



## Genomic Selection in Plant Breeding

A hands-on short course in R

Monday 4 June - Thursday 7 June 2018
University of Granada, Spain



## **Course Programme**





**Course Instructors:** 

**Dr. Julio Isidro Sánchez** University College Dublin **Dr. Deniz Akdemir** Cornell University

The aim of this course is to provide a basic quantitative and statistical framework to apply genomic selection (GS) in a routine manner. The course is focusing on the application of plant breeding concepts through practical exercises in R. The course will provide participants with the relevant theory of GS models, as well as with hands-on experience with relevant GS techniques.

| Day 1                                                | Quantitative Genetics                                                                                                                                                                                    | In R: Introduction                                                                      |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Quantitative Genetics                                | Quantitative traits                                                                                                                                                                                      | R and R studio                                                                          |
|                                                      | Sources of quantitative trait variation  Variation in population                                                                                                                                         | Understanding basic data types in R  Loop and functions in R                            |
|                                                      | Breeding Values and Heritabilities                                                                                                                                                                       | Graphics                                                                                |
|                                                      | Response from selection                                                                                                                                                                                  | Basic statistical operations in R                                                       |
|                                                      | Resemblance among relatives                                                                                                                                                                              | ·                                                                                       |
| Day 2                                                | Genomic Selection in R                                                                                                                                                                                   | In R: Selection of Populations                                                          |
| Genomic Selection in R                               | What, Why and How Genomic Selection?                                                                                                                                                                     | Simple and Multiple Regression Analysis                                                 |
|                                                      | Populations in Genomic Selection                                                                                                                                                                         | Training and Test population                                                            |
|                                                      | Factors affecting Genomic Selection                                                                                                                                                                      |                                                                                         |
|                                                      | Training population optimization                                                                                                                                                                         |                                                                                         |
|                                                      |                                                                                                                                                                                                          |                                                                                         |
| Day 3                                                | Statistical Analysis                                                                                                                                                                                     | In R:                                                                                   |
| Day 3 Statistical Analysis                           | Statistical Analysis  Random vs. Fixed Effects                                                                                                                                                           | In R: BLUPs                                                                             |
| _                                                    |                                                                                                                                                                                                          |                                                                                         |
| _                                                    | Random vs. Fixed Effects                                                                                                                                                                                 | BLUPs                                                                                   |
| _                                                    | Random vs. Fixed Effects<br>Best Linear Unbiased Estimator (BLUEs)                                                                                                                                       | BLUPs<br>BLUEs                                                                          |
| _                                                    | Random vs. Fixed Effects<br>Best Linear Unbiased Estimator (BLUEs)<br>Best Linear Unbiased Predictor (BLUPs)                                                                                             | BLUPs<br>BLUEs<br>Kinship Matrix                                                        |
| _                                                    | Random vs. Fixed Effects Best Linear Unbiased Estimator (BLUEs) Best Linear Unbiased Predictor (BLUPs) Pedigree vs. Kinship matrix                                                                       | BLUPs<br>BLUEs<br>Kinship Matrix<br>Imputation                                          |
| _                                                    | Random vs. Fixed Effects Best Linear Unbiased Estimator (BLUEs) Best Linear Unbiased Predictor (BLUPs) Pedigree vs. Kinship matrix Imputation                                                            | BLUPs<br>BLUEs<br>Kinship Matrix<br>Imputation                                          |
| Statistical Analysis  Day 4  Statistical Analysis in | Random vs. Fixed Effects Best Linear Unbiased Estimator (BLUEs) Best Linear Unbiased Predictor (BLUPs) Pedigree vs. Kinship matrix Imputation One step model                                             | BLUPs<br>BLUEs<br>Kinship Matrix<br>Imputation<br>One step model                        |
| Day 4  Statistical Analysis in Genomic selection and | Random vs. Fixed Effects  Best Linear Unbiased Estimator (BLUEs)  Best Linear Unbiased Predictor (BLUPs)  Pedigree vs. Kinship matrix  Imputation  One step model  Statistical Analysis                  | BLUPs BLUEs Kinship Matrix Imputation One step model                                    |
| Statistical Analysis  Day 4  Statistical Analysis in | Random vs. Fixed Effects  Best Linear Unbiased Estimator (BLUEs)  Best Linear Unbiased Predictor (BLUPs)  Pedigree vs. Kinship matrix  Imputation  One step model  Statistical Analysis  Two step models | BLUPs BLUES Kinship Matrix Imputation One step model In R: One step vs two steps models |

Book online now:
Reserve your place here
Or visit: bit.ly/genomicselection2018