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1 Motivation

A hallmark of cancer is dysregulation of pivotal cell fatectd#ons leading to aber-
rant proliferation and reduced apoptosis. Healthy cek fagcisions depend on
proper sensing of the cell’'s intra- and extracellular state processes called sig-
nal transduction. The usual scheme is that receptors s@nsalssby binding of
an extracellular ligand, resulting in conformational ches that trigger the forma-
tion of multi-protein complexes and subsequent activatio@ TPases and kinases.
Hereby, one receptor usually activates several downstpedinwvays (Fig 1). A par-
ticular cell fate can usually not be attributed to the atfiaf a single protein in
isolation, but rather depends on the context and tempottdrpeof the activation
and regulating feedback structures within the signalliegvork [21, 30, 19]. For
example, treatment of Rat Pheochromocytoma (PC12) cettsepidermal growth
factor (EGF) or nerve growth factor (NGF) activates the saigealling cascade
(the RAF/MEK/ERK cascade) but has different effects on &até. EGF causes
transient activation of extracellular regulated kinasBRKEEand proliferation due to
negative feedback, whereas NGF causes sustained ERKtextiead differentia-
tion due to positive feedback [26, 37]. Because of this cexip}, the function of
cellular signalling often eludes a naive intuitive undansting, thus calling for the
use of mathematical modelling and analysis [24, 16, 17,128te, we demonstrate
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how systems modelling and identification can be used to @dtieicore processes
underlying cellular decision making.

| PLCg

GTPase | Ras | [ Rho (Rac1, Cdc42, ...) | o Akt

\,/ ‘
y
/
v N /
MAP3K Raf MEKky ~ MEKK4 MEKKl /
MLK3 ASK !
\ / l’ Survival
|
v 1
MAP2K [MEK1/2 [ MEK3/6  MEKa MEK7 | I}
/
/
? /
/7

y 7/
mapk [ Eria/2 |[p3s ] [k Ji=7
(pusp1,4) ( Classi X PACL MKP4 ) { Class il )

Differentiation Cell death

Fig. 1 Signal transduction in a nutshell. After binding to its ligba receptor (here TrkA) under-
goes conformational changes, thus allowing the bindingeeéral adaptor proteins, and triggers
the activation of GTPases and kinases. Often the exactamstavents is poorly understood and
includes crosstalk and feedback.

2 Molecular biology and systems theory

Modelling biological systems on the intracellular levekhaeen a research topic
for over half a century. All started in 1943, when Erwin Sumfliriger gave three
talks in Dublin entitledWhat is Life [39, 40]. One of his central thoughts, and at
that time a revolutionary idea, was that biological systéofisw physical laws. In
other words, biological systems can be described by mattieahenodels. For the
control of membrane potential during neuronal excitatibis, was achieved in 1952
by Hodgkin and Huxley, who explained and underlined thefrezimental data with
a mathematical model, a key step in understanding how nsdtmetion [14]. A
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few years later, Denis Noble expanded this model to obtarfitht mathematical

model of the heart [31]. Nowadays, Hodgkin Huxley models aadants thereof

are a vital part of computational neuroscience and widegdus research groups
around the world. Part of Hodgkin and Huxley’s success dadie the fact that they
were able to estimate the model parameters from experifmaat In other areas
of molecular biology, such as cell signalling and gene ratjoih, the identification

of mathematical models has proven to be much more challgngin

The advances in biological experimental techniques ofakedecades has led
to a rapidly growing number of models [29, 27]. In signal sdaction, the mitogen
activated protein kinase (MAPK) downstream of the epidégnawth factor (EGF)
was amongst the first systems to be modelled [15, 20]. Fromdehing perspec-
tive, cell signalling systems are often composed of a nurabsimilar modules or
motifs, such as dimerisation processes or phosphorylayidies. Biologically these
modules are diversely implemented, i.e. composed of diffemolecular species.
As a consequence, one particular module can exhibit vefgrdift behaviours, de-
spite having the same interaction pattern. For exampléVitheK pathway consists
of phosphorylation dephosphorylation cycles layered indlstages [21]. In nature,
this scheme is implemented in several variations, invghdifferent kinases such
as ERK, JNK and p38. A model of a MAPK system can exhibit tgtdifferent
behaviours such as homeostasis, near perfect adaptatiotaamped or sustained
oscillations, depending on the values of the kinetic patansg19]. This example
illustrates the importance of choosing the correct paramegspecially if the model
is to be used for predictions.

The main bottleneck in obtaining dynamic models of biolag&ystems is the
estimation of biological parameters, while structurabimhation like stoichiome-
try are often known. Unknown parameters can be estimated fime-series data
as is common practice in technical applications. Severallggities of biological
systems hinder a straightforward application of most @gdtientification method-
ologies as typically used for technical systems. Biologsystems usually have a
large number of parameters, though often only a reduced sgperiments are pos-
sible, consisting of a few experimental steps and scarce piaints. Furthermore,
the noise level is usually significant.

Recent years have shown that the control system theorgt@apoint and ap-
proaches are valuable tools for gaining a deeper undeistpofbiological systems
[16, 44]. However, biological systems have particular mips, such as positivity
and monotonicity, not often found in technical applicasiof#1, 42]. This requires
the design of novel methodologies particularly suited fiotdgical systems. Con-
cerning metabolic pathways, a prominent example is mei@bohtrol analysis for
sensitivity analysis developed in the 1970’s [13, 8]. Melabcontrol theory ex-
ploits the fact that enzyme concentrations vary on a muchdotimescale than
metabolite concentrations and metabolic systems spent ahtiseir time resting
in steady state, an assumption not sensible for signalktgarks. Therefore, such
unified theoretical treatments have not yet been establifghesignalling networks.
This is partly due to the fact that signalling systems naiyiceal with the temporal
integration of ever changing extracellular conditionshwtie intracellular machin-
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ery. As a consequence, the behaviour is often dominatedhgignt and nonlinear
effects. In fact, the nonlinearity of signalling systemteafgenerate the phenomena
constituting particular biological functions. Examples atable limit cycle oscil-
lations in the case of circadian rhythms and cell cycles,istable switches in the
case of cell fate decisions such as differentiation and @stg[28, 5]. From a theo-
retical perspective, the nonlinearity and behavioural glexity impedes the devel-
opment of a (unifying) biological theory. As a consequettiee field is diversified
with numerous theoretical works treating numerous spiseidlcases. This diver-
sity is reflected in the recent release of books on the sylsjech asSystems Theory
and Systems Biology edited by Pablo Iglesias and Brian Ingalls [16] $ystems
Modelling in Cellular Biology edited by Zoltan Szallasi, Jorg Stelling and Vipul
Periwal [43] and the dedication of special issues on systaoisgy in the control
community [1, 3]. We can however turn this argument arourdiexploit the par-
ticular form of biological nonliearities [10, 12, 9, 2, 11, T this spirit, we present
an identification methodology that is particularly taildre biological systems and
capable of estimating time-variant parameters.

2.1 Dynamic modelling

A common framework for the modelling of biochemical reantietworks involves
sets of reactions of the following form

0151+---+anssns_>B1P1+---+Bnppnpa 1)

where $are substrates that are transformed into the prodycthe factorsa; and
Bi are the stoichiometric coefficients of the reactants.

Neglecting spatial and stochastic effects, these reactiomoften modelled with
systems of ordinary differential equations:

¢=Nv(c, p), (2

wherec € R, is the vector of concentrationp,e Ri% the parameter vector and
ve R x RY s R, the vector of the flows. The stoichiometric mathixe R™<™
depends on the coefficients, 5 and, possibly on factors compensating different
units or volumes. For a more detailed introduction, see Xangle [25, 18, 33].

There is a large variety of possible reaction mode€ls Here, we restrict the
reaction models to the most common ones in signalling nédsvor

mass action The flow is proportional to each substratek[]ic, ¢i wherel is a
subset of 1...,nwith possibly repeated entries;

power law, S-Systems, generalised mass action The flowyspolial in the sub-
stratesv = K[Ticpn &'

Michaelis-Menten or Monod  For low substrates the flodepends linearly on the
substrates and saturates for large substrate concentratioVg,at
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V= Vmaxﬁ%. At a substrate concentration Kjf,, the flow is half
the maximum rate.
Hill The flow is sublinear for low substrate and saturateslémge sub-

strate concentrations¥thax. V= Vmaxﬁ . The exponertuis larger
M

than one and at a substrate concentratiokypf the flow is half the
maximum rate.

In biochemical reaction modelling, the stoichiometry isaly/ known, as is the
type of reaction kinetics, in contrary to the often quite emain parameters. Thus,
the identification problem can be formulated as follows:

Given: The stoichiometric matriX and the form of the functiow(c, p) describ-
ing the reaction rates
Unknown: The kinetic parameteps

Before we present the identification methodology, we disdbe effect of model
approximations as models are by nature approximationsabgystems.

2.2 Model approximationsand time varying parameters

Dynamic models are mathematical descriptions of real ms&E® By nature, for-
malised descriptions are always approximate. The only heagguring all aspects
of a real system is the system itself, or as Rosenblueth arideWexpressed it
"The best material model of a cat is another cat, or prefgretd same cat” [36].
Nevertheless, mathematical models are helpful for undedstg the behaviour of
systems, especially if the underlying system is complex ait of model building
is therefore not to find the most accurate description, taintiost helpful one. We
have, therefore, to identify the core processes genertitengonsidered behaviour.
The process of identifying such a core model, awards us wifvasic) understand-
ing of system that can be deepened by using mathematicgisisal

Complex models can be very accurate in the sense that sinquthem repli-
cates experimental data well. In contrast, simple modelsisually associated with
large quantitative discrepancies. From a theoreticalpgets/e, matching a simpli-
fied model to a trajectory generated by a complex systemraglilt in time-varying
parameters. We illustrate this fact using the system inréi@a. The inputi reg-
ulates the formation and activity of several intermediag@alling molecules and
complexe<s, - - - Z,. The outpuy is the intermediate molecul®, which acts as en-
zyme for the phosphorylation of a downstream kinas&Jsing Michaelis Menten
kinetics, the rate oK-phosphorylation is

X
lohos= kphos;znm(- 3

Assuming that the concentration of the intermediate madészy, - - - ,z, are gov-
erned by a dynamic system, thanis a time varying variable, whose time course
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depends not only on the initial conditions, but also the tnpuWe can find an

approximate description of the ratges in terms of the input by neglecting the
dynamics of the intermediate variables. Assume for sintpltbat the intermediate
variables are described by a linear system of ordinaryrifféal equations (Fig. 2b)

7= Az+Bu, (4)
y=Cz 5)

Formally, we obtain a quasi steady state approximation tilmge = 0 and solving
for z (Fig. 2c)

z=A'Bu = y=CA!Bu (6)

Substituting (6) into (3) gives an approximate expressunrtlie phosphorylation

rate
X

Ky +x

Ibhos ™~ kphosCAilB u (7)
———

=k

For constant inputs, (6) describes the steady state ofrtharlintermediate system.
Thus, for a linear intermediate system in steady state,s(8xact. In the dynamic

case, the newly defined parametgis time varying and approaches the vakje=
t—o0

CA~!B for any input trajectory approaching steady stafte — u.

(@ pTrkA (b) pTrkA () pTrkA
___t_” _____________ l_” _____________ l_” __________
1 Zg T i i | i ;
i i i i z=Az+Bu | i 1 |
1 % 1 1 _ 1 I y=CA"Bu 1
] e b s

Fig. 2 Conceptual scheme of TrkA signalling approximations. Phosylated TrkA (pTrkA) ac-
tivates downstream kinasésvia a system intermediates (grey box). (a) Most accuratidyjn-
termediate system consists of a system of (unspecifiedpéioical reactions. (b) Approximating
the intermediate dynamics with a system of linear difféeérgéquations. (c) Quasi steady state
approximation of the scheme in (b).

The above considerations motivate the following (overdifie) model of ki-
nase phosphorylation

X K x*
K1+ X 2K2+X*'

X =kgu where x=1-x", (8)

whereby we used the conserved moigty = x+ X* and normalised concentrations
%ot = 1. Because the model neglects the dynamics of the interteespi@cies, we
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can imagine that trying to mimic experiments in simulatioreuld perform rather

poorly. However, this judgement is based on the assumpfiocorstant parameters.
A consequence of neglecting the intermediate dynamicsistiie parametdq

is time-varying. Solving the system of linear differenggluations (4) gives the time

courses of the intermediates

t
z(t):e/“/ e A"Bu(1)dr,
Jo
where we assumed zero initial conditionf0) = 0. By substituting into (3) and

comparing to the simplified model (7) we see that the parankets a function of
time

t
ki(t) = Ce/“/ e A"Bu(1)dr Kphos
0 u(t)
Thus, trying to mimic experiments by simulating (8) wouldfpem rather poorly
and advanced identification techniques capable of estignéitne-variant parame-
ters are needed. Observers provide such a technique.

3 Parameter estimation with observers

The parameter estimation problem is closely related tottite gstimation problem
as both consider the estimation of unknown quantities.dséderms, an observeris
a mathematical system that estimates internal, non-medstates. Observer based
approaches to parameter estimation require a certainngyssteension. Assuming
that the parameters are constant, we can formally extendttte space with the

parameters, i.e.
§-[%)

Note that the assumptiom= 0 is a formal construct that enables us to formulate
the problem mathematically. The same approach can be takamér to estimate
time varying parameters. Then the assumpiioa O corresponds to a time scale
separation of system dynamics and time varying parameters.

Given the above system, an observer can achieve a combetedastd param-
eter estimation. However, designing observers for sys@nedrries two difficul-
ties: parameter dependency and nonlinearity. The parardefendency triggers
observability issues; for example, linearisations of (@) generally not observable
in steady state [7]. The nonlinearity of the problem meaasttie observer error de-
pends on unknown states. For linear systems, the so capladsg®n principle states
that the dynamics of observer error only depend on the ds®lf and measured out-
puts [45]. Unfortunately, there is no separation princfplenonlinear systems. As a
consequence, global convergence forpadl % can generally not be achieved [6, 4].
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An alternative to the state space extension vgth: O is the transformation into
parameter free coordinates[9, 12, 2, 7]. The transformaigloits particular prop-
erties of biochemical reaction systems and facilitatestiserver design. The entire
identification procedure can be structured into three steps

1. Transformation of the system of ordinary differentialiations into a parameter
independent form;

2. Estimation of all states in the parameter free coordgaséng an observer;

3. Back transformation to obtain the parameters.

In the following sections, we address each step in detail.

3.1 Transformation into parameter-free coordinates

This section presents the state space extension transigpthe system into param-
eter free coordinates. The approach is first illustratedafeystem with a single
reaction, before the general extension scheme is presented

Example 1. Let us consider the following system wikh> 0,K > 0

¢=-v(c), (10a)
2
v(c) = kci - (10b)

Assuming that and therefore are positive, it is possible to derive the differential
equation for the relative rate of change of the reaction, iatessence taking the

logarithm and time derivative of (10b). Before doing that imtroduce the new

state

M=c+K
with the derivative
M =¢.
Now, taking the logarithm and time derivative of (10b) gives

v d d
5= &log\_/: m (logk+ 2logc— logM)

¢ M
=2-——.
c M

Substitutingc’'= —v yields the extended system
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C=-v
M=—v
(223

for which the right-hand-side is parameter free.

As the example illustrates, the states of the parameteei@mded system con-
sists of the concentratiomsthe denominators of the reaction raMsand the reac-
tion ratesv.

In general, the approach considers reaction kinetic system

¢=Nv(c, p.u), (11a)
allowing for fluxes of the form:
vi =k o u where Mij = ¢+ K;j (11b)
Mij J j K

and whereKi; > 0, njj > 0 andaij, ayjj > 0 denote known structural parameters
andu > 0 is a vector of inputs representing concentrations of uretted upstream
components. Ifij = 0, then the arbitrary parametk; shall be equal to 1. The
general formulation of (11b) contains mass action kinggieseralised mass action
kinetics, Michaelis-Menten- and Hill-kinetics as well &gir products. For example,
settingn;; = 0 leads to a mass action model, whereas settipg= nij = 1 gives
Michaelis-Menten kinetics.

For 0< aij < 1, the fluxy; is not Lipschitz inc; = 0. To ensure the existence and
uniqueness of solutions, we assume that all concentragi@nstrictly positive.

Assumption 1. The parametepsnd the concentratiortsare strictly positive along
trajectories of (9) and bounded, i.e<05 < ¢i(t,co) < & < o holds for all species
and all initial conditions for some positive constanés< d.

This condition is satisfied in many biological applicatipmsparticular for models
of metabolic pathways.

To simplify the presentation, define the following matriahved functionM :
R%, = R™N

Mij =K +c. (12)
Then the mapping
. c
ON [p] — | M(c, p) (13)
v(c, p)

is diffeomorph if Assumption 1 holds, defining a smooth anjddiive state-space
transformation of the original system (9) into an equivalextended system that
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is parameter free. This means, considefifigandyv; as additional states, comple-
menting the natural states, results in ordinary differential equations that do not
depend on the parameters. The transformed system is

¢ =Ny, (14a)
Mij = mijc]”" e N, (140)
v = diagv) (a (diag(c)) ~*Nv+ ay(diagu)) ~‘u— m) : (14c)

where

ij—1
. rlijC?lJ eJ-TNv
] Mij '

Summarising, any biochemical reaction model consistinfijosis modelled as
in (11b) can be transformed into a system that is free of patars. In parameter
free coordinates, the system is described using an extestaliedvector and depends
only on structural properties of the original system.

The extended state is denotedby R,

c
X= [mj|, (15)
v

wheremis the vector of all non-zero entries of
vectM = [My1 - My M1z -+ Mim] " .

Assuming that the possibly time dependent inpyts- uc(t) are differentiable, the
dependence of the extended system on time derivativesades not pose a prob-
lem. We can defina” = [u] ul 0l] and write the system compactly as

Nv
x=f(x,u)=1| fm(c,v) (16a)
fV(C7 M7V7 U)

Remark 1. Step and pulse inputs can be handled either using a diffed@gpprox-
imation in the form of steep sigmoidal functions eug.= Ag(1+ tanht — Tp)) or
by changing the initial condition accordingly and setting="0.

To simplify the observer design, we introduce the assumgthiat the output is a
subset of concentrations flows. This is the case in many dicdbapplications.

Assumption 2. The outpyft) € R™ is a subset of concentrationsind flowsv:
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c c
B _|H:0 0
y=h| [m _{0 OH\J m|, (16b)
Y% %

where the matriceld; andH, are composed of columns of the identity matrices.

If some parameters values are already known, the propostadaogy can be
adjusted in a straightforward way to not estimate them agiiere are basically
two cases. First, the parameter is a Hill or Michaelis-Martenstank;;. Then,
there exists a stathl;j, which depends oi;; and on some concentrations. This
state can therefore be expressed as an algebraic equatitineofstates and does
not require a differential equation. In the second casep#inameter is proportional
to a flow, i.e.k; in a flow v;j. This flow then also contains no unknown, only other
states and thus its differential equation can be replaceanbgligebraic equation.
The reduced extended system is a differential algebratesysf index one. The al-
gebraic equations can easily be eliminated, thus redubingtate space dimension
by the number of known parameters.

3.2 Dissipative observer

Generally speaking an observer is an algorithm estimatiteynal states based on
output measurements. Usually, observers consists of aaojne system’s equa-

tions and a correction term feeding back the estimatiorrgiros pushing the sim-

ulated trajectory towards the true trajectory [38]. In mautar, the parameter free
system (16a) facilitates the design of a dissipative olesdBb, 9]. Let

=081 [ oo~ [155].

then the parameter free system 16a writes as

X = Ax+ G¥(x,u), (17a)
y =Cx, (17b)

which is Lure’s discretion into linear and nonlinear paAsdissipative observer
for (17) is

E=AE+GP(E+N-(v—y),u)+L-(U—-y), (18a)
v =C&, (18b)

where the so called observer gain matritkandL have to satisfy the linear matrix
inequality (LMI)
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— ! I +NC 0
(14+NC)" P(A+LC)+ (A+LC)"P+el PG| <0, (19)
0 G'P —I

and the observer nonlineari# has to be constructed such that the mapiig) :
z— Y(x,u) — W(x+zu), whereé = x+ z, satisfies the Lipschitz condition

1®(z 0)|]2 < 3|2

A simple construction for the observer nonlinearity is

Yhin if H(x+ Z) > hin
H(X+2) = HUx+2) if Hhnin < H(X+2) < Hnax,
Whax if H(x+2) < ¥nax

whereW,in andWax respectively are lower and upper bounds on the elemens of
on the true trajectory(t, xp), i.e. it holds that

Yhin < W(X(t,%0)) < ¥hax-

3.3 Obtaining the parameter estimate

The last step is the back transformation into original cowtés, which gives the
actual parameter estimate. Inversion of (13) yields aniexpkpression. In partic-
ular, using (12), the parametdfs (t) can be estimated via

Rii(t) = (N (1) — & ()™ for mij >0, (20a)
. 1 for nij = 0.

Finally, the estimation of the parametéré&) is possible using (11b)

~ R N |\7|i'(t)
ki(t) = Vi(t) |T| W (20b)

Because the observer has to be initialised with an unknoitialicondition, the
parameter estimate is time dependent. It converges to tilee ¢donstant values if
and only if the observer converges.
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3.4 Solutionstoissuesarising in praxis

Existence of the observer (18) depends on the feasibilith@iMI (19). A neces-
sary condition is that the paiA, C) is observable [9]. Unfortunately, this condition
requires that Hill variables and linearly dependent ratesnaeasured, which can
not be achieved in praxis. We can overcome this problem hynaisg that some
parameters are known and create fake measurements assfollow

e If the K;j; are known and(t) = c(t) is measured, we can create fake measure-
ments of the Hill variables:

ym(t) =M(c(t), p) =M (yc(t).K),
whereK = [---, Kij, ---] is known and the elements bf are given by
Mij = cj ()M + K/ = ye j ()M + K/}

e Iffor somei thek; andK;; are known angc(t) = c(t), is measured, we can create
fake measurements of the fluxes :

Wi (t) = Vi (c(t), p) = Vi (Ye(t), pi) ,

where the vectop; contains the known parameteys= [kh Ki1, Kio, }

The following section demonstrates the power of the obsdrased approach in
praxis.

4 Application to TrkA induced MAPK signalling

Signalling via the neurotrophin receptor TrkA is known taiteolved in embryonal
formation of the neural system through a developmentalyraied expression pat-
tern facilitating a process of neurotrophism and termirnfécentiation [34]. Inter-
estingly TrkA is also expressed in neural-derived tumourhsas neuroblastoma,
an embryonal tumour which arises in the para-vertebral sghgtic ganglion and
adrenal medulla. Neuroblastoma tumours expressing highslef TrkA have an
exceptionally good prognosis, with the tumour frequentigergoing spontaneous
regression, however the mechanism behind this regresspoorly understood, but
should be linked to the regulatory machinery downstreantikATActivation of the
TrkA receptor by stimulation with the nerve growth factorGR) activates several
signalling pathways and downstream kinases involved ihfatd decisions. The
ability of TrkA to induce either proliferation, apoptosis differentiation in vitro
depending on the cell type and experimental design suggestaarkable plasticity
within the TrkA signalling network. In order to decipher tregulatory machinery
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behind the multimodal response, we utilise a combinatioexplerimentation, dy-
namic modelling and systems identification.

We model the activation of measured TrkA downstream kinasesimple
phosphorylation-dephosphorylation cycles of the form

; — v = kiup2~,
m _{ ! 1} ["1] with 1 KR 21)
X 1 -1 \'%) Vo = sz,

whereu denotes the level of phosphorylated TrkA receptorand denote the level

of unphosphorylated and phosphorylated kinase, resgéctivor each kinase, the
parameterg;, ko, K1, Ko present unknown quantities that have to be identified from
experimental data. In particular, we measured timecoufglsosphorylated TrkA,
Akt, Erk, INK, PLOy and p38 in a TrkA inducible neuroblastoma SY5Y cell line in
response to treatment with 1, 10 and 100nM NGF using westettiny (Fig 4).

The application of the observer based approach requirés#varal practical
issues are overcome. First, the observer requires timgrcmus measurements,
which we solve by curve fitting the sampled data. Using thel&aturve fitting
toolbox, we fit

u(t) = a((1—exp VP)exg —t/c))2+dxt"/(€"+1t"),

to the phosphorylated TrkA data, since it captures the bahdikA response nicely
and smoothing splines to all other kinases (Fig 4). Sectredlbserver requires that
some parameters are known in order to create fake measuiefoeRlill variables
and linearly dependent rates (see Sec. 3.4). In our modetywib differential equa-
tions (21) are linearly dependent, which means that therebsean only estimate
one time varying parameter; eithigror ko. In order to get estimates of all other pa-
rameters (and preliminary estimatekpbr k»), we use a genetic algorithm (Fig. 3).
These estimates are then used to create the necessary fakereraents for the ob-
server. Simulating the observer with the output

* =3 * * * T
Yi = [1-%, %, Ko+ 1= X, Kgj +X°, Vi (x7)]
gives a time-varying estimate f&g, whereas simulating with
* * * * * T
yi = [1=X, %, Kgi+1-x, Kgi +X*, vy (x)]
gives a time-varying estimate f&g. Here x" is the measured phosphorylation level

for each kinasé = Akt, ERK, JNK, PLGQy, p38, whereas all other entries are fake
measurements.
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Fig. 3 Parameter estimates of the genetic algorithm. Boxplotesemt the distributions of final
parameter estimates obtained from several runs of theigeagbrithm. The parameters where
initialised from uniform distributions on the intervéd.1, 20| for ki, k, and[0.01,2] for Ky, Ko.
The red center mark indicates the medians, the edges of ththb®5% and 75% quatrtiles, the
whiskers extend to the most extreme estimates and the<irgdecate the best fit.

Identification of time-variant parameters indicate a sendiive initial phase
followed by desensitising adaptations

As expected, the parameter estimates of the observer agevéilging. The simple
model (21) neglects several intermediate signal transdwsteh as receptor adap-
tor proteins (SHC, GRB2, ...), GTPases (Ras, Rho, ...) anaskis (MEK , PI3K,
...) as well as pathway crosstalk and feedback structutass,the parameters of
the simple model are de facto functions of the neglected compts. Because the
neglected components change over time, the parameters sifitiple model change
over time. Indeed, at least two different phases can bendisished, a highly sen-
sitive initial phase, characterised by high values for thegphorylation parameter
ki1 and low values for the dephosphorylation paramktefollowed by a delayed
desensitisation phase, characterised by decre&siegtimates and increasirkg
estimates, suggesting the presence of desensitisingdeledfmr example in the
form of phosphatase expression (Fig. 4).

JNK estimate stands out, indicating that crucial dynamics @ missing

Comparing the estimates for the 10nM and 100nM dose respweseotice mark-
able differences for INK. Generally, the 10nM and 100nhestes are reasonably
alike in the early phase (far< 60min) and follow similar trends in the late phase,
at least for ERK, PL@, and p38; however not for Akt and JNK. The Akt and JNK
estimates exhibit opposing trends in the late phase. Fangbeak; (t) decreases
for the 10nM dose, but increases for the 100nM dose (Fig. din@aring the rela-
tive differences of the 10nM and 100nM estimatestfer 240min reveals that the
JNK difference is notably higher than that of the other kesa&-ig. 5). Together,
these observations indicate that the simple model negsecte crucial dynamics
affecting the JNK response and that model refinements atéreeq
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Fig. 4 Time varying state and parameter estimates of the obsdivephosphorylatiof; and de-
phosphorylatiork, estimates where obtained in two different runs of the olesess explained in
the main text. Because the 1nM (blue) dose did not produestidile phosphorylation levels for
most kinases, only the 10nM (green) and 100nM (red) resgonsee estimated. Further, no esti-
mate was obtained for the p38 10nM response, because phiplspiom levels of p38 in response
to 10nM NGF were not detectable in western blots. (a) Doteatd measurements (quantification
of western blots using imageJ), solid lines state estimaftése observer. (b) Estimates kf. ()
Estimates oks.
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Fig. 5 Fold change of parameter estimates for 10nM versus 100nM AGHEOmin. The JNK
estimates markedly differ, showing a 30-fold change, (carag to< 6-fold for Erk and PL@).
No estimate were obtained for p38, because phosphoryliats of p38 for 10nM NGF were
not detectable by western blotting.

Refinement of the INK model

Since our analysis hinted at INK and Akt playing a specia molthe systems re-
sponse, we performed several follow up experiments. Iniquaat, inhibition of
JNK blocked the second phase of TrkA activation and NGF ieduapoptosis
(Fig. 6). In contrast, inhibition of AKT (using a PI3K inhiioir) significantly in-
creased JNK phosphorylation and apoptosis (Fig. 6). Tkealitire suggests that
pAkt indirectly inhibits pJNK via phosphorylation and désation of JINK up-
stream kinases ASK1 and MKK4 [32, 22]. Taken together, tldsta suggest a
model in which stimulation of TrkA phosphorylates and aatds JNK, which in
turn increases the levels of total and phosphorylated TAdditionally, TrkA me-
diated activation of Akt inhibits phosphorylation of INKigF7). Neglecting the ex-
act biochemical details, we can model the interaction sehphenomenologically
with two differential equations

d P P

& T ierp “PRprp (c22)
aJ =kT(1-kP )KJ+J_k7JK7J+J*7 (22b)
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with P=1-P*, J=1-J* whereP*,J* € [0,1] denote the level of active Akt
and JNK, respectively. The ter(ii — k| P*) models the inhibition of INK phospho-
rylation by Akt, whereby thég € [0, 1] denotes the inhibition strength wikh = 0
meaning no inhibition anky = 1 complete inhibition. The level of TrkA activity is
given by the algebraic equation

T* =u(0.1+J%), (22¢)

whereu denotes the strength of NGF stimulus and the té0rth + J*) € [0.1,1.1]
models the JNK mediated induction of TrkA with a basal TrkAdkeof 0.1 and
maximal level of 11 (sinceJ* € [0,1]). The advantage of this phenomenological
formulation is that it facilitates the analysis of the sysgsecore structure. (the two
interlocked feedback loops) in a few parameters. The adgantf this formulation
is that it describes the system’s core structure in a fewrpaters, thus facilitating
its identification and mathematical analysis. Indeed, thditative behaviour of the
system is characterised by two parameters; the input strengnd the inhibition
strengthk; and can be summarised in a three dimensional plot (Fig. ®retdy the
remaining parameters were chosen such that the simulajedtories qualitatively
mimic the recorded time courses (Fig. 8).

(a) (b)

PI3K INK %07
inhibitor inhibitor £ 10
Control  LY294002 SP600125 4
NGF (min) o 5 60120240 5 60 120240 5 60 120240 q 30 A
pTrkA - —n- 820 1
-
TrkA -——-— e — Q10 -
< 1@ i
pAkt - 0 T T T T T 1
> K DL DO
INK P o\(o ‘\Q) uQQ 5?)(’ qdo 0‘0’
p oy DAY > O
LSS
. x x x
Tubulin ‘\(,‘( Sé( éé ‘\é

Fig. 6 Results of inhibitor experiments. (a) Western blots of kepwponents phosphorylated TrkA
(pTrkA), total TrkA (TrkA), phosphorylated JNK (pJNK) andhpsphorylated Akt (pAkt) at indi-
cated time points after NGF treatment. JNK inhibition blet¢ke induction of total TrkA protein
and the second phase of TrkA activation. PI3K inhibitionr@ases TrkA and pTrkA levels and
results in notably increased pJNK in the late phase. (b)dP¢gsige of apoptotic cells. Apoptosis
was assayed by propidium iodide ataining and flow cytometayasis. NGF induces high levels of
apoptosis, which are blocked by inhibition of JNK. Inhibitiof PI3K slightly increases the level
of NGF induced apoptosis. LY294002 PI3K inhibitor, PD18238EK inhibitor, SB239062 p38
inhibitor, SP600125 JNK inhibitor.
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Fig. 8 Qualitative fit of refined model. Left recorded timecourseaght trajectories of the INK-Akt
interaction model.

Refined JNK model exhibits bistable behaviour

The refined TrkA-JNK-AKkt interaction scheme contains twedkeack loops gener-
ating complex system behaviour. For certain range of stimuhe positive feed-
back generates bistable behaviour, whereby the range ahvhistability occurs
depends on the strength of the negative feedback Fig. 9n@tr Akt mediated
inhibition of JNK (higher values ok;) shifts the bistable region to higher inputs.
Thereby, the size of the JINK switch remains almost unafteetdereas the size of
the Akt switch decreases. For increasknghe Akt-off state approaches the Akt-on
state until finally, high values d cause the Akt switch to be so small that it can
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Fig. 9 Complex behaviour of JNK-Akt interaction model summarisedifurcation diagrams.
The system exhibits bistability (patches). Increasingpammetelk (describing the strength of
Akt mediated JNK inhibition) shift the range of inputs whdiistability occurs to higher values
and decreases the size of the Akt switch.

effectively be neglected (Fig. 10. Therewith, negativedfeeck provides a mecha-
nism by which components normally affected by a bistablédwtan effectively
be decoupled.

Concluding remark

Using the observer based approach, we identified the Aktddidfaction network

as crucial component for TrkA induced apoptosis in a SY5Yroklastoma cell

line. The time dependent variations of JINK and AKT assodigtarameters was
markedly higher compared to other measured kinases, iatithe neglect of cru-
cial dynamics in a simple feedforward model and calling fod®l refinements. The
refined JNK-Akt interactions model contains two feedbadpk and explains the
switch to apoptosis with a bistable JNK response. For lomugiithe system is only

transiently disturbed and quickly returns to the JNK oftestavhereas high stimuli
cause JNK to switch into its on state. The threshold at whiehslystem switched
depends on Akt mediated negative feedback. Unfortunatedylate phase activa-
tion of TrkA seems to be an artefact of the inducible cell lised. We are currently
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Fig. 10 Bifurcation diagram
of the refined JINK-Akt model
showing bistability. For in-
creasing NGF stimuli, the
JNK response remains al- 1f
most unaffected (in the off
state) until a certain thresh-
old is reached at which JNK
switches to the on state. For
decreasing stimuli, the system 0 ‘ ‘ ‘ ‘
switches back to the off state 0 5 10 15 20 25
at a lower threshold, gener- NGF dose

ating a hysteresis effect. For
weak negative feedback (blue 1f
lines), Akt shows qualitatively
behaviour similar to JNK, §
whereas for strong negative 3
feedback (blue) Akt exhibits a

graded response. Blue and red 0 ‘ ‘
lines correspond tk = 0 and 0 5 10 15 20 25
k = 0.8, respectively. NGF dose

theinvestigating whether the obtained results are traaiske to better neuroblas-
toma models in other cell lines. Nevertheless, the reseltsahstrate the power of
the observer based approach and its applicability to redbvadata.

5 Conclusions

Dysregulation of cell signalling leading to tumourigen@ldate decisions is a hall-
mark of cancer. Understanding this dysregulation requiresise of mathematical
modelling and analysis. Since mathematical models aregbyr@, approximations
of the real system, the art of model building is therefore mal fihe correct level
of abstraction. From a systems perspective, approximatiesult in time varying
parameters, which are notoriously difficult to identify.ddewe presented a method-
ology capable of estimating time varying parameters. Irtgtly, time variant esti-
mates indicate unmodelled dynamics and can be used tofideradelling errors.
Strongly time-varying parameters point to modelling esrand are the starting
point for model refinements.
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