
The Risk Map:

A New Tool for Backtesting Value-at-Risk Models

Gilbert Colletaz� Christophe Hurlin� Christophe Pérignon��

March 2011

Abstract

This paper presents a new tool for validating Value-at-Risk (VaR) models. This
tool, called the Risk Map, jointly accounts for the number and the magnitude of the
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as a situation in which the trading loss exceeds both the standard VaR and a VaR
de�ned at an extremely low coverage probability. We then formally test whether the
sequence of exceptions and super exceptions passes standard model validation tests.
We show that the Risk Map can be used to backtest VaR for market risk, credit risk,
or operational risk, to assess the performance of a margining system on a derivatives
exchange, and to validate systemic risk measures (e.g. CoVaR).
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1 Introduction

The need for sound risk management has never been more essential than in today�s �nan-

cial environment. Of paramount importance for risk managers and regulators is the ability

to detect misspeci�ed risk models as they lead to misrepresention of actual risk exposures.

In this paper, we focus on the most popular risk measure, the Value-at-Risk (VaR), which

is de�ned as an extreme quantile of a return or pro�t-and-loss (P&L) distribution. In

practice, quantile-based risk measures are used for instance to construct porfolios (Basak

and Shapiro, 2001), quantify banks exposures to, and capital requirements for, market,

credit, and operational risks (Jorion, 2007), set margin requirements for derivatives posi-

tions (Figlewski, 1984), and measure the systemic-risk contribution of a �nancial institution

(Adrian and Brunnermeier, 2010).

In this paper, we present a new tool, called the Risk Map, for validating VaR-type

models. To grasp the intuition of our approach, consider two banks that both have a one-

day Value-at-Risk (VaR) of $100 million at the 1% probability level. This means that each

bank has a one percent chance of losing more than $100 million over the next day. Assume

that, over the past year, each bank has reported three VaR exceptions, or days when the

trading loss exceeds its VaR, but the average VaR exceedance is $1 million for bank A and

$500 million for bank B. In this case, standard backtesting methodologies would indicate

that the performance of both models is equal (since both models lead to the same number

of exceptions) and acceptable (since the annual number of exceptions is close enough to

its target value of 2.5). The reason is that current backtesting methodologies only focus

on the number of VaR exceptions and totally disregard the magnitude of these exceptions

(Berkowitz, 2001, and Stulz, 2008).

However in practice, market participants do care about the magnitude of VaR excep-

tions. It is indeed the severity of the trading losses, and not the exceptions per se, that

jeopardize banks�solvency. First, risk managers systematically try to learn from past ex-

ceptions to improve the forecasting ability of their risk models. Second, investors and other

�nancial statement users assess the risk management skills of a given �nancial institution

based on its backtesting results. Finally, banking regulators may want to penalize more

heavily �in terms of capital requirements �a bank that experiences extremely large ex-

ceptions than a bank that experiences moderate exceptions. To the best of our knowledge,

there is no general hypothesis-testing framework available in the literature that accounts
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for both the number and the magnitude of VaR exceptions.1 Our objective is to �ll this

gap.

The Risk Map approach jointly accounts for the number and the magnitude of the

VaR exceptions. The basic intuition is that a large trading loss not only exceeds the

regular VaR de�ned with a probability � (e.g. 1%) but is also likely to exceed a VaR

de�ned with a much lower probability �0 (e.g. 0.2%). On this ground, we de�ne a VaR

exception as rt < �V aRt(�), where rt denotes the P&L, and a VaR "super exception"

as rt < �V aRt(�0), with �0 much smaller than �.2 We then formally test whether the

sequence of exceptions and super exceptions satisfy standard backtesting conditions and

we graphically summarize all information about the performance of a risk model in the

Risk Map.

There are several advantages to the Risk Map approach. First, it preserves the simplicity

of the standard validation techniques, such as the unconditional coverage test (Kupiec,

1995) or the z-test (Jorion, 2007, page 144), while also accounting for the magnitude of

the losses. Thus, the Risk Map approach is a generalization of the "tra¢ c light" system

(Basel Committee on Banking Supervision, 1996) which remains the reference backtest

methodology for many national banking regulators. Second, it is a formal hypothesis

testing framework. Third, the Risk Map approach is very general and can be applied to

any VaR-type models. For instance, it can be used to backtest the market VaR of a single

asset, portfolio, trading desk, business line, bank, mutual fund, or hedge fund (Berkowitz,

Christo¤ersen and Pelletier, 2011). It can also assess the validity of the credit-risk VaR

(Lopez and Saidenberg, 2000) or the operational-risk VaR (Dahen and Dionne, 2010) of a

�nancial institution. Furthermore, the Risk Map approach can allow a derivatives exchange

to check the validity of its margining system. Finally, we show that the Risk Map can be

used to backtest the systemic risk measure recently proposed by Adrian and Brunnermeier

(CoVaR, 2010) as it is de�ned as the conditional quantile of a bank stock return. The Risk

Map is, to the best of our knowledge, the �rst method allowing one to backtest a systemic

risk measure.

The outline of the paper is as follows. In the next section, we present our backtesting

1Berkowitz (2001) presents a backtesting method that accounts for the magnitude of the VaR exceedance
under the normality assumption.

2By convention, VaR is expressed as a positive value. When only V aRt(�) is known, the corresponding
time series for V aRt(�0) can be generated by calibration. This is done by extracting the conditional
variance of the P&L from V aR(�) and then plugging it into the formula for V aR(�0). See Section 2.3 for
details.
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framework. In Section 3, we present several applications of the Risk Map methodology

that sequentially deal with market risk, default risk, and systemic risk. We summarize and

conclude our paper in Section 4.

2 Backtesting Framework

2.1 Background

Let rt denote the return or P&L of a portfolio at time t and V aRtjt�1(�) the ex-ante one-

day ahead VaR forecast for an � coverage rate conditionally on an information set Ft�1. If
the VaR model is adequate, then the following relation must hold:

Pr[rt < �V aRtjt�1(�)] = �. (1)

Let It (�) be the hit variable associated with the ex-post observation of a VaR(�) violation

at time t:

It(�) =

(
1 if rt < �V aRtjt�1(�)
0 otherwise

: (2)

Backtesting procedures are typically only based on the violation process fIt (�)gTt=1. As
stressed by Christo¤ersen (1998), VaR forecasts are valid if and only if this violation se-

quence satis�es the Unconditional Coverage (UC) hypothesis.3 Under the UC hypothesis,

the probability of an ex-post return exceeding the VaR forecast must be equal to the �

coverage rate:

Pr [It(�) = 1] = E [It(�)] = �. (3)

A key limitation of this approach is that it is unable to distinguish between a situation

in which losses are below but close to the VaR (e.g. bank A in the introduction) and a

situation in which losses are considerably below the VaR (e.g. bank B). A solution proposed

3Validation tests are also based on the independence hypothesis (IND), under which VaR violations
observed at two di¤erent dates for the same coverage rate must be distributed independently. Formally,
the variable It(�) associated with a VaR violation at time t for a coverage rate � should be independent
of the variable It�k(�), 8k 6= 0. In other words, past VaR violations should not be informative about
current and future violations. When the UC and IND hypotheses are simultaneously valid, VaR forecasts
are said to have a correct Conditional Coverage, and the VaR violation process is a martingale di¤erence,
with E [It(�)� �j Ft�1] = 0.

3



by Lopez (1999a,b) consists in considering the excess losses de�ned as:

Lt(�) =

(
(rt + V aRtjt�1(�))

2 if rt < �V aRtjt�1(�)
0 otherwise

: (4)

Lopez proposes various heuristic criteria in order to assess the magnitude of these excess

losses. However, such criteria convey only limited information since no normative rule can

be deduced for the magnitude of these excess losses.

Another approach is to consider the average loss beyond the VaR using for instance the

concept of expected shortfall:

ESt (�) =
1

�

Z �

0

F�1 (p) dp (5)

where F (:) denotes the cumulative distribution function of the P&L (Artzner et al., 1999).

The basic idea is that the di¤erence between the loss and the expected shortfall should be

zero on days when the VaR is violated. This alternative approach is however di¢ cult to

implement in practice since expected shortfalls are typically not disclosed by banks and

backtesting only uses the observations where the loss exceeded the VaR, which leads to

extremely small samples (Christo¤ersen, 2009).

Di¤erently, we propose a VaR backtesting methodology that is based on the number and

the severity of VaR exceptions, without relying on either ad-hoc loss functions nor expected

shortfall. This approach exploits the concept of "super exception", which is de�ned as a

loss greater than V aRt(�0) whereas the coverage probability �0 is much smaller than � (e.g.

� = 1% and �0 = 0:2%). As an illustration, we show in Figure 1 the joint evolution of

the daily P&L, V aR (�), and V aR (�0) for a hypothetical bank. We see that, as expected,

�V aR (�0) is systematically more negative than �V aR (�) as V aR (�0) is measured further
left in the tail of the P&L distribution. For this bank, we obtain four exceptions (i.e.,

rt < �V aRtjt�1(�)) and three super exceptions (i.e., rt < �V aRtjt�1(�0)).

< Insert Figure 1 here >

One can similarly de�ned a hit variable associated with V aRt(�0):

It(�
0) =

(
1 if rt < �V aRtjt�1(�0)
0 otherwise

with �0 < �: (6)
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The de�ning feature of our approach is to account for both the frequency and the magnitude

of trading losses. The intuition of our test is the following. If the frequency of super

exceptions is abnormally high, this means that the magnitude of the losses with respect to

V aRt(�) is too large.

For both VaR exceptions and super exceptions, we propose to use a standard backtesting

procedure. Consider a time series of T VaR forecasts for an � (respectively �0) coverage

rate and let N (respectively N 0) be the number of associated VaR violations:

N =

TX
t=1

It (�) N 0 =

TX
t=1

It (�
0) : (7)

If we assume that the It (:) variables are i:i:d:; then under the UC hypothesis, the total

number of VaR exceptions follows a Binomial distribution:

N � B (T; �) (8)

with E (N) = �T and V (N) = � (1� �)T: Thus, it is possible to test the UC hypothesis
for the VaR expectation as:

H0 : E [It (�)] = � (9)

H1 : E [It (�)] 6= �: (10)

Under H0; the corresponding log-likelihood ratio statistics is de�ned as:

LRUC (�) = �2 ln
h
(1� �)T�N �N

i
+ 2 ln

"�
1� N

T

�T�N �
N

T

�N#
d�!

T!1
�2 (1) : (11)

From the critical region, we can deduce conditions on the value of N that allow us not to

reject the null of UC. Let us denote l the nominal size of the test, to not reject the null of

UC, the number of violations must satisfy the following restriction:�
1� N

T

�
ln

�
1�N
T � �T

�
+
N

T
ln

�
N

�T

�
>
G�1 (1� l)

2T
(12)

where G (:) denotes the c.d.f. of the �2 (1) distribution. There is no analytical expression

of this condition for N but Jorion (2007) provides numerical values for di¤erent values of

T and �, for a nominal size of 5%.
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A similar validation test can be de�ned for super exceptions:

H0 : E [It (�0)] = �0 (13)

H1 : E [It (�0)] 6= �0: (14)

An LR test statistic LRUC (N 0) can be de�ned as in (11), except that we use both the

super exception coverage rate �0 and the corresponding number of hits N 0.4

2.2 The Risk Map

The goal of the Risk Map is to present the backtesting results for a given VaR series in a

graphical way. A �rst way to construct a Risk Map is to jointly display the non-rejection

zones for the LRUC (�) and LRUC (�0) tests. For instance, we report in Figure 2 the non-

rejection zones for � = 1%, �0 = 0:2%, and a sample size of T = 500. If the number

of V aR (1%) exceptions is between 2 and 9, we cannot reject the risk model at the 95%

con�dence level. However, if the number of super exceptions is greater than 3, we reject the

validity of the VaR model since it leads to too many super exceptions. It is then possible to

put any risk model on the risk map and see which ones lay in the global non-rejection area,

i.e., 2 6 N 6 9 and N 0 6 3. For instance, we see that the VaR model of the hypothetical
bank presented in Figure 1 is rejected at the 95% con�dence level for the reason that it

leads to too many super exceptions.

< Insert Figure 2 here >

Up to now, we have investigated this double validation process (loss frequency + loss

magnitude) in a disjointed way. It balls down to consider the LRUC (�) and LRUC (�0) tests

independently. However, such a multiple testing approach does not allow us to control for

the nominal size of the test, i.e., the probability of rejecting a valid model. An alternative

approach is to jointly test the number of VaR exceptions and super exceptions:

H0 : E [It (�)] = � and E [It (�0)] = �0: (15)

The corresponding test is then directly derived from the test proposed by Pérignon and

Smith (2008) and consists in a multivariate unconditional coverage test. Associated with

4Alternatively, we could consider a unilateral test in which H1 : E [It (�0)] > �0:
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both V aRtjt�1(�) and V aRtjt�1(�0) is an indicator variable for revenues falling in each

disjoint interval:

J1;t = It (�)� It (�0) =
(
1 if � V aRtjt�1(�0) < rt < �V aRtjt�1(�)
0 otherwise

(16)

J2;t = It (�
0) =

(
1 if rt < �V aRtjt�1(�0)
0 otherwise

(17)

and J0;t = 1 � J1;t � J2;t = 1 � It (�). The fJi;tg2i=0 are Bernoulli random variables equal

to one with probability 1 � �, � � �0, and �0, respectively. However they are clearly

not independent since only one J variable may be equal to one at any point in time,P2
i=0 Ji;t = 1. We can test the joint hypothesis (15) of the speci�cation of the VaR model

using a simple Likelihood Ratio test. Let us denote Ni;t =
PT

t=1 Ji;t, for i = 0; 1; 2, the

count variable associated with each of the Bernoulli variables. The Pérignon and Smith

(2008) multivariate unconditional coverage test is a likelihood ratio test LRMUC that the

empirical exception frequencies signi�cantly deviate from the theoretical ones. Formally, it

is given by:

LRMUC (�; �
0) = 2

�
N0 ln

�
N0
T

�
+N1 ln

�
N1
T

�
+N2 ln

�
N2
T

�
(18)

� [N0 ln (1� �) +N1 ln (�� �0) +N2 ln (�0)]]
d�!

T!1
�2 (2) :

Under the null (15) of joint conditional coverage for the VaR exceptions and super excep-

tions, the LRMUC statistic is asymptotically chi-square with two degrees of freedom. This

joint test allows to construct a Risk Map based either on the p-value of the test (Figure

3) or the rejection zone for a given con�dence level (Figure 4). The Risk Map in Figure 4

should be read as follows. If the numbers of violations N and super exceptions N 0 corre-

spond to a green cell, we conclude that we cannot reject the joint hypothesis E [It (�)] = �
and E [It (�0)] = �0 at the 90% con�dence level. If the (N ;N 0) pair falls in the yellow zone,

we can reject the null at the 90% but not at the 95% con�dence level. Similarly, in the

orange zone, we can reject the null at the 95% but not at the 99% con�dence level. Finally,

a red cell implies that we can reject the null hypothesis at the 99% con�dence level.

< Insert Figures 3 and 4 here >
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2.3 Computation of VaR(�0)

In most applications, Risk Map users will have both data on V aR(�) and V aR(�0). Never-

theless, a Risk Map can still be generated when only V aR(�), and not V aR(�0), is available.

This is for instance the case when a bank only discloses its VaR at the 1% level. To over-

come this problem, we propose a calibration procedure allowing us to extract V aR(�0) from

V aR(�), with �0 < �. The main elements of our procedure are (1) the data generating

process (DGP) of the P&L, (2) the internal VaR model used by the bank, and (3) the

auxiliary model that we use to generate the V aR(�0) estimates.

We assume that the P&L distribution is a member of the location scale family and, for

simplicity, that it is centered, i.e., E (rt) = 0.5 Under these assumptions, the conditional
VaR can be expressed as an a¢ ne function of the conditional variance of the P&L, denoted

ht:

V aRtjt�1(�; �) =
p
htF

�1 (�; �) (19)

where F�1 (�; �) denotes the �-quantile of the conditional standardized P&L distribution.

We assume that this distribution is parametric and depends on a set of parameters �. In

order to estimate V aR(�0), we have to estimate both the distributional parameters � and

the conditional variance ht:

A naive way to compute V aR(�0) is to use the QML estimate of the conditional variance

and the conditional quantile:

V aRtjt�1(�
0; b�) =qbhtF�1 ��0; b�� (20)

where bh and b� are obtained conditionally to a particular speci�cation of the conditional
variance model (auxiliary model). However, in this case, the potential error of speci�cation

of the auxiliary model strongly a¤ects V aR(�0) through both the conditional variance and

the quantile. In practice, the variance e¤ect is likely to be much more pernicious. It

is indeed well known in the GARCH literature that conditional volatility forecasts are

less sensitive to the choice of the GARCH model than to the choice of the conditional

distribution.

Alternatively, we propose an original approach that does not rely on the QML estimate bht.
5When E (rt) 6= 0, the estimated VaR can simply be deduced from (19) by adding the unconditional

average return.
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Given the VaR forecast reported by the bank V aR(�), we de�ne an implied P&L condi-

tional variance as: qeht = V aRtjt�1(�)

F�1
�
�; b�� : (21)

We here proceed by analogy with the option pricing literature, in which implied volatility

is extracted from option prices (also see Taylor, 2005). V aR(�0) is then de�ned as:

V aRtjt�1(�
0; b�) =qehtF�1 ��0; b�� = V aRtjt�1(�)F�1

�
�0; b��

F�1
�
�; b�� : (22)

Interestingly, we notice that the auxiliary model is only used to get an estimate of the

conditional quantile F�1
�
�; b��. As a result, this process mitigates as much as possible the

impact of a misspeci�cation of the auxiliary model on the VaR estimates. Implementing

this calibration method requires two ingredients: (1) an auxiliary model for the condi-

tional volatility ht, such as a GARCH or stochastic volatility model and (2) a conditional

distribution for the P&L which depends on a set of parameters �.

In the Appendix, we use a Monte Carlo study to assess the empirical performance of our

calibration procedure. We use a GARCH model as the auxiliary model and a t-distribution

for F . In that case, the set of parameters � simply corresponds to the degree of freedom of

the t-distribution, which can be estimated by QML. Overall, we �nd that this calibration

procedure leads to reliable estimates for V aR(�0).

3 The Risk Map at Work

3.1 Market Risk

A natural application of the Risk Map is to backtest the VaR of a bank. It is indeed

key for both risk managers and banking regulators to check the validity of banks�VaR

engines as market risk charges, and in turn capital requirements, depend on banks�VaR

internal estimates (Jorion, 2007). Berkowitz and O�Brien (2002) show that VaR estimates

of leading US banks tended to be conservative during the late nineties. Using P&L data

from four business lines in a large international commercial bank, Berkowitz, Christo¤ersen,

and Pelletier (2011) �nd evidence of volatility dynamics and clustering in VaR exceptions.

However, none of the prior empirical literature accounts for the magnitude of the VaR
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exceedances.

We use actual VaR and P&L for a large European bank, namely La Caixa, which is the

third largest Spanish bank. We use daily one-day ahead VaR(1%) and daily P&L for that

bank over the period 2007-2008. In line with the recommendations of the Basel Committee

on Banking Supervision (2009), the P&L data does not include fees and commissions,

neither intraday trading revenues (Frésard, Pérignon, and Wilhelmsson, 2011). We plot

in the upper part of Figure 5, the bank VaR along with the actual P&L. As our sample

period includes the beginning of the recent �nancial crisis, there is a clear regime shift in

the variability of the trading revenues. We see that the volatility spiked after the end of

the �rst semester of 2007. Similarly, the VaR(1%) jumped from around 2 millions euros

during 2007-Q1-Q2 to around 4 millions afterwards.

We extract the series for VaR(0.2%) from the VaR(1%) series using the calibration

procedure presented in Section 2.3. Over this sample period, there were 13 VaR exceptions

(N = 13) and three super exceptions (N 0 = 3). The numbers of violations de�ne the

coordinates of the point associated with the risk model used by the bank in our Risk Map

representation. The lower part of Figure 5 displays the point associated with La Caixa on

the Risk Map (blue cross at (3;13)). We conclude that we can reject the validity of the

VaR model of the bank since the observation falls outside the non-rejection zone colored in

green. The corresponding p-value of the Pérignon and Smith (2008) test is equal to 0.0108.
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3.2 Default Risk

VaR models are also used to set margin and collateral requirements on derivatives markets.

Margins are key to protect derivatives users against the default of their counterparties. The

di¢ cult trade-o¤ faced by the derivative exchange is to set margins high enough to mitigate

default risk but not too high since this would shy traders away and damage liquidity.

The initial margin C for one futures contract (long or short position) must be set so

that the probability of a futures price Ft change, rt = Ft � Ft�1, exceeding the margin is
equal to a prespeci�ed level:

Pr[rt < �Ctjt�1(�)] = Pr[rt > Ctjt�1(�)] = �: (23)

Depending on the expected volatility, the derivatives exchange frequently adjusts the level

of the margin, as shown by Brunnermeier and Pedersen (2009, Figure 1) for the S&P

500 futures. The empirical literature has considered a variety of distributions for futures

price changes and volatility dynamics (Booth et al., 1997, Cotter, 2001). The Risk Map

approach can be used to test whether actual margins or optimal margins according to a

given modelling technique generate too many margin exceedances and too many margin

"super exceedances". The analysis would have to be conducted separately for the left and

right tails.

A related problem is the determination of the margin requirements for the clearing

members of a given clearing house. In this case again, VaR models are one of the two

main techniques used to set margins �the other one being the SPAN system. The issue of

validating clearing members�margins takes nowadays central stage as clearing houses have

moved to clear new products that used to be traded over-the-counter (OTC) (Du¢ e and

Zhu, 2010).

Let !i;t�1 being the vector of positions of clearing member i at the end of day t� 1:

!i;t�1 =

2664
!i;1;t�1
...

!i;D;t�1

3775 (24)

whereD is the number of derivatives contracts (futures and options) traded on this exchange

and i = 1; :::; N . We assume that these contracts are written on U di¤erent underlying
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assets. To arrive at a margin for this portfolio, the clearing house considers a series of S

scenarios representing potential changes in the level and volatility of the underlying assets.

For each scenario, the value of the portfolio is recomputed, or marked-to-model, using

futures and option pricing formulas, and the associated hypothetical P&L is computed:

eri;t =
2664
er1i;t
...erSi;t
3775 : (25)

Notice that this simulation-based technique allows the clearing house to account for diver-

si�cation among underlying assets and maturities, which reduces collateral requirements.

From this simulated distribution of P&L, the clearing house can set the margins for clearing

member i such that:

Pr[eri;t < �Ci;tjt�1(�)] = �: (26)

The clearing house will proceed in the same way for the N � 1 other clearing members and
only those who will be able to pile up this amount of collateral on their margin accounts will

be allowed to trade on the next day. On a regularly basis, the risk-management department

of the clearing-house and the regulatory agencies check the validity of the margining system.

In particular, one needs to check whether the hypothetical shocks used in the scenarios are

extreme enough or whether the estimation of the derivative prices is reliable. Of particular

concern is a situation in which the collateral is set at too low a level. In this case, a

default by a clearing member following a big trading loss would lead to a massive shortfall,

which may propagate default within the clearing system (Eisenberg and Noe, 2001). The

evaluation of the margining system can be conducted using the Risk Map approach. In this

particular case, the analysis can be conducted by clearing member or for all the clearing

members pooled together.

It is interesting to notice that the setting above also applies to OTC derivatives trading.

Indeed, OTC market participants also require collateral from their counterparties in order

to mitigate default risk exposure. Consider the case of a prime broker that needs to decide

on the amount of cash and securities that a given hedge fund needs to maintain as collateral.

The collateral requirement depends on the outstanding positions of the hedge fund with

respect to the prime broker (e.g. short positions in exotic options and some interest rate

swaps). Just like in the clearing house example, the prime broker can apply a set of

scenarios to the hedge fund�s positions to generate a distribution of hypothetical P&L, and

set the collateral as a quantile of this distribution, as in (26). In this case too, a Risk Map
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could be used to backtest the collateral requested by this prime broker.

3.3 Systemic Risk

Since the recent �nancial crisis, the quest for measuring, and forecasting, systemic risk has

never been as popular. Of particular importance is the quanti�cation of the marginal con-

tribution of systemically important �nancial institutions to the overall risk of the system.

Acharya et al. (2009) suggest that each �rm should pay for its own systemic risk con-

tribution through capital requirements, taxes, and required purchase of insurance against

aggregate risk (also see Brunnermeier et al. 2009). While many methodologies have been

recently proposed to measure systemic risk (Engle and Brownless, 2010; Acharya et al.

2010; Adrian et Brunnermeier, 2010), there is to the best of our knowledge no ex-post

validation methods for systemic risk measures. In this section, we show that the Risk Map

approach can be used to backtest systemic risk measures.

We follow Adrian et Brunnermeier (2010) and de�ne the CoVaR measure as the VaR of

the �nancial system conditional on institutions being under distress. Formally, CoVaR is

de�ned as the �-quantile of the conditional probability distribution of the �nancial system

returns rj:

Pr
�
rj � �CoV aR jjC(ri)(�)

�� C (ri)� = � (27)

where C (ri) denotes a conditioning event concerning institution i. For technical reasons
(CoVaR is estimated by quantile regression), the authors consider the conditioning event

fri = �V aRi(�)g : However, CoVaR can also be de�ned using fri � �V aRi(�)g as the
conditioning event. In that case, �nancial distress for institution i is de�ned as a situation

in which the losses exceed the VaR and the de�nition of CoVaR becomes:

Pr
�
rj � �CoV aR jji (�)

�� ri � �V aRi(�)� = �: (28)

Given this de�nition, it is obvious that CoVaR can be backtested within the Risk Map

framework. Just like with VaR, we need to analyse the frequency of the conditional prob-

ability and the magnitude of the losses in excess of the CoVaR. The later will provide us

with some crucial information about the resiliency of the �nancial system when a particular

�rm is in �nancial distress. Note also that the loss in excess of the CoVaR can be studied

using the concept of co-expected shortfall (Adrian and Brunnermeier, 2010), which is the

expected shortfall of the system conditional on C (ri). However, backtesting (co-)expected
shortfalls remains very di¢ cult in practice (see Section 2.1).
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We suggest using the Risk Map framework to backtest the CoVaR in both dimensions

(i.e., number and severity of CoVaR exceptions). We de�ne a CoVaR exception and super

exception as rj < �CoV aR jji (�) and rj < �CoV aR jji (�0), respectively. By analogy with

VaR, we de�ne the following hit variables:

Ij(q) =

(
1 if rj < �CoV aR jji (q)

0 otherwise
; for q = � or q = �0: (29)

with �0 < �: By de�nition of the CoVaR exception (and super exception), we have:

E
�
Ij(q)

�� ri � �V aRi(q)� = q: (30)

It is possible to transform the conditional expectation (30) into an unconditional one, since

the condition (30) implies E [Ij(q)� I i(q)] = q for q = � or q = �0, where I it(�) the

standard VaR(�) hit variable for the institution i:

I i(�) =

(
1 if ri < �V aRi(�)
0 otherwise

: (31)

So, the CoVaR-Risk Map can be de�ned as the non-rejection area of the joint test:

H0 : E
�
Ij(�)� I i(�)

�
= � and E

�
Ij(�0)� I i(�)

�
= �0: (32)

Under the null, conditionally on the distress of �nancial institution i, the probability to

observe a loss in the �nancial system larger than the CoVaR(�) is precisely equal to �, and

the probability to observe an "super loss" should not exceed �0.

Then, the CoVaR Risk Map is similar to the Risk Map for VaR. Given a sequence of

estimated conditional CoVaRs for the system,
n
CoV aR

jji
tjt�1 (q)

oT
t=1

for q = � and q = �0,

we compute the sequences of hits
�
Ijt (q)

	
. The estimated CoVaR can simply be derived

from a a multivariate GARCH model (e.g. DCC) or directly estimated from a quantile

regression. The corresponding test statistic can then directly be derived from the test

proposed by Pérignon and Smith (2008), LRMUC (�; �
0) shown in (18). In this case, N1 =PT

t=1

�
Ijt (�)� Ijt (�0)

�
� I it (�), N2 =

PT
t=1 I

j
t (�

0) � I it (�), and N0 = T � N1 � N2: The
non rejection area of the test can be represented as in Figure 2. For a given �nancial

institution i, the numbers of CoVaR exceptions and CoVaR super exceptions correspond

to one particular cell on the Risk Map. It produces a direct diagnostic about the validity

of the systemic risk measure, which jointly accounts for the number and the magnitude of

14



the exceptions.

Finally, given the CoVaR de�nition, it is possible to compute the di¤erence between

(1) the VaR of the �nancial system conditional on the distress of a particular �nancial

institution i and (2) the VaR of the �nancial system conditional on the median state of

institution i: This di¤erence corresponds to the �CoV aR, de�ned as follows:

�CoV aR jjC(ri)(�) = CoV aR jjri��V aRi(�)(�)� CoV aR jjMediani(�) (33)

The measure �CoV aR jji quanti�es how much an institution contributes to the overall sys-

temic risk. Backtesting�CoV aR jji can be achieved by applying the Risk Map methodology

successively to CoV aR jjri��V aRi(�) and CoV aR jjMediani.
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4 Conclusion

In this paper, we have proposed a formal backtesting procedure allowing bank risk managers

and regulators to assess the validity of a risk model by accounting for both the number

and the magnitude of VaR exceptions. We have introduced the concept of VaR super

exceptions and derived a test that combine information about both VaR exceptions and

super exceptions. We have shown that the Risk Map framework can be handy in validating

market, credit, or operational VaRs, margin requirements for derivatives, or systemic risk

measures such as the CoVaR.

The Risk Map approach may prove e¤ective in banking regulation. Indeed, as it is

a generalization of the the system currently used by banking regulators ("tra¢ c light"

system) to validate banks�risk models, the Risk Map could help detecting misspeci�ed risk

models and penalize banks that experience VaR exceptions that are too frequent and too

large. In this case, bank capital requirements would be a¤ected by the conclusions of the

Risk Map analysis.

Our analysis could be extended in di¤erent directions. First, we could implement our

methodology with other statistical tests, such as the hit regression test of Engle and Man-

ganelli (2004). Second, we could take into account the model risk speci�cation induced by

the estimation of VaR super exceptions on the �nite sample and asymptotic distribution

of the test statistic (Escanciano and Olmo, 2010a,b).
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Appendix: Monte Carlo Experiments

We assess the accuracy of the calibration procedure for V aR(�0) presented in Section 2.3
in a series of controlled experiments. The aim of these experiments is to systematically
compare the estimated V aR(�0) to the true V aR(�0). To conduct the experiments, we need
to specify (1) the data-generating process (DGP) of the P&L, (2) the internal VaR model
used by the bank, and (3) the auxiliary model that we use to generate the VaR estimates.
In particular, we check whether our approach is able to accurately estimate V aR(�0) when
(1), (2) and/or (3) are misspeci�ed.

For the DGP of the P&L, we follow Berkowitz, Christo¤ersen and Pelletier (2011) and
assume that returns rt are issued from a t (v)-GARCH(1; 1) model:

rt = �t zt

r
v � 2
v

(A1)

where fztg is an i:i:d: sequence form a Student�s t-distribution with v degrees of freedom
and where conditional variance is:

�2t = ! + 

�
v � 2
v

�
z2t�1�

2
t�1 + � �

2
t�1: (A2)

Parameterization of the coe¢ cients and initial condition are deduced from maximum-
likelihood estimated parameters for the S&P 500 index daily returns over the period
02/01/1970 to 05/05/2006. The parameter values are ! = 7:977e�7,  = 0:0896, � =
0:9098, and v = 6. The initial condition �21 is set to the unconditional variance.

Using the simulated P&L distribution issued from this DGP, it is then necessary to
select a method to forecast the VaR. This method represents the internal VaR model used
by the �nancial institution. We �rst consider a VaR calculation method that perfectly
matches the P&L distribution and therefore it satis�es unconditional coverage for both
standard and super exceptions. In a second experiment, we use a method that induces
a violation of unconditional coverage for super exceptions: a method that is valid with
respect to the current backtesting procedures, but that generates too many extreme losses
(see Panel A of Table A1). In this case, we use the Historical Simulation (HS) method.

< Insert Table A1 >

Recall that the aim of the experiments is to asses the capacity of our method to estimate
the V aR(�0) produced by the internal model of the bank. For that, it is possible to
compare directly the "true" VaR, denoted V aR0tjt�1(�

0), to the estimated one, denoted

V aRtjt�1(�
0; b�): However, what is most important is not comparing the VaRs, but the

exceptions induced by these VaRs, since backtesting is based on exceptions. Ideally, the
timing of the super exceptions should be the same with the true and the estimated V aR(�0).
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We denote I0t (�
0) the "true" hit process associated to V aR0tjt�1(�

0) and It
�
�0; b�� the

estimated hit process associated to V aRtjt�1(�0; b�): As usual, two types of errors can occur:
the false positive one (type 1 error) and the false negative one (type 2 error). We evaluate
the quality of our approach by using three indicators. The True Positive Rate (TPR), also
called hit rate or sensitivity, denotes the frequency of having a super exception which occurs
concurrently for the true and for the estimated V aR(�0). More formally, if we denote T
the out-of-sample size of the sample, we de�ne:

TPR =

PT
t=1 I

0
t (�

0)� It
�
�0; b��PT

t=1 I
0
t (�

0)
: (A3)

The False Alarm Rate (FPR), also called fall out, represents the frequency of type 1 error.
It gives the fraction of estimated super exceptions events that were observed to be non
events (false alarms).

FPR =

PT
t=1 [1� I0t (�0)]� It

�
�0; b��PT

t=1 [1� I0t (�0)]
: (A4)

Finaly, we consider the True Negative Rate (TNR), also called speci�city. It measures the
fraction of non super VaR exceptions which are correctly identi�ed (complementary of the
type 2 error).

TNR =

PT
t=1 [1� I0t (�0)]�

h
1� It

�
�0; b��iPT

t=1 [1� I0t (�0)]
: (A5)

Experiment 1: Valid Internal VaR Model

In the �rst experiment, the internal risk model of the bank corresponds to the true
DGP. In this context, the true conditional VaR is de�ned as:

V aR0tjt�1(�) =

s
� � 2
�

�t F
�1 (�; �) (A6)

where F (:; �) denotes the c.d.f. of the t (v) distribution. Let us denote V aR0tjt�1(�
0) the

true conditional VaR (unobservable) for the coverage rate �0. We consider the case where
� = 1% and �0 = 0:2%: Theoretically, these VaR forecasts are deduced from a valid internal
model and consequently the unconditional coverage assumption is satis�ed for all coverage
rates.

Given the simulated returns path and the VaR displayed by the bank,
n
V aR0tjt�1(�)

oT
t=1
,

we apply our calibration procedure to estimate the VaR for a coverage rate �0. In this �rst

18



experiment, we consider an auxiliary model also de�ned as a t (�)-GARCH(1; 1) model:

rt = �t zt

s
� � 2
�

(A7)

�2t = 0 + 1

�
� � 2
�

�
z2t�1�

2
t�1 + 2�

2
t�1: (A8)

The parameters of this auxiliary model are estimated by QML. Let us denote b� the es-
timator of the distributional parameter (i.e., the degree of freedom of the t-distribution).
Conditionally on this estimated parameter and to the V aR0tjt�1(�) produced by the bank,
we can de�ne the estimated V aR(�0) as:

V aR tjt�1(�
0; b�) = V aR0tjt�1(�)F�1

�
�0; b��

F�1
�
�; b�� : (A9)

In Panel B of Table A1, the three indicators of the quality of the calibration process are
reported. In the second column, the frequency of super VaR exceptions obtained from our
estimated 0.2% VaR is reported for various sample sizes. Recall that in this experiment,
the unconditional coverage is valid (since the VaR model corresponds to the true P&L
DGP), and the super-exception frequency should be equal to 0.2% if the calibration method
correctly estimates the VaR. The third, fourth, and �fth columns, respectively, report the
True Positive Rate, the False Positive Rate, and the True Negative Rate obtained from
10,000 simulations. Overall, Panel B shows that the performance of our estimation method
is very good.

Experiment 2: Invalid Internal VaR Model

In the second experiment, we introduce a discrepancy between the internal risk model
used by the bank to generate the VaR �gures and the auxiliary model used in the calibration
procedure. More speci�cally, we assume that the bank uses historical simulation (HS)
whereas the auxiliary model is a t-GARCH(1,1) model. We see in Panel C of Table 3 that
even in a situation in which the auxiliary model is wrong, our calibration procedure allows
us to extract a reliable estimate of V aR (�0).
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Figure 1: VaR Exceptions vs. VaR Super Exceptions
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Notes: This �gure displays the daily P&L, V aR (�), and V aR (�0) for a hypothetical bank.
By de�nition, the coverage rate �0 is smaller than �. Both the P&L and VaR series are simulated
using a t-Garch model. A VaR exception is de�ned as rt< �V aRtjt�1(�) whereas a super excep-
tion is de�ned as rt< �V aRtjt�1(�0). Over this 500-day sample period, there are four exceptions
and three super exceptions.
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Figure 2: Risk Map based on Two Univariate Coverage Tests
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Notes: This �gure displays a Risk Map based on two univariate unconditional coverage tests,
LRUC (�) and LRUC (�0). If the number of V aR (1%) exceptions N is between 2 and 9, we
cannot reject the risk model at the 95% con�dence level, and if the number of V aR (0:2%)
exceptions N 0 is strictly less than 4, we cannot reject the risk model at the 95% con�dence level.
Thus, the global non-rejection area corresponds to 2 6 N 6 9 and N 06 3.
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Figure 3: P-values of the Multivariate Unconditional Coverage Test
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Notes: This �gure displays the p-value of a multivariate unconditional coverage tests, LRMUC(�; �
0)

for di¤erent numbers of exceptions (N) and super exceptions (N 0).
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Figure 4: The Risk Map
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Figure 5: Backtesting Results for La Caixa (2007-2008)
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Notes: The upper graph displays the daily trading pro�t-and-loss (P&L), VaR(� = 1%), and
VaR(�0= 0:2%) for La Caixa between January 1, 2007 and December 31, 2008. All �gures are in
thousands of euros. Over this sample period, there were 13 exceptions and 3 super exceptions.
The lower graphs displays the Risk Map for La Caixa. The blue cross corresponds to La Caixa for
the period 2007-2008. As the blue cross falls in the orange zone, we can reject the null hypothesis
at the 95% but not at the 99% con�dence level.
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Table A1: Monte Carlo Experiments

Panel A: Summary of the Monte Carlo Experiment Design

Experiment 1 Experiment 2

P&L Data Generating Process t-Garch(1,1) t-Garch(1,1)

Internal VaR Model t-Garch(1,1) HS

Auxiliary Model t-Garch(1,1) t-Garch(1,1)

Panel B: Experiment 1 - Valid Internal VaR Model

Sample Size Violation Rate TPR FPR TNR

250 0.0019 0.8801 0.0003 0.9997

500 0.0020 0.9218 0.0002 0.9998

750 0.0021 0.9425 0.0002 0.9998

1,000 0.0020 0.9478 0.0001 0.9999

1,250 0.0020 0.9602 0.0001 0.9999

1,500 0.0020 0.9534 0.0001 0.9999

1,750 0.0020 0.9632 0.0001 0.9999

2,000 0.0020 0.9598 0.0001 0.9999

Panel C: Experiment 2 - Invalid Internal VaR Model

Sample Size Violation Rate TPR FPR TNR

250 0.0051 0.8441 0.0017 0.9983

500 0.0050 0.8801 0.0015 0.9985

750 0.0051 0.8734 0.0016 0.9984

1,000 0.0048 0.8900 0.0014 0.9986

1,250 0.0053 0.8814 0.0016 0.9984

1,500 0.0051 0.8871 0.0016 0.9984

1,750 0.0050 0.8774 0.0015 0.9985

2,000 0.0052 0.8831 0.0016 0.9984
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