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1 Motivation

A hallmark of cancer is dysregulation of pivotal cell fate decisions leading to aber-
rant proliferation and reduced apoptosis. Healthy cell fate decisions depend on
proper sensing of the cell’s intra- and extracellular statein a processes called sig-
nal transduction. The usual scheme is that receptors sense signals by binding of
an extracellular ligand, resulting in conformational changes that trigger the forma-
tion of multi-protein complexes and subsequent activationof GTPases and kinases.
Hereby, one receptor usually activates several downstreampathways (Fig 1). A par-
ticular cell fate can usually not be attributed to the activity of a single protein in
isolation, but rather depends on the context and temporal pattern of the activation
and regulating feedback structures within the signalling network [21, 30, 19]. For
example, treatment of Rat Pheochromocytoma (PC12) cells with epidermal growth
factor (EGF) or nerve growth factor (NGF) activates the samesignalling cascade
(the RAF/MEK/ERK cascade) but has different effects on cellfate. EGF causes
transient activation of extracellular regulated kinase (ERK) and proliferation due to
negative feedback, whereas NGF causes sustained ERK activation and differentia-
tion due to positive feedback [26, 37]. Because of this complexity, the function of
cellular signalling often eludes a naive intuitive understanding, thus calling for the
use of mathematical modelling and analysis [24, 16, 17, 23].Here, we demonstrate
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how systems modelling and identification can be used to elucidate core processes
underlying cellular decision making.

Fig. 1 Signal transduction in a nutshell. After binding to its ligand a receptor (here TrkA) under-
goes conformational changes, thus allowing the binding of several adaptor proteins, and triggers
the activation of GTPases and kinases. Often the exact cascade of events is poorly understood and
includes crosstalk and feedback.

2 Molecular biology and systems theory

Modelling biological systems on the intracellular level has been a research topic
for over half a century. All started in 1943, when Erwin Schr¨odinger gave three
talks in Dublin entitledWhat is Life [39, 40]. One of his central thoughts, and at
that time a revolutionary idea, was that biological systemsfollow physical laws. In
other words, biological systems can be described by mathematical models. For the
control of membrane potential during neuronal excitation,this was achieved in 1952
by Hodgkin and Huxley, who explained and underlined their experimental data with
a mathematical model, a key step in understanding how neurons function [14]. A
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few years later, Denis Noble expanded this model to obtain the first mathematical
model of the heart [31]. Nowadays, Hodgkin Huxley models andvariants thereof
are a vital part of computational neuroscience and widely used in research groups
around the world. Part of Hodgkin and Huxley’s success relied on the fact that they
were able to estimate the model parameters from experimental data. In other areas
of molecular biology, such as cell signalling and gene regulation, the identification
of mathematical models has proven to be much more challenging.

The advances in biological experimental techniques of the last decades has led
to a rapidly growing number of models [29, 27]. In signal transduction, the mitogen
activated protein kinase (MAPK) downstream of the epidermal growth factor (EGF)
was amongst the first systems to be modelled [15, 20]. From a modelling perspec-
tive, cell signalling systems are often composed of a numberof similar modules or
motifs, such as dimerisation processes or phosphorylationcycles. Biologically these
modules are diversely implemented, i.e. composed of different molecular species.
As a consequence, one particular module can exhibit very different behaviours, de-
spite having the same interaction pattern. For example, theMAPK pathway consists
of phosphorylation dephosphorylation cycles layered in three stages [21]. In nature,
this scheme is implemented in several variations, involving different kinases such
as ERK, JNK and p38. A model of a MAPK system can exhibit totally different
behaviours such as homeostasis, near perfect adaptation and damped or sustained
oscillations, depending on the values of the kinetic parameters [19]. This example
illustrates the importance of choosing the correct parameters, especially if the model
is to be used for predictions.

The main bottleneck in obtaining dynamic models of biological systems is the
estimation of biological parameters, while structural information like stoichiome-
try are often known. Unknown parameters can be estimated from time-series data
as is common practice in technical applications. Several peculiarities of biological
systems hinder a straightforward application of most existing identification method-
ologies as typically used for technical systems. Biological systems usually have a
large number of parameters, though often only a reduced set of experiments are pos-
sible, consisting of a few experimental steps and scarce time points. Furthermore,
the noise level is usually significant.

Recent years have shown that the control system theoreticalviewpoint and ap-
proaches are valuable tools for gaining a deeper understanding of biological systems
[16, 44]. However, biological systems have particular properties, such as positivity
and monotonicity, not often found in technical applications [41, 42]. This requires
the design of novel methodologies particularly suited for biological systems. Con-
cerning metabolic pathways, a prominent example is metabolic control analysis for
sensitivity analysis developed in the 1970’s [13, 8]. Metabolic control theory ex-
ploits the fact that enzyme concentrations vary on a much longer timescale than
metabolite concentrations and metabolic systems spend most of their time resting
in steady state, an assumption not sensible for signalling networks. Therefore, such
unified theoretical treatments have not yet been established for signalling networks.
This is partly due to the fact that signalling systems naturally deal with the temporal
integration of ever changing extracellular conditions with the intracellular machin-
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ery. As a consequence, the behaviour is often dominated by transient and nonlinear
effects. In fact, the nonlinearity of signalling systems often generate the phenomena
constituting particular biological functions. Examples are stable limit cycle oscil-
lations in the case of circadian rhythms and cell cycles, or bistable switches in the
case of cell fate decisions such as differentiation and apoptosis [28, 5]. From a theo-
retical perspective, the nonlinearity and behavioural complexity impedes the devel-
opment of a (unifying) biological theory. As a consequence,the field is diversified
with numerous theoretical works treating numerous specialised cases. This diver-
sity is reflected in the recent release of books on the subject, such asSystems Theory
and Systems Biology edited by Pablo Iglesias and Brian Ingalls [16] orSystems
Modelling in Cellular Biology edited by Zoltan Szallasi, Jörg Stelling and Vipul
Periwal [43] and the dedication of special issues on systemsbiology in the control
community [1, 3]. We can however turn this argument around and exploit the par-
ticular form of biological nonliearities [10, 12, 9, 2, 11, 7]. In this spirit, we present
an identification methodology that is particularly tailored to biological systems and
capable of estimating time-variant parameters.

2.1 Dynamic modelling

A common framework for the modelling of biochemical reaction networks involves
sets of reactions of the following form

α1S1+ . . .+αnsSns → β1P1+ . . .+βnpPnp , (1)

where Si are substrates that are transformed into the products Pi. The factorsαi and
βi are the stoichiometric coefficients of the reactants.

Neglecting spatial and stochastic effects, these reactions are often modelled with
systems of ordinary differential equations:

ċ = Nv(c, p), (2)

wherec ∈ R
n
≥0 is the vector of concentrations,p ∈ R

np
>0 the parameter vector and

v ∈R
n
≥0×R

np
>0 7→R

m
≥0 the vector of the flows. The stoichiometric matrixN ∈R

n×m

depends on the coefficientsαi, βi and, possibly on factors compensating different
units or volumes. For a more detailed introduction, see for example [25, 18, 33].

There is a large variety of possible reaction models [?]. Here, we restrict the
reaction models to the most common ones in signalling networks:

mass action The flow is proportional to each substrate:v = k ∏i∈I ci whereI is a
subset of 1, . . . ,n with possibly repeated entries;

power law, S-Systems, generalised mass action The flow is polynomial in the sub-
strates:v = k ∏i∈[1,n] c

αi
i

Michaelis-Menten or Monod For low substrates the flowv depends linearly on the
substrates and saturates for large substrate concentrations atVmax:
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v = Vmax
s

KM+s . At a substrate concentration ofKM, the flow is half
the maximum rate.

Hill The flow is sublinear for low substrate and saturates forlarge sub-
strate concentrations atVmax: v=Vmax

sh

Kh
M+sh . The exponenth is larger

than one and at a substrate concentration ofKM, the flow is half the
maximum rate.

In biochemical reaction modelling, the stoichiometry is usually known, as is the
type of reaction kinetics, in contrary to the often quite uncertain parameters. Thus,
the identification problem can be formulated as follows:

Given: The stoichiometric matrixN and the form of the functionv(c, p) describ-
ing the reaction rates

Unknown: The kinetic parametersp

Before we present the identification methodology, we discuss the effect of model
approximations as models are by nature approximations ofreal systems.

2.2 Model approximations and time varying parameters

Dynamic models are mathematical descriptions of real processes. By nature, for-
malised descriptions are always approximate. The only model capturing all aspects
of a real system is the system itself, or as Rosenblueth and Weiner expressed it
”The best material model of a cat is another cat, or preferably the same cat” [36].
Nevertheless, mathematical models are helpful for understanding the behaviour of
systems, especially if the underlying system is complex. The art of model building
is therefore not to find the most accurate description, but the most helpful one. We
have, therefore, to identify the core processes generatingthe considered behaviour.
The process of identifying such a core model, awards us with an (basic) understand-
ing of system that can be deepened by using mathematical analysis.

Complex models can be very accurate in the sense that simulating them repli-
cates experimental data well. In contrast, simple models are usually associated with
large quantitative discrepancies. From a theoretical perspective, matching a simpli-
fied model to a trajectory generated by a complex system, willresult in time-varying
parameters. We illustrate this fact using the system in Figure 2a. The inputu reg-
ulates the formation and activity of several intermediate signalling molecules and
complexesZ1, · · ·Zn. The outputy is the intermediate moleculeZn, which acts as en-
zyme for the phosphorylation of a downstream kinaseX . Using Michaelis Menten
kinetics, the rate ofX-phosphorylation is

rphos= kphoszn
x

K1+ x
. (3)

Assuming that the concentration of the intermediate molecules z1, · · · ,zn are gov-
erned by a dynamic system, thenzn is a time varying variable, whose time course
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depends not only on the initial conditions, but also the input u. We can find an
approximate description of the raterphos in terms of the input by neglecting the
dynamics of the intermediate variables. Assume for simplicity that the intermediate
variables are described by a linear system of ordinary differential equations (Fig. 2b)

ż = Az+Bu, (4)

y =Cz, (5)

Formally, we obtain a quasi steady state approximation by setting ż = 0 and solving
for z (Fig. 2c)

z = A−1Bu ⇒ y =CA−1Bu. (6)

Substituting (6) into (3) gives an approximate expression for the phosphorylation
rate

rphos≈ kphosCA−1B
︸ ︷︷ ︸

=k1

u
x

K1+ x
. (7)

For constant inputs, (6) describes the steady state of the linear intermediate system.
Thus, for a linear intermediate system in steady state, (3) is exact. In the dynamic
case, the newly defined parameterk1 is time varying and approaches the valuek1 =

CA−1B for any input trajectory approaching steady stateu(t)
t→∞
−→ u.

Fig. 2 Conceptual scheme of TrkA signalling approximations. Phosphorylated TrkA (pTrkA) ac-
tivates downstream kinasesX via a system intermediates (grey box). (a) Most accurately,the in-
termediate system consists of a system of (unspecified) biochemical reactions. (b) Approximating
the intermediate dynamics with a system of linear differential equations. (c) Quasi steady state
approximation of the scheme in (b).

The above considerations motivate the following (oversimplified) model of ki-
nase phosphorylation

ẋ∗ = k1u
x

K1+ x
− k2

x∗

K2+ x∗
. where x = 1− x∗, (8)

whereby we used the conserved moietyxtot = x+ x∗ and normalised concentrations
xtot = 1. Because the model neglects the dynamics of the intermediate species, we
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can imagine that trying to mimic experiments in simulationswould perform rather
poorly. However, this judgement is based on the assumption of constant parameters.

A consequence of neglecting the intermediate dynamics is that the parameterk1

is time-varying. Solving the system of linear differentialequations (4) gives the time
courses of the intermediates

z(t) = eAt
∫ t

0
e−AτBu(τ)dτ,

where we assumed zero initial conditionszi(0) = 0. By substituting into (3) and
comparing to the simplified model (7) we see that the parameter k1 is a function of
time

k1(t) =CeAt
∫ t

0
e−AτBu(τ)dτ

kphos

u(t)

Thus, trying to mimic experiments by simulating (8) would perform rather poorly
and advanced identification techniques capable of estimating time-variant parame-
ters are needed. Observers provide such a technique.

3 Parameter estimation with observers

The parameter estimation problem is closely related to the state estimation problem
as both consider the estimation of unknown quantities. In loose terms, an observer is
a mathematical system that estimates internal, non-measured states. Observer based
approaches to parameter estimation require a certain system extension. Assuming
that the parameters are constant, we can formally extend thestate space with the
parameters, i.e.

[
ċ
ṗ

]

=

[
f (c, p)

0

]

. (9)

Note that the assumption ˙p = 0 is a formal construct that enables us to formulate
the problem mathematically. The same approach can be taken in order to estimate
time varying parameters. Then the assumption ˙p = 0 corresponds to a time scale
separation of system dynamics and time varying parameters.

Given the above system, an observer can achieve a combined state and param-
eter estimation. However, designing observers for system (9) carries two difficul-
ties: parameter dependency and nonlinearity. The parameter dependency triggers
observability issues; for example, linearisations of (9) are generally not observable
in steady state [7]. The nonlinearity of the problem means that the observer error de-
pends on unknown states. For linear systems, the so called separation principle states
that the dynamics of observer error only depend on the error itself and measured out-
puts [45]. Unfortunately, there is no separation principlefor nonlinear systems. As a
consequence, global convergence for allp ∈R can generally not be achieved [6, 4].
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An alternative to the state space extension with ˙p = 0 is the transformation into
parameter free coordinates[9, 12, 2, 7]. The transformation exploits particular prop-
erties of biochemical reaction systems and facilitates theobserver design. The entire
identification procedure can be structured into three steps

1. Transformation of the system of ordinary differential equations into a parameter
independent form;

2. Estimation of all states in the parameter free coordinates using an observer;
3. Back transformation to obtain the parameters.

In the following sections, we address each step in detail.

3.1 Transformation into parameter-free coordinates

This section presents the state space extension transforming the system into param-
eter free coordinates. The approach is first illustrated fora system with a single
reaction, before the general extension scheme is presented.

Example 1. Let us consider the following system withk > 0, K > 0

ċ =−v(c), (10a)

v(c) = k
c2

c+K
. (10b)

Assuming thatc and thereforev are positive, it is possible to derive the differential
equation for the relative rate of change of the reaction rate, in essence taking the
logarithm and time derivative of (10b). Before doing that, we introduce the new
state

M = c+K

with the derivative

Ṁ = ċ.

Now, taking the logarithm and time derivative of (10b) gives

v̇
v
=

d
dt

logv =
d
dt

(logk+2logc− logM)

= 2
ċ
c
−

Ṁ
M
.

Substituting ˙c =−v yields the extended system
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ċ =−v

Ṁ =−v

v̇ = v
(

−2
v
c
+

v
M

)

for which the right-hand-side is parameter free.

As the example illustrates, the states of the parameter freeextended system con-
sists of the concentrationsc, the denominators of the reaction ratesM and the reac-
tion ratesv.

In general, the approach considers reaction kinetic systems

ċ = Nv(c, p,u), (11a)

allowing for fluxes of the form:

vi = ki ∏
j

c
αi j
j uαu,i j

Mi j
where Mi j = c

ηi j
j +Ki j, (11b)

and whereKi j > 0, ηi j ≥ 0 andαi j,αu,i j ≥ 0 denote known structural parameters
andu ≥ 0 is a vector of inputs representing concentrations of unmodelled upstream
components. Ifηi j = 0, then the arbitrary parameterKi j shall be equal to 1. The
general formulation of (11b) contains mass action kinetics, generalised mass action
kinetics, Michaelis-Menten- and Hill-kinetics as well as their products. For example,
settingηi j = 0 leads to a mass action model, whereas settingαi j = ηi j = 1 gives
Michaelis-Menten kinetics.

For 0< αi j < 1, the fluxvi is not Lipschitz inc j = 0. To ensure the existence and
uniqueness of solutions, we assume that all concentrationsare strictly positive.

Assumption 1. The parametersp and the concentrationsc are strictly positive along
trajectories of (9) and bounded, i.e. 0< δ ≤ ci(t,c0)≤ δ < ∞ holds for all speciesi
and all initial conditionsc0 for some positive constantsδ < δ .

This condition is satisfied in many biological applications, in particular for models
of metabolic pathways.

To simplify the presentation, define the following matrix-valued functionM :
R

n
≥0 → R

m×n

Mi j = K
ηi j
i j + c

ηi j
j . (12)

Then the mapping

Θ :

[
c
p

]

7→





c
M(c, p)
v(c, p)



 (13)

is diffeomorph if Assumption 1 holds, defining a smooth and bijective state-space
transformation of the original system (9) into an equivalent extended system that
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is parameter free. This means, consideringMi j andvi as additional states, comple-
menting the natural statesc j, results in ordinary differential equations that do not
depend on the parameters. The transformed system is

ċ = Nv, (14a)

Ṁi j = ηi jc
ηi j−1
j eT

j Nv, (14b)

v̇ = diag(v)

(

α
(
diag(c)

)−1
Nv+αu

(
diag(u)

)−1
u̇− m̃

)

, (14c)

where

m̃i = ∑
j

ηi jc
ηi j−1
j eT

j Nv

Mi j
.

Summarising, any biochemical reaction model consisting offlows modelled as
in (11b) can be transformed into a system that is free of parameters. In parameter
free coordinates, the system is described using an extendedstate vector and depends
only on structural properties of the original system.

The extended state is denoted byx ∈R
nx
>0

x =





c
m
v



 , (15)

wherem is the vector of all non-zero entries of

vectM =
[
M11 · · · Mm1 M12 · · · Mmn

]T
.

Assuming that the possibly time dependent inputsuc = uc(t) are differentiable, the
dependence of the extended system on time derivatives ofuc does not pose a prob-
lem. We can defineuT =

[
uT

v uT
c u̇T

c

]
and write the system compactly as

ẋ = f (x,u) =





Nv
fM(c,v)

fv(c,M,v,u)



 (16a)

Remark 1. Step and pulse inputs can be handled either using a differentiable approx-
imation in the form of steep sigmoidal functions e.g.uc = A0(1+ tanh(t −T0)) or
by changing the initial condition accordingly and setting ˙uc = 0.

To simplify the observer design, we introduce the assumption that the output is a
subset of concentrations flows. This is the case in many biological applications.

Assumption 2. The outputy(t) ∈ R
ny is a subset of concentrationsc and flowsv:
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y = h









c
m
v







=

[
Hc 0 0
0 0 Hv

]




c
m
v



 , (16b)

where the matricesHc andHv are composed of columns of the identity matrices.

If some parameters values are already known, the proposed methodology can be
adjusted in a straightforward way to not estimate them again. There are basically
two cases. First, the parameter is a Hill or Michaelis-Menten constantKi j . Then,
there exists a stateMi j, which depends onKi j and on some concentrations. This
state can therefore be expressed as an algebraic equation ofother states and does
not require a differential equation. In the second case, theparameter is proportional
to a flow, i.e.ki in a flow v j. This flow then also contains no unknown, only other
states and thus its differential equation can be replaced byan algebraic equation.
The reduced extended system is a differential algebraic system of index one. The al-
gebraic equations can easily be eliminated, thus reducing the state space dimension
by the number of known parameters.

3.2 Dissipative observer

Generally speaking an observer is an algorithm estimating internal states based on
output measurements. Usually, observers consists of a copyof the system’s equa-
tions and a correction term feeding back the estimation error, thus pushing the sim-
ulated trajectory towards the true trajectory [38]. In particular, the parameter free
system (16a) facilitates the design of a dissipative observer [35, 9]. Let

A =

[
0 0 N
0 0 0

]

,G =

[
0
I

]

andΨ (x,u) =

[
fM(x,u)
fv(x,u)

]

,

then the parameter free system 16a writes as

ẋ = Ax+GΨ(x,u), (17a)

y =Cx, (17b)

which is Lure’s discretion into linear and nonlinear parts.A dissipative observer
for (17) is

ξ̇ = Aξ +GΨ̃
(
ξ +N · (υ − y),u

)
+L · (υ − y), (18a)

υ =Cξ , (18b)

where the so called observer gain matricesN andL have to satisfy the linear matrix
inequality (LMI)
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− 1
δ 2 I I+NC 0

(I+NC)T P(A+LC)+ (A+LC)TP+ εI PG
0 GT P −I



4 0, (19)

and the observer nonlinearitỹΨ has to be constructed such that the mappingΦ(z) :
z 7→ Ψ̃(x,u)−Ψ(x+ z,u), whereξ = x+ z, satisfies the Lipschitz condition

‖Φ(z,σ)‖2 ≤ δ‖z‖2.

A simple construction for the observer nonlinearity is

Ψ̂i(x+ z) =







Ψmin if Ψi(x+ z)>Ψmin

Ψi(x+ z) if Ψmin ≤Ψi(x+ z)≤Ψmax

Ψmax if Ψi(x+ z)<Ψmax

,

whereΨmin andΨmax respectively are lower and upper bounds on the elements ofΨ
on the true trajectoryx(t,x0), i.e. it holds that

Ψmin ≤Ψ (x(t,x0))≤Ψmax.

3.3 Obtaining the parameter estimate

The last step is the back transformation into original coordinates, which gives the
actual parameter estimate. Inversion of (13) yields an explicit expression. In partic-
ular, using (12), the parametersKi j(t) can be estimated via

K̂i j(t) =

{(
M̂i j(t)− ĉ j(t)

)1/ηi j for ηi j > 0,

1 for ηi j = 0.
(20a)

Finally, the estimation of the parameterski(t) is possible using (11b)

k̂i(t) = v̂i(t)
nc

∏
j

M̂i j(t)

ĉ j(t)αi j u(t)αu,i j
. (20b)

Because the observer has to be initialised with an unknown initial condition, the
parameter estimate is time dependent. It converges to the true, constant values if
and only if the observer converges.
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3.4 Solutions to issues arising in praxis

Existence of the observer (18) depends on the feasibility ofthe LMI (19). A neces-
sary condition is that the pair(A,C) is observable [9]. Unfortunately, this condition
requires that Hill variables and linearly dependent rates are measured, which can
not be achieved in praxis. We can overcome this problem by assuming that some
parameters are known and create fake measurements as follows

• If the Ki j are known andyc(t) = c(t) is measured, we can create fake measure-
ments of the Hill variables:

yM(t) = M (c(t), p) = M (yc(t),K) ,

whereK =
[
· · · , Ki j, · · ·

]
is known and the elements ofM are given by

Mi j = c j(t)
ηi j +K

ηi j
i j = yc, j(t)

ηi j +K
ηi j
i j

• If for somei theki andKi j are known andyc(t) = c(t), is measured, we can create
fake measurements of the fluxes :

yv,i(t) = vi (c(t), p) = vi (yc(t), pi) ,

where the vectorpi contains the known parameterspi =
[
ki, Ki1, Ki2, · · ·

]
.

The following section demonstrates the power of the observer based approach in
praxis.

4 Application to TrkA induced MAPK signalling

Signalling via the neurotrophin receptor TrkA is known to beinvolved in embryonal
formation of the neural system through a developmentally controlled expression pat-
tern facilitating a process of neurotrophism and terminal differentiation [34]. Inter-
estingly TrkA is also expressed in neural-derived tumours such as neuroblastoma,
an embryonal tumour which arises in the para-vertebral sympathetic ganglion and
adrenal medulla. Neuroblastoma tumours expressing high levels of TrkA have an
exceptionally good prognosis, with the tumour frequently undergoing spontaneous
regression, however the mechanism behind this regression is poorly understood, but
should be linked to the regulatory machinery downstream of TrkA. Activation of the
TrkA receptor by stimulation with the nerve growth factor (NGF) activates several
signalling pathways and downstream kinases involved in cell fate decisions. The
ability of TrkA to induce either proliferation, apoptosis or differentiation in vitro
depending on the cell type and experimental design suggestsa remarkable plasticity
within the TrkA signalling network. In order to decipher theregulatory machinery
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behind the multimodal response, we utilise a combination ofexperimentation, dy-
namic modelling and systems identification.

We model the activation of measured TrkA downstream kinasesas simple
phosphorylation-dephosphorylation cycles of the form

[
ẋ
ẋ∗

]

=

[
−1 1
1 −1

][
v1

v2

]

with
v1 = k1u x

K1+x ,

v2 = k2
x∗

K2+x∗ ,
(21)

whereu denotes the level of phosphorylated TrkA receptor andx, x∗ denote the level
of unphosphorylated and phosphorylated kinase, respectively. For each kinase, the
parametersk1,k2,K1,K2 present unknown quantities that have to be identified from
experimental data. In particular, we measured timecoursesof phosphorylated TrkA,
Akt, Erk, JNK, PLCγ and p38 in a TrkA inducible neuroblastoma SY5Y cell line in
response to treatment with 1, 10 and 100nM NGF using western blotting (Fig 4).

The application of the observer based approach requires that several practical
issues are overcome. First, the observer requires time-continuous measurements,
which we solve by curve fitting the sampled data. Using the Matlab curve fitting
toolbox, we fit

u(t) = a((1−exp−t/b)exp(−t/c))2+ d ∗ tn/(en + tn),

to the phosphorylated TrkA data, since it captures the bimodal TrkA response nicely
and smoothing splines to all other kinases (Fig 4). Second, the observer requires that
some parameters are known in order to create fake measurements for Hill variables
and linearly dependent rates (see Sec. 3.4). In our model, the two differential equa-
tions (21) are linearly dependent, which means that the observer can only estimate
one time varying parameter; eitherk1 or k2. In order to get estimates of all other pa-
rameters (and preliminary estimates ofk1 or k2), we use a genetic algorithm (Fig. 3).
These estimates are then used to create the necessary fake measurements for the ob-
server. Simulating the observer with the output

yi =
[
1− x∗i , x∗i , K1i +1− x∗i , K2i + x∗, v2i(x∗)

]T

gives a time-varying estimate fork1, whereas simulating with

yi =
[
1− x∗i , x∗i , K1i +1− x∗i , K2i + x∗, v1i(x∗)

]T

gives a time-varying estimate fork2. Here,x∗i is the measured phosphorylation level
for each kinasei = Akt, ERK, JNK, PLCγ, p38, whereas all other entries are fake
measurements.
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pAkt
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pJNK

pPLCg

pp38
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Fig. 3 Parameter estimates of the genetic algorithm. Boxplots represent the distributions of final
parameter estimates obtained from several runs of the genetic algorithm. The parameters where
initialised from uniform distributions on the interval[0.1,20] for k1,k2 and [0.01,2] for K1,K2.
The red center mark indicates the medians, the edges of the box the 25% and 75% quartiles, the
whiskers extend to the most extreme estimates and the circles indicate the best fit.

Identification of time-variant parameters indicate a sensitive initial phase
followed by desensitising adaptations

As expected, the parameter estimates of the observer are time varying. The simple
model (21) neglects several intermediate signal transducers such as receptor adap-
tor proteins (SHC, GRB2, ...), GTPases (Ras, Rho, ...) and kinases (MEK , PI3K,
...) as well as pathway crosstalk and feedback structures. Thus, the parameters of
the simple model are de facto functions of the neglected components. Because the
neglected components change over time, the parameters of the simple model change
over time. Indeed, at least two different phases can be distinguished, a highly sen-
sitive initial phase, characterised by high values for the phosphorylation parameter
k1 and low values for the dephosphorylation parameterk1, followed by a delayed
desensitisation phase, characterised by decreasingk1 estimates and increasingk2

estimates, suggesting the presence of desensitising feedback, for example in the
form of phosphatase expression (Fig. 4).

JNK estimate stands out, indicating that crucial dynamics are missing

Comparing the estimates for the 10nM and 100nM dose response, we notice mark-
able differences for JNK. Generally, the 10nM and 100nM estimates are reasonably
alike in the early phase (fort < 60min) and follow similar trends in the late phase,
at least for ERK, PLCγ, and p38; however not for Akt and JNK. The Akt and JNK
estimates exhibit opposing trends in the late phase. For example, k1(t) decreases
for the 10nM dose, but increases for the 100nM dose (Fig. 4). Comparing the rela-
tive differences of the 10nM and 100nM estimates fort = 240min reveals that the
JNK difference is notably higher than that of the other kinases (Fig. 5). Together,
these observations indicate that the simple model neglectssome crucial dynamics
affecting the JNK response and that model refinements are required.
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the main text. Because the 1nM (blue) dose did not produce detectable phosphorylation levels for
most kinases, only the 10nM (green) and 100nM (red) responses were estimated. Further, no esti-
mate was obtained for the p38 10nM response, because phosphorylation levels of p38 in response
to 10nM NGF were not detectable in western blots. (a) Dots indicate measurements (quantification
of western blots using imageJ), solid lines state estimatesof the observer. (b) Estimates ofk1. (c)
Estimates ofk2.
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Fig. 5 Fold change of parameter estimates for 10nM versus 100nM NGFat 240min. The JNK
estimates markedly differ, showing a 30-fold change, (compared to< 6-fold for Erk and PLCγ).
No estimate were obtained for p38, because phosphorylationlevels of p38 for 10nM NGF were
not detectable by western blotting.

Refinement of the JNK model

Since our analysis hinted at JNK and Akt playing a special role in the systems re-
sponse, we performed several follow up experiments. In particular, inhibition of
JNK blocked the second phase of TrkA activation and NGF induced apoptosis
(Fig. 6). In contrast, inhibition of AKT (using a PI3K inhibitor) significantly in-
creased JNK phosphorylation and apoptosis (Fig. 6). The literature suggests that
pAkt indirectly inhibits pJNK via phosphorylation and deactivation of JNK up-
stream kinases ASK1 and MKK4 [32, 22]. Taken together, thesedata suggest a
model in which stimulation of TrkA phosphorylates and activates JNK, which in
turn increases the levels of total and phosphorylated TrkA.Additionally, TrkA me-
diated activation of Akt inhibits phosphorylation of JNK (Fig 7). Neglecting the ex-
act biochemical details, we can model the interaction scheme phenomenologically
with two differential equations

d
dt

P∗ = kPT ∗ P
KP +P

− k−P
P∗

K−P +P∗
, (22a)

d
dt

J∗ = kJT ∗(1− kIP
∗)

J
KJ + J

− k−J
J∗

K−J + J∗
, (22b)
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with P = 1−P∗, J = 1− J∗, whereP∗,J∗ ∈ [0,1] denote the level of active Akt
and JNK, respectively. The term(1− kIP∗) models the inhibition of JNK phospho-
rylation by Akt, whereby thekI ∈ [0,1] denotes the inhibition strength withkI = 0
meaning no inhibition andkI = 1 complete inhibition. The level of TrkA activity is
given by the algebraic equation

T ∗ = u(0.1+ J∗), (22c)

whereu denotes the strength of NGF stimulus and the term(0.1+ J∗) ∈ [0.1,1.1]
models the JNK mediated induction of TrkA with a basal TrkA level of 0.1 and
maximal level of 1.1 (sinceJ∗ ∈ [0,1]). The advantage of this phenomenological
formulation is that it facilitates the analysis of the systems core structure. (the two
interlocked feedback loops) in a few parameters. The advantage of this formulation
is that it describes the system’s core structure in a few parameters, thus facilitating
its identification and mathematical analysis. Indeed, the qualitative behaviour of the
system is characterised by two parameters; the input strength u and the inhibition
strengthkI and can be summarised in a three dimensional plot (Fig. 9), whereby the
remaining parameters were chosen such that the simulated trajectories qualitatively
mimic the recorded time courses (Fig. 8).

pTrkA

TrkA

pAkt

pJNK

Tubulin

NGF (min) 0 5 60 120 240 5 60 120 240 5 60 120 240 

Control

PI3K

inhibitor
LY294002

JNK 

inhibitor
SP600125

Fig. 6 Results of inhibitor experiments. (a) Western blots of key components phosphorylated TrkA
(pTrkA), total TrkA (TrkA), phosphorylated JNK (pJNK) and phosphorylated Akt (pAkt) at indi-
cated time points after NGF treatment. JNK inhibition blocks the induction of total TrkA protein
and the second phase of TrkA activation. PI3K inhibition increases TrkA and pTrkA levels and
results in notably increased pJNK in the late phase. (b) Percentage of apoptotic cells. Apoptosis
was assayed by propidium iodide ataining and flow cytometry analysis. NGF induces high levels of
apoptosis, which are blocked by inhibition of JNK. Inhibition of PI3K slightly increases the level
of NGF induced apoptosis. LY294002 PI3K inhibitor, PD184352 MEK inhibitor, SB239062 p38
inhibitor, SP600125 JNK inhibitor.
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Fig. 7 Refined scheme of
TrkA-JNK-Akt interactions.
Solid lines represent (indirect)
biochemical effects, with
arrows indicating activation
and bars indicating inhibition.
The dotted circles indicate the
two feedback loops present in
the system.
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Fig. 8 Qualitative fit of refined model. Left recorded timecourses,right trajectories of the JNK-Akt
interaction model.

Refined JNK model exhibits bistable behaviour

The refined TrkA-JNK-Akt interaction scheme contains two feedback loops gener-
ating complex system behaviour. For certain range of stimuli u, the positive feed-
back generates bistable behaviour, whereby the range at which bistability occurs
depends on the strength of the negative feedback Fig. 9). Stronger Akt mediated
inhibition of JNK (higher values ofkI) shifts the bistable region to higher inputs.
Thereby, the size of the JNK switch remains almost unaffected, whereas the size of
the Akt switch decreases. For increasingkI the Akt-off state approaches the Akt-on
state until finally, high values ofkI cause the Akt switch to be so small that it can
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Fig. 9 Complex behaviour of JNK-Akt interaction model summarisedin bifurcation diagrams.
The system exhibits bistability (patches). Increasing theparameterkI (describing the strength of
Akt mediated JNK inhibition) shift the range of inputs wherebistability occurs to higher values
and decreases the size of the Akt switch.

effectively be neglected (Fig. 10. Therewith, negative feedback provides a mecha-
nism by which components normally affected by a bistable switch can effectively
be decoupled.

Concluding remark

Using the observer based approach, we identified the Akt-JNKinteraction network
as crucial component for TrkA induced apoptosis in a SY5Y neuroblastoma cell
line. The time dependent variations of JNK and AKT associated parameters was
markedly higher compared to other measured kinases, hinting at the neglect of cru-
cial dynamics in a simple feedforward model and calling for model refinements. The
refined JNK-Akt interactions model contains two feedback loops, and explains the
switch to apoptosis with a bistable JNK response. For low stimuli the system is only
transiently disturbed and quickly returns to the JNK off state, whereas high stimuli
cause JNK to switch into its on state. The threshold at which the system switched
depends on Akt mediated negative feedback. Unfortunately,the late phase activa-
tion of TrkA seems to be an artefact of the inducible cell lineused. We are currently
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Fig. 10 Bifurcation diagram
of the refined JNK-Akt model
showing bistability. For in-
creasing NGF stimuli, the
JNK response remains al-
most unaffected (in the off
state) until a certain thresh-
old is reached at which JNK
switches to the on state. For
decreasing stimuli, the system
switches back to the off state
at a lower threshold, gener-
ating a hysteresis effect. For
weak negative feedback (blue
lines), Akt shows qualitatively
behaviour similar to JNK,
whereas for strong negative
feedback (blue) Akt exhibits a
graded response. Blue and red
lines correspond tokI = 0 and
kI = 0.8, respectively.
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theinvestigating whether the obtained results are transferable to better neuroblas-
toma models in other cell lines. Nevertheless, the results demonstrate the power of
the observer based approach and its applicability to real world data.

5 Conclusions

Dysregulation of cell signalling leading to tumourigenic cell fate decisions is a hall-
mark of cancer. Understanding this dysregulation requiresthe use of mathematical
modelling and analysis. Since mathematical models are, by nature, approximations
of the real system, the art of model building is therefore to find the correct level
of abstraction. From a systems perspective, approximations result in time varying
parameters, which are notoriously difficult to identify. Here, we presented a method-
ology capable of estimating time varying parameters. Importantly, time variant esti-
mates indicate unmodelled dynamics and can be used to identify modelling errors.
Strongly time-varying parameters point to modelling errors, and are the starting
point for model refinements.
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