 z x
\end{aligned}
$$

Adding the above relations it follows that

$$
x y z \geq x y+y z+z x \Longrightarrow x y+y z+z x-x y z<0 \neq 2
$$

Training Problem 7

Problem 7

Find the positive integers x, y, z such that $3^{x}+4^{y}=z^{2}$.

Training Problem 7

Problem 7

Find the positive integers x, y, z such that $3^{x}+4^{y}=z^{2}$.

$$
3^{x}=z^{2}-4^{y}=\left(z-2^{y}\right)\left(z+2^{y}\right) .
$$

Then

$$
z-2^{y}=3^{m} \text { and } z+2^{y}=3^{n}, m>n \geq 0, m+n=x .
$$

Training Problem 7

Problem 7
Find the positive integers x, y, z such that $3^{x}+4^{y}=z^{2}$.

$$
3^{x}=z^{2}-4^{y}=\left(z-2^{y}\right)\left(z+2^{y}\right) .
$$

Then

$$
z-2^{y}=3^{m} \text { and } z+2^{y}=3^{n}, m>n \geq 0, m+n=x .
$$

Subtracting,

$$
\begin{aligned}
2^{y+1} & =3^{n}-3^{m}=3^{m}\left(3^{n-m}-1\right) \\
& \Longrightarrow 3^{m}=1, n=x \Longrightarrow 3^{n}-1=2^{y+1}
\end{aligned}
$$

Training Problem 7

Problem 7
Find the positive integers x, y, z such that $3^{x}+4^{y}=z^{2}$.

$$
3^{x}=z^{2}-4^{y}=\left(z-2^{y}\right)\left(z+2^{y}\right) .
$$

Then

$$
z-2^{y}=3^{m} \text { and } z+2^{y}=3^{n}, m>n \geq 0, m+n=x .
$$

Subtracting,

$$
\begin{aligned}
2^{y+1} & =3^{n}-3^{m}=3^{m}\left(3^{n-m}-1\right) \\
& \Longrightarrow 3^{m}=1, n=x \Longrightarrow 3^{n}-1=2^{y+1}
\end{aligned}
$$

1. If $y=0$, then $n=x=1$ and $z=2$.
2. If $y \geq 1$ then $x=n=2, y=2, z=3^{n}-2^{y}=5$.

Training Problem 8

Problem 8
Find the positive integers x, y, z such that $3^{x}-1=y^{z}$.

Training Problem 8

Problem 8
Find the positive integers x, y, z such that $3^{x}-1=y^{z}$.
If z is even we get a contradiction. So $z=2 k+1$.

Training Problem 8

Problem 8
Find the positive integers x, y, z such that $3^{x}-1=y^{z}$.
If z is even we get a contradiction. So $z=2 k+1$. Now

$$
3^{x}=y^{z}+1=y^{2 k+1}+1=(y+1)\left(y^{2 k}-y^{2 k-1}+y^{2 k-2}-\cdots+y^{2}-y+1\right) .
$$

Training Problem 8

Problem 8
Find the positive integers x, y, z such that $3^{x}-1=y^{z}$.
If z is even we get a contradiction. So $z=2 k+1$. Now

$$
3^{x}=y^{z}+1=y^{2 k+1}+1=(y+1)\left(y^{2 k}-y^{2 k-1}+y^{2 k-2}-\cdots+y^{2}-y+1\right) .
$$

Then $y \equiv-1 \bmod 3$.

Training Problem 8

Problem 8
Find the positive integers x, y, z such that $3^{x}-1=y^{z}$.
If z is even we get a contradiction. So $z=2 k+1$. Now
$3^{x}=y^{z}+1=y^{2 k+1}+1=(y+1)\left(y^{2 k}-y^{2 k-1}+y^{2 k-2}-\cdots+y^{2}-y+1\right)$.
Then $y \equiv-1 \bmod 3$.
$y^{2 k}-y^{2 k-1}+\cdots+y^{2}-y+1 \equiv \underbrace{1+1+\cdots+1}_{2 k+1} \equiv(2 k+1) \equiv 0 \quad \bmod 3$.
Therefore $z=2 k+1=3 p$, some p :

$$
\begin{aligned}
3^{x}= & y^{3 p}+1=\left(y^{p}+1\right)\left(y^{2 p}-y^{p}+1\right) \Longrightarrow y^{p}+1=3^{s} \\
3^{x} & =1+y^{3 p}=1+\left(3^{s}-1\right)^{3} \\
& =3^{3 s}-3 \cdot 3^{2 s}+3.3^{s} \\
& =3^{s+1}\left(3^{2 s-1}-3^{5}+1\right) \\
& \Longrightarrow 3^{2 s-1}-3^{s}=0 \Longrightarrow s=1 \\
& \Longrightarrow y^{p}=3^{s}-1=2 \Longrightarrow y=2, p=1, x=2, z=3 .
\end{aligned}
$$

Training Problem 9

Problem 9 (Taiwanese M. Olympiad, 1999)
Find all positive integers $a, b, c \geq 1$ such that $a^{b}+1=(a+1)^{c}$

Training Problem 9

Problem 9 (Taiwanese M. Olympiad, 1999)
Find all positive integers $a, b, c \geq 1$ such that $a^{b}+1=(a+1)^{c}$

1. $b=c=1, a \geq 1$ is a solution. Let $b \geq 2$.

Training Problem 9

Problem 9 (Taiwanese M. Olympiad, 1999)
Find all positive integers $a, b, c \geq 1$ such that $a^{b}+1=(a+1)^{c}$

1. $b=c=1, a \geq 1$ is a solution. Let $b \geq 2$.
2. $a^{b}+1=(a+1)^{c} \equiv(-1)^{b}+1 \equiv 0 \bmod a+1 \Longrightarrow b$ odd

Training Problem 9

Problem 9 (Taiwanese M. Olympiad, 1999)
Find all positive integers $a, b, c \geq 1$ such that $a^{b}+1=(a+1)^{c}$

1. $b=c=1, a \geq 1$ is a solution. Let $b \geq 2$.
2. $a^{b}+1=(a+1)^{c} \equiv(-1)^{b}+1 \equiv 0 \bmod a+1 \Longrightarrow b$ odd
3. $(a+1-1)^{b}+1 \equiv b(a+1) \equiv 0 \bmod (a+1)^{2} \Longrightarrow a$ even

Training Problem 9

Problem 9 (Taiwanese M. Olympiad, 1999)
Find all positive integers $a, b, c \geq 1$ such that $a^{b}+1=(a+1)^{c}$

1. $b=c=1, a \geq 1$ is a solution. Let $b \geq 2$.
2. $a^{b}+1=(a+1)^{c} \equiv(-1)^{b}+1 \equiv 0 \bmod a+1 \Longrightarrow b$ odd
3. $(a+1-1)^{b}+1 \equiv b(a+1) \equiv 0 \bmod (a+1)^{2} \Longrightarrow a$ even
4. $a^{b}+1 \equiv 1 \equiv(a+1)^{c} \equiv c a+1 \bmod a^{2} \Longrightarrow a \mid c \Longrightarrow c$ even

Training Problem 9

Problem 9 (Taiwanese M. Olympiad, 1999)
Find all positive integers $a, b, c \geq 1$ such that $a^{b}+1=(a+1)^{c}$

1. $b=c=1, a \geq 1$ is a solution. Let $b \geq 2$.
2. $a^{b}+1=(a+1)^{c} \equiv(-1)^{b}+1 \equiv 0 \bmod a+1 \Longrightarrow b$ odd
3. $(a+1-1)^{b}+1 \equiv b(a+1) \equiv 0 \bmod (a+1)^{2} \Longrightarrow a$ even
4. $a^{b}+1 \equiv 1 \equiv(a+1)^{c} \equiv c a+1 \bmod a^{2} \Longrightarrow a \mid c \Longrightarrow c$ even
5. $(2 x)^{b}=(a+1)^{2 y}-1=\left[(a+1)^{y}-1\right]\left[(a+1)^{y}+1\right]$

Training Problem 9

Problem 9 (Taiwanese M. Olympiad, 1999)
Find all positive integers $a, b, c \geq 1$ such that $a^{b}+1=(a+1)^{c}$

1. $b=c=1, a \geq 1$ is a solution. Let $b \geq 2$.
2. $a^{b}+1=(a+1)^{c} \equiv(-1)^{b}+1 \equiv 0 \bmod a+1 \Longrightarrow b$ odd
3. $(a+1-1)^{b}+1 \equiv b(a+1) \equiv 0 \bmod (a+1)^{2} \Longrightarrow a$ even
4. $a^{b}+1 \equiv 1 \equiv(a+1)^{c} \equiv c a+1 \bmod a^{2} \Longrightarrow a \mid c \Longrightarrow c$ even
5. $(2 x)^{b}=(a+1)^{2 y}-1=\left[(a+1)^{y}-1\right]\left[(a+1)^{y}+1\right]$
6. $\operatorname{gcd}\left((a+1)^{y}-1,(a+1)^{y}+1\right)=2$

Training Problem 9

Problem 9 (Taiwanese M. Olympiad, 1999)
Find all positive integers $a, b, c \geq 1$ such that $a^{b}+1=(a+1)^{c}$

1. $b=c=1, a \geq 1$ is a solution. Let $b \geq 2$.
2. $a^{b}+1=(a+1)^{c} \equiv(-1)^{b}+1 \equiv 0 \bmod a+1 \Longrightarrow b$ odd
3. $(a+1-1)^{b}+1 \equiv b(a+1) \equiv 0 \bmod (a+1)^{2} \Longrightarrow a$ even
4. $a^{b}+1 \equiv 1 \equiv(a+1)^{c} \equiv c a+1 \bmod a^{2} \Longrightarrow a \mid c \Longrightarrow c$ even
5. $(2 x)^{b}=(a+1)^{2 y}-1=\left[(a+1)^{y}-1\right]\left[(a+1)^{y}+1\right]$
6. $\operatorname{gcd}\left((a+1)^{y}-1,(a+1)^{y}+1\right)=2$
7. $x \mid(a+1)^{y}-1=(2 x+1)^{y}-1 \Longrightarrow(a+1)^{y}-1=2 x^{b}$

Training Problem 9

Problem 9 (Taiwanese M. Olympiad, 1999)
Find all positive integers $a, b, c \geq 1$ such that $a^{b}+1=(a+1)^{c}$

1. $b=c=1, a \geq 1$ is a solution. Let $b \geq 2$.
2. $a^{b}+1=(a+1)^{c} \equiv(-1)^{b}+1 \equiv 0 \bmod a+1 \Longrightarrow b$ odd
3. $(a+1-1)^{b}+1 \equiv b(a+1) \equiv 0 \bmod (a+1)^{2} \Longrightarrow a$ even
4. $a^{b}+1 \equiv 1 \equiv(a+1)^{c} \equiv c a+1 \bmod a^{2} \Longrightarrow a \mid c \Longrightarrow c$ even
5. $(2 x)^{b}=(a+1)^{2 y}-1=\left[(a+1)^{y}-1\right]\left[(a+1)^{y}+1\right]$
6. $\operatorname{gcd}\left((a+1)^{y}-1,(a+1)^{y}+1\right)=2$
7. $x \mid(a+1)^{y}-1=(2 x+1)^{y}-1 \Longrightarrow(a+1)^{y}-1=2 x^{b}$
8. $2^{b-1}=(a+1)^{y}+1>(a+1)^{y}-1=2 x^{b} \Longrightarrow x=1$

Training Problem 9

Problem 9 (Taiwanese M. Olympiad, 1999)
Find all positive integers $a, b, c \geq 1$ such that $a^{b}+1=(a+1)^{c}$

1. $b=c=1, a \geq 1$ is a solution. Let $b \geq 2$.
2. $a^{b}+1=(a+1)^{c} \equiv(-1)^{b}+1 \equiv 0 \bmod a+1 \Longrightarrow b$ odd
3. $(a+1-1)^{b}+1 \equiv b(a+1) \equiv 0 \bmod (a+1)^{2} \Longrightarrow a$ even
4. $a^{b}+1 \equiv 1 \equiv(a+1)^{c} \equiv c a+1 \bmod a^{2} \Longrightarrow a \mid c \Longrightarrow c$ even
5. $(2 x)^{b}=(a+1)^{2 y}-1=\left[(a+1)^{y}-1\right]\left[(a+1)^{y}+1\right]$
6. $\operatorname{gcd}\left((a+1)^{y}-1,(a+1)^{y}+1\right)=2$
7. $x \mid(a+1)^{y}-1=(2 x+1)^{y}-1 \Longrightarrow(a+1)^{y}-1=2 x^{b}$
8. $2^{b-1}=(a+1)^{y}+1>(a+1)^{y}-1=2 x^{b} \Longrightarrow x=1$
9. The only other solution is $a=2, b=c=3$.
