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ABSTRACT
Many mechanical systems are inherently flexible, making it difficult to achieve rapid, controlled
motion. The control challenge is even greater when the system is not well modelled, has dynamics
that change with time, or is under-actuated. A rocket with sloshing fluid propellant is an extreme
case. Many control strategies struggle with such systems. However a wave-based control method
has been shown to cope well with these challenges. The key idea is that the motion of the ac-
tuator can be separated into two notional components, one travelling from the actuator into the
system, the other leaving the system through the actuator. Intuitively the actuator simultaneously
launches mechanical waves into a system while it absorbs returning waves. When the launching
and absorbing is finished vibrations have been damped and the desired reference motion is left
behind. A mathematical model is developed for an upper stage accelerating rocket moving in a
single plane. An equivalent mechanical model in the form of a pendulum is included to represent
the fuel sloshing dynamics. In numerical simulations the controller successfully suppresses the
sloshing motion. A major advantage of the strategy is that no measurement of the pendulum states
(sloshing motion) is required. However it is found that when the effective sloshing mass becomes
small relative to the rocket body, it takes longer to fully suppress sloshing motions. This is accept-
able, however, because in this case, by definition, the sloshing does not cause a major problem for
the rocket controller.
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1 INTRODUCTION
The failure of an early Jupiter ballistic missile in 1957 was caused by the interaction of the control
system and the sloshing liquid fuel on board [1]. The problem was originally solved by aluminium
drink cans, which could be fitted into the fuel tank and which floated on the surface of the fuel.
Their friction both against the walls of the tank and against each other damped out the fuel oscil-
lations. This experience motivated the eventual solution to the problem, which was the addition of
baffles to the tank walls. However baffles can only provide a certain level of damping of the liquid
motion and can only be optimized for one tank fill level, so their effectiveness is reduced as the
propellant is depleted. They also add complexity and mass to the vehicle and so increase costs.
[2]. It therefore becomes necessary to design a control system for a rocket which actively takes
into account the effects of propellant sloshing and tries to compensate for them. Many mechanical
systems are inherently flexible, making it difficult to achieve rapid, controlled motion. The control
challenge is even greater when the system is not well modelled, has dynamics that change with
time, or is under-actuated. A rocket with sloshing fluid propellant on board is an extreme case of
such a system. A wave-based control method has been shown to cope well with the challenges
outlined above [3, 4]. The key idea is that the motion of the actuator can be separated into two
notional components, one travelling from the actuator into the system, the other leaving the sys-
tem through the actuator. Intuitively the actuator simultaneously launches mechanical waves into a
system while it absorbs returning waves. When the launching and absorbing is finished, vibrations



have been damped and the desired reference motion is left behind. The method has been demon-
strated to work well for 1-D and 2-D lumped flexible systems and in robotic and crane applications
[5, 6]. The aim of this paper is to extend the application to the control of spacecraft with flexible
structures and appendages (e.g. solar panels), and with on-board liquid propellant. This new area
of application presents many new challenges. The spacecraft systems are often nonlinear, their
associated flexibility is non-uniform, the sloshing dynamics are difficult or impossible to predict,
and sensors and actuators can behave far from the ideal. In this paper the example of an accel-
erating upper stage rocket is examined. A wave-based controller is designed for the upper stage
AVUM of the European launcher Vega and is tested by numerical simulation.

2 MATHEMATICAL MODEL
In this section a mathematical model is developed for an upper stage accelerating rocket moving
in a single plane. The rocket is assumed to be in a microgravity environment and free from aero-
dynamic effects. The sloshing fuel mass is represented by a mechanical analog in the form of a
simple pendulum attached to the main rocket body. The fuel mass is partitioned, according to the
tank fill level, into a fixed point mass and moving pendulum mass [7].

2.1 Planar upper stage model
The model of the upper stage rocket with single pendulum is shown in figure 1.
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Figure 1. Upper stage rocket model

The rocket body and pendulum are isolated and free body diagrams for each are shown in figure
3.
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Figure 2. Free body diagrams

The equations of motion for the two bodies may be written as:

F −Rx = max (1)



f −Rz = maz (2)

Iθ̈ = M+b(Rz) (3)

Rxasinφ +Rzacosφ = 0 (4)

m f [ax −bθ̇
2 +acosφ(θ̇ + φ̇)2 +asinφ(θ̈ + φ̈)] = Rx (5)

m f [az −bθ̈ −asinφ(θ̇ + φ̇)2 +acosφ(θ̈ + φ̈)] = Rz (6)

All symbols are described in table 1.

Table 1. List of symbols
Symbol Description

m body mass
I body moment of inertia

m f pendulum mass
a length of pendulum
b distance from COM to pivot point
θ body pitch angle
φ angle of the slosh pendulum w.r.t. body
F axial force
f lateral force

M moment applied to body
Rx internal constraint force at pivot point
Rz internal constraint force at pivot point
ax axial body acceleration
az lateral body acceleration

Substituting for Rx and Rz from equations 5 and 6 into equations 1-4 eliminates these internal
constraint forces, and gives a mimimal set of four equations for the four degree of freedom system.

(m+m f )ax −m f bθ̇
2 +m f acosφ(θ̇ + φ̇)2 +m f asinφ(θ̈ + φ̈) = F (7)

(m+m f )az −m f bθ̈ −m f asinφ(θ̇ + φ̇)2 +m f acosφ(θ̈ + φ̈) = f (8)

(I +m f b2)θ̈ −m f baz +m f absinφ(θ̇ + φ̇)2 −m f abcosφ(θ̈ + φ̈) = M (9)

(m f a2)(θ̈ + φ̈)−m f absinφθ̇
2 −m f abcosφθ̈ +m f a(az cosφ +ax sinφ) = 0 (10)

2.2 Choice of actuators
The model described is general in that the body is actuated by two forces, F and f , and a moment,
M. In reality the rocket may have one or many actuators, but in any configuration these actuators
may be resolved to these two forces, axial and lateral, and a moment applied to the rocket body.
In some cases these inputs may not be independent of each other, but instead a function of some
lesser number of inputs. For example, in the case of a rocket as shown in figure 3(a) with a single
gimbaled engine the forces and moment are no longer independent and are given by:

M = T (b+ c)sinδ , F = T cosδ , f = T sinδ (11)

where T is the constant thrust developed by the rocket engine, c is the distance of the gimbal from
the mass centre, and the single input is the engine gimbal angle δ . Similiarly the rocket may be
actuated by lateral thrusters as shown in figure 3(b). In this case:

M = Tld, F = T, f = Tl (12)

where again T is the constant thrust developed by the non-gimballing rocket engine, d is the axial
distance from the thrusters to the mass centre, and the single input is the magnitude of the lateral
thrust Tl .
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Figure 3. Possible actuator configurations

2.3 Linearized model
Solving equations 7 and 8 for ax and az respectively gives:

ax =
F +m f bθ̇ 2 −m f acosφ(θ̇ + φ̇)2 −m f asinφ(θ̈ + φ̈)

m+m f
(13)

az =
f +m f bθ̈ +m f asinφ(θ̇ + φ̇)2 −m f acosφ(θ̈ + φ̈)

m+m f
(14)

Substituting these expressions into equations 9 and 10 gives a simplified system of two equations
describing the pitch and slosh dynamics:

[I +mm?(b2 −abcosφ)]θ̈ −mm?abφ̈ cosφ +mm?ab(θ̇ + φ̇)2 sinφ = M+m?b f (15)

m?(a2 −abcosφ)θ̈ +mm?a2
φ̈ +m?(aF −mabθ̇

2)sinφ = m?a f cosφ (16)

where:
m? =

m f

m+m f
(17)

After linearization about [θ ,φ , θ̇ , φ̇ ] = 0 equations 15 and 16 become:

[I +mm?(b2 −ab)]θ̈ −mm?abφ̈ = M+m?b f (18)

m?(a2 −ab)θ̈ +mm?a2
φ̈ +m?aFφ = m?a f (19)

The state vector of the linearized system consists of the pitch and slosh angles and their derivatives:

x = [θ ,φ , θ̇ , φ̇ ]T (20)

It is assumed that the axial thrust F is a constant, so that the input vector consists of the lateral
force and moment M:

u = [ f ,M]T (21)

Now equations 18 and 19 may be rewritten in state space form:

ẋ = Ax+Bu (22)

where:

A =




0 0 1 0
0 0 0 1
0 − Fbm f

I(m+m f )
0 0

0 −Fm f (b2−ab)
Ia(m+m f )

− F
am 0 0



, B =




0 0
0 0
0 1

I
− 1

am
(b−a)

Ia


 (23)



We find that the condition for stability of this linearized system is:

mm f (b2 −ab)
m+m f

+ I ≥ 0 (24)

Possible pendulum configurations are shown in figure 4. For b < 0 (pendulum pivot point behind
the mass centre) (figure 4(a)) or b > a (whole pendulum in front of mass centre) (figure 4(b)) this
condition is always satisfied, but in the region 0 < b < a stability is achieved only if:

a−b ≥ I(m+m f )

bmm f
(25)

Physically this means that the pendulum must straddle the point P shown in figure 4(c) which is a
distance − I(m+m f )

bmm f
from the centre of mass along the x-axis.
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Figure 4. Possible pendulum configurations

3 WAVE-BASED MODEL
The first step in developing a wave model for the rocket system is to express the equations of
motion in a form resembling a cascaded lumped flexible system. The rocket system described by
equation 22 has two degrees of freedom and so it is required to transform this to appear like a
2-DOF lumped flexible system, i.e two masses/inertias with an interconnecting spring. It is also
required that there be a single control input which actuates just the first degree-of-freedom, i.e. a
single launcher and absorber of waves. The system should have the following form:

ż = Âz+ B̂ f0 (26)

where:

Â =




0 0 1 0
0 0 0 1

− k1
m1

k1
m1

0 0
k1
m2

− k1
m2

0 0


 , B̂ =




0
0
1

m1

0


 , z =




x1
x2
ẋ1
ẋ2


 (27)

These equations describe the dynamics of a 2-DOF mass-spring system, where x1 and x2 are the
displacements of the masses and fact is the actuating force on the first mass. Assume that the lateral
force f on the rocket body is zero and just the pure moment M is available for control purposes.
In reality this could be imagined as a gimballed rocket engine with lateral thrusters at mass centre
to cancel the lateral forces from the engine. The input matrix B from equation 23 then becomes a



column vector:

B =




0
0
1
I

(b−a)
Ia


 (28)

To transfrom the system to the required form the change of basis z = Mx is used, where:

M =




1 0 0 0
1 a

a−b 0 0
0 0 1 0
0 0 1 a

a−b


 , Â = MAM−1, B̂ = MB (29)

The states are now:

x1 = θ , x2 = θ +

(
a

a−b

)
φ (30)

and the parameters of the system are given by:

k1 =
Fbm f (a−b)
a(m+m f )

, m1 = I, m2 =
mm f (b2 −ab)

m+m f
(31)

Figure 5 shows the equivalent mass-spring system with a notional mass m0 and notional spring of
stiffness k0 appended to the system. The force in the first spring is considered to be the actuation
force f1. The system may now be considered as actuated by the displacement x0 of notional mass
m0 such that:

f0 = k0(x0 − x1) (32)

The wave model assumes that the displacement of each mass xi is can be seperated into leftward
and rightward travelling components ai and bi respectively or Ai and Bi in the Laplace (com-
plex frequency) domain [8]. The propagation of the rightward and leftward travelling waves is
described by wave transfer functions Gi, Hi and F respectively such that:

Ai = Gi−1Ai−1, Bi = HiBi+1, B2 = FA2 (33)

For controller design it is easier to work with transfer functions that deal with the actuating force F0
rather than the notional displacement X0. The spring force F0 can also be seperated into rightwards
and leftwards travelling components F0A and F0B respectively. Then the cross-over wave transfer
functions P0 and Q0 relate displacements to forces by:

A1 = P0F0A, F0B = Q0B1 (34)

and these can be calculated from the ordinary wave transfer functions as:

P0 =
G0

k0(1−G0)
, Q0 = k0(H0 −1) (35)

4 CONTROL DESIGN
4.1 Wave-Based Controller
A WBC3 (force actuated) controller was designed to control the rocket attitude θ . The controller
uses only the transfer functions G0 and H0. The second-order uniform system approximations [8]
are used where:

G0 =
ω2

G

s2 +ωGs+ω2
G
, ωG =

√
2k0

m1
(36)
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Figure 5. Wave model of the rocket
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Figure 6. Wave-based control system

H0 =
ω2

H

s2 +ωHs+ω2
H
, ωH =

√
2k0

m0
(37)

The wave-based control scheme is shown in figure 6. θre f is the desired reference pitch angle.
The control input is the input torque Mre f . Two variables are measured for feedback. These are
the pitch angle θ and the actual achieved torque M. In this paper the actuator is assumed ideal
except for the saturation limits. The wave based control strategy launches a wave equal to half the
reference signal θre f . The measured values of θ and M are then used to calculate the returning
wave component at the actuator which can be calculated as:

B0 = H0

(
θ −P0M
1−P0Q0

)
(38)

The actuator is then moved to match this returning wave component and thereby absorb it. When
the absorbing is finished the system will have been displaced by twice the specified launch wave,
i.e. will be at the reference displacement.

4.2 Time-Optimal Controller
For comparison, the torque-limited bang-bang solution for a rest-to-rest maneuver of a rigid rocket
was calculated. With the slosh pendulum frozen in position the moment of inertia of the rocket
body about the overall mass centre is given by:

Irigid = I +
mm f (b−a)2

(m+m f )
(39)



The switching time for a rest to rest maneuver is:

ts =

√
θre f Irigid

Mmax
(40)

where Mmax is the maximum torque. Then the control input for the bang-bang maneuver beginning
at t = t0 is:

M =





0 t < t0
Mmax t0 < t < t0 + ts
−Mmax ts < t < t0 +2ts
0 t > t0 +2ts

(41)

5 RESULTS
6 Simulation of a real rocket
The wave-based controller was tested by numerical simulation. Suitable parameters for the pre-
sented rocket model were chosen to represent AVUM, upper stage of the European Vega launcher
[9] (table 2). The included slosh pendulum represents the primary sloshing mode for the rocket’s
fuel tank when half full. The saturation torque Mmax was calculated from the maximum gimbal
angle of the AVUM engine. The values chosen for notional mass and spring stiffness were m0 =m1
and k0 = k1 ∗ (m1/m2), however the choice for these parameters is arbitrary to some degree and
a range of values will give a good control response. Results are shown in figure 7 for a five de-
gree step change in commanded pitch angle θre f . The wave-based controller is compared to the
torque-limited time-optimal solution for the rigidized rocket.

Table 2. Summary of model parameters representative of AVUM upper stage

Parameter Value Unit
m 2105 kg
m f 88 kg
I 1883 kg m2

a 0.53 m
b −1.43 m
F 2450 N

Mmax 931 N m

7 DISCUSSION
It can be seen that the fuel slosh dynamics cause the open-loop time optimal controller to land
off target and drift away from the target over time. The fuel sloshing persists for long times in
the absence of damping in the model. The wave-based controller lands on target and supresses
the sloshing motion. However the sloshing persists for several oscillations. The reason for this
is the non-uniformity of the system, i.e. unequal inertias m1 and m2. In this case m1 is much
less than m2. From a wave perspective there is a change in wave impedance between the two
different masses and some waves become trapped on the right hand side of this boundary. For
this reason the actuator only absorbs a fraction of the motion on each oscillation cycle, but over
several cycles can absorb it all. When the ratio of inertias m1

m2
is much less than one, the effect

of the pendulum on the body is much reduced and so it takes longer to fully suppress sloshing
motions. This is acceptable, however, because in this case, by definition, the sloshing does not
cause a major problem for the rocket controller. On the other hand, the control challenge is greatest
when the fluid inertia ratio is large, and this is precisely when the new strategy delivers much



improved performance. An interesteing avenue of future research is developing wave-models
and controllers which take into account the non-uniformity of the system to be controlled. A clear
advantage of wave-based control is that all measuring is done at the actuator, in this case the rocket
body, so no measurement of the pendulum states is necessary, which is a significant bonus given
the challenge of measuring or modelling them in a real rocket. Future research includes making
the controller robust to external disturbances such as aerodynamic, stage seperation or gravity
forces; considering non-ideal actuator and sensor behaviour; including multiple slosh pendulums
representing either multiple fuel tanks or multiple modes of sloshing in a single tank; and extending
the analysis to a 6-DOF model where roll, pitch and yaw must be simulataneously controlled.
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Figure 7. Pitch θ and pendulum angle φ for a 5 degree step change in θre f .


