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Abstract

There is a large empirical literature trying to quantify the poten-
tially adverse affects of climate change on the risk of violent armed
conflict, which focuses almost exclusively on linking annual variation
in climatic conditions to violence. A major shortcoming of this ap-
proach is that it conflates climate variability with climate change,
while also implicitly assuming that adverse weather shocks will im-
mediately trigger violent contests over scarce resources. In contrast,
this study exploits changes in local climate over a longer time period;
using differences in the average standardised deviation of temperature
and precipitation levels between 1989-2002 and 2003-2017 across the
African continent. Bayesian model averaging is used to test whether
variables measuring changes in local climate contribute consistently in
explaining conflict risk between 2003-17. Using disaggregated data to
account for local dynamics, the reduced-form estimation shows that
temperature is robustly linked to violent armed conflict: moving from
low to high temperature levels corresponds to a 31% increase in conflict
risk. Changes in precipitation have no discernible effect. The results
are robust to changing the benchmark period for the climate variables,
accounting for conflict prevalence, and considering different types of
violent conflict. Examining the predictive power of the models, a
leave-one-out cross-validation highlights that including information on
changes in local climate improves the predictive performance of the
model, as measured by the area under the precision-recall curve, by
seven points, from 0.51 to 0.58; 33 points above the baseline.

JEL-classification: D74, N47, Q54
Keywords: Climate, civil war, Bayesian model averaging
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1 Introduction

The 2018 global heat wave, with temperature records being bested across the
world and an unprecedented rate of forest fires within the Arctic circle, was a
stark reminder that global warming is not a hypothetical future event but that
it effects can already be felt today Given the scale and pace of contemporaneous
global warming there are concerns about the potentially negative effects it
could have on human society if prevention of future temperature increases
fails and in the absence of appropriate adaptation or mitigation mechanisms.
High on the list of concerns is violent armed conflict, where global warming
might reduce access to natural resources such as arable land and water, which
increases tensions between competing groups which can escalate into violence
in the absence of the right institutions or conflict resolution mechanisms.
There is now a growing and productive research strand dedicated to so
called climate-conflict which examines the possible link between climatic
conditions and conflict risk. Over the past decade this literature has produced
a number of interesting results, for instance that livestock raiding tends to be
more violent during wet times (Witsenburg and Adano, 2009); that drought
affects conflict through livestock prices (Maystadt and Ecker, 2014); that
insurgency violence is more likely following a bad harvest as result of too
much precipitation (Crost et al., 2018); but also that the main correlates of
conflict are economic or socio-political in nature rather than climatological
(Wischnath and Buhaug, 2014).1

Although most published research within this field share similarities with
regard to datasets analysed and statistical methods used, there is a sort of
schism in terms of interpretation of the results. Two recent papers argued that
most results tend to be in agreement with the hypothesis that climate affects
conflict, where deteriorating climatic conditions, such as higher temperatures
and lower precipitation levels, are linked to increased conflict risk (Hsiang
et al., 2013; Hsiang and Burke, 2014). Quantifying this effect, (Hsiang et al.,
2013) found that a standard deviation increase in temperature is associated
with a 14% increase in the chance of conflict. However, these conclusions
contrast with other large literature reviews (Klomp and Bulte, 2013; Theisen
et al., 2013) and the results are heavily contested (Buhaug et al., 2014).2
This lack of consensus might not be that surprising given the sensitivity of
research results within the conflict literature (Hegre and Sambanis, 2006).
More importantly, one major issue that has remained largely unaddressed

1See also the case-study on Kenya by Linke et al. (2015).
2See also (Hsiang et al., 2014).
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is the fact climate variability, particularly variation in climate across years,
is often conflated with climate change (Buhaug, 2015). Annual variation in
weather might not be such a good proxy for climate change (Selby, 2014).
For illustration consider the following standard empirical framework which is
typically used in quantitative research:

yit = α + β1xit + β2xit−1 + εit (1)

Here outcome variable yit, often a binary indicator for conflict incidence,
is linked to contemporaneous and, sometimes lagged, changes or shocks in
weather variables x, such as average temperature - α is the constant, ε is
a random error term. Although this empirical model can help identify the
effect of shocks in local weather on conflict risk, it provides scant information
on the effect of climate change, which is a longer and more gradual process,
event at its current unprecedented pace. The main shortcoming of the model
given in equation 1 is the implicit assumption that changes in climate-related
resources have an immediate effect on competition and trigger conflict, which
seems untenable (Selby, 2014). Indeed, most research on the link between
climate and conflict focuses on rural Africa, where the local population have
a long history of applying adaptive measures to deal with the local climate,
e.g. Berhe et al. (2017).

Therefore, in contrast with the existing literature, which almost exclusively
exploits the relative high-frequency of the available data, this study follows the
example of Burke and Emerick (2016) who study the effect of climate change
on US agricultural output using a long differences approach. Specifically,
in this case conflict incidence is linked to long-term (15 year) changes in
temperature and precipitation; the functional form of the empirical model
can therefore be given by:

yi = α + βxi + εi (2)

where conflict incidence yi is linked to the change in local climatic conditions,
measured by the difference in average anomalies for temperature and precipi-
tation (xi). Note that the outcome variable is a binary indicator, rather than
a change in averages, as the latter makes little conceptual sense in the context
of conflict in contrast with the subject in Burke and Emerick (2016) which
was agricultural output. Similar to Harari and La Ferrara (2018) this study
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focuses on Africa and uses the grid-cell as unit-of-analysis. The difference with
their pioneering work is that this study covers a longer period (1989-2017)
and more importantly that it focused on long-term changes, using the years
between 1989 and 2002 as a benchmark and the change in average climate
between 2003 and 2017 to predict conflict incidence. The main contribution of
this paper is therefore providing an analysis of the effect of long-term change
on conflict risk, which helps overcome some of the previously discussed issue
in the literature. As in (Burke and Emerick, 2016), focusing on long-term
changes can help shed some light on whether households living in areas ad-
versely affected by climate change posses adaptive capabilities to deal with
changing conditions. One remaining shortcoming of the approach is that it
still is a reduced-form estimation, directly linking climate to conflict, telling
little about the specific mechanisms. This limitation is partially imposed to
data availability as there is little information on for instance local commodity
prices or trade for a long enough period that would allow us to test particular
mechanisms as in Maystadt and Ecker (2014); Crost et al. (2018) or the theory
of market collapse by Olsson (2016).

There are currently two other studies that focus on the, relatively, long-term,
rather than using climate variability as a proxy for climate change. Hsiang
et al. (2011) use the El Niño Southern Oscillation to show that conflict risk
doubles during El Niño years compared to the cooler La Niña years. One
shortcoming of their approach is that the quasi-experiment they use, the
shifting between El Niño and La Niña years, only works when you make the
heroic assumption that households don’t develop some sort of adaptation
strategy. van Weezel (2017) exploits a shift in precipitation in the Horn
of Africa that happened after 1998 resulting in lower precipitation levels
during the long rainy season and finds that regions where this shift was more
pronounced experience higher rates of communal conflict. Although using
such a specific shock is interesting, it is unclear how the results generalise.
In addition to these two papers there is also the work Zhang et al. (2007)
and Tol and Wagner (2009), who focus largely on the pre-industrial era for
Europe and China. For instance, Tol and Wagner (2009) find that in the past
millennium conflict was more intense during cooler periods in Europe, but
this effect has waned in the industrial era.

Focusing on differences in local climate between 1989-2002 and 2003-17, the
regression analysis shows that changes in temperature are robustly linked
to conflict incidence. Using Bayesian model averaging to account for model
uncertainty, and cherry-picking results, the estimates shows that across a large
number of possible model specifications the variable measuring the change in
temperature has an inclusion probability of 96.9%, indicating that the variable
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contributes consistently to explaining the variation in conflict. In contrast, the
precipitation variable has an inclusion probability if just 16.4%, reflecting the
generally weaker link found between precipitation and conflict in the literature.
The estimated effect of temperature on conflict is substantial as moving from
low to high values corresponds to a 31% increase in the chance of conflict.
The results are quantitatively similar when i) changing the benchmark period
to include more years, ii) focusing on conflict prevalence, and iii) considering
different types of conflict such as communal violence. Further scrutiny using
leave-one-out cross validation shows that including variables to account for
changes in local climate reduce the predictive error of the model by 7% when
considering the root mean squared error and correspond to a 7 point increase
in the area under the curve of the precision-recall curve.

2 Data

To estimate the explanatory and predictive power of climate in relation to
civil conflict in Africa, georeferenced data is used, aggregated to a resolution
of a 1 degree square grid covering the African continent.3 This entails that
there are 2,557 spatial units in total, 2,525 when we omit grid-cells with
missing values for particular variables, such as population. The focus of this
study is conflict incidence at the local level between 2003-17, exploiting the
cross-sectional variation in conflict, climate, and a number of other possible
conflict determinants such as population density, economic activity, and ethnic
polarization.

2.1 Temperature and precipitation

The possible effect of climate on conflict risk is estimated using local level data
on changes in average temperature and precipitation relative to a long-term
baseline. Temperature data is taken from the relatively new Berkeley Earth
surface temperature (BEST) dataset (Rohde et al., 2013), which combines
temperature data from various measurements stations and produces averages
using a spatial technique called Kriging to account for statistical outliers and
create a homogeneous climatology presented on a 1 degree lattice. Importantly,
the BEST data is not as vulnerable to conflict-related station loss compared
to other commonly used datasets introducing a downward bias in estimates
(Schultz and Mankin, 2017). The dataset contains information on the average

3One degree corresponds to about 110 Kilometers at the equator.
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monthly temperature, where temperature is expressed as a standardized
deviation, or anomaly, from the 1951-80 mean. Although the data covers the
period from present back till 1750, for most grid-cells on the African continent
the data goes back about a 100 years till 1900.

The monthly data is aggregated to calculate an annual average temperature,
and these annual averages are subsequently used to measure the shift in
average annual temperature between 1989-2002, the benchmark period, and
2003-17, i.e.

∆T = T2003−2017 − T1989−2002 (3)

The lower bound of the sampled years is imposed by the constraints of data
availability on conflict, whereas the upper bound is used as a demarcation
to create two roughly equal periods (14 and 15 years) with a long enough
baseline. 15 years is a relatively short time in climatic terms, but given
the unprecedented pace of anthropogenic global warming there has been a
substantial increase in average temperature across Africa with an average
shift in the anomaly of 0.42 (s.e.=0.15) relative to the 1951-80 baseline.

Precipitation data is taken from Climate Hazards Group InfraRed Precipita-
tion with Station data or CHIRPS dataset (Funk et al., 2015). The advantage
of this dataset is that it combines estimates on infrared cold cloud duration,
a precipitation proxy measured by satellites, with station data to provide
a comprehensive dataset on monthly precipitation for the whole African
continent. The data, which covers the years since 1981, is projected on a
0.05 degree grid (about 5 Kilometers at the equator), accounting for local
variation in precipitation. A disadvantage of the data is the relatively short
period, induced by the use of satellite measurements, which means that all
the available data, spanning the years from 1981 till 2018, is used to calculate
the baseline for each individual grid-cell. The data is aggregated to calculate
an annual total for a 1 degree grid, and identical to the temperature data the
change in the average anomaly between 1989-2002 and 2003-17 is calculated
as a measure for a shift in local climate.

Figure 1 shows the measures for change in local climate for temperature
(panel a) and precipitation (panel b). As the data illustrates, temperature
has increased between 1989-2002 and 2003-2017 across the continent, with
a minimum increase of 0.08 and a maximum of 0.76. A number of regions
have experienced more substantial temperature increases such as Egypt, the
Horn of Africa, and a large stretch of land covering the South of Algeria,
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most parts of Niger, and the north of Nigeria. In contrast, changes in average
temperature has been relatively modest in most parts of Africa south of the
Equator.

Changes in precipitation have been more varied, which is likely the result of
variation in local geography, which influences precipitation patterns, as well
as interdecadal variation in precipitation. Interestingly the data shows that
the Sahel region, a supposed hotbed of communal violence, has seen minor
increases in precipitation, whereas precipitation has considerably decreased
in the the Cape region in South Africa, and in the north of the continent
in Libya and Egypt. Except for Egypt, there does not seem to be a very
strong overlap or pattern in terms of regions that have seen an increase in
temperature and a decrease in precipitation.

Figure 1: Change in average temperature (a) and precipitation (b) anomaly
per grid-cell between 1989-2002 and 2003-17. Note that there is no precipita-
tion estimate for the island of Mauritius.

2.2 Civil conflict

Conflict data is taken from the Georeferenced Event Dataset (GED) provided
by the Uppsala Conflict Data Programme (Sundberg and Melander, 2013).
The GED contains detailed information on the location and timing of conflict
events, as well as the type of conflict, and includes a variable indicating
the geographic precision of the geolocated conflict events. The most recent
dataset available (version 18.1) covers the years 1989-2017 and has a global
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coverage. Currently this is the most comprehensive publicly available conflict
event dataset, superior to other similar datasets in terms of the geocoding
precision (Eck, 2012) and accuracy of included events (Weidmann, 2013, 2015).
The quality of the data notwithstanding, there are some important caveats
concerning the inclusion criteria and the sources used. First, a conflict events
is only included if the conflict the particular events is associated with has
reached a fixed fatality threshold of at least 25 battle-related deaths (Croicu
and Sundberg, 2015). This entails that conflicts at the lower end of the
violence spectrum, such as riots or protests are not included. As a result,
from the analysis we can only draw conclusions with regard to fatal conflicts,
as opposed to other types of conflict. Second, the majority of observations are
coded on the basis of media reports, which might introduce a reporting bias
into the data. Recent research has shown though that the effect of such a
bias for this particular dataset is likely to be small (Croicu and Kreutz, 2016).
Third, and final, there is the issue of Known Geographically Imprecision
(Croicu and Hegre, 2018), which concerns the information available on the
precision of the geocoding. For this study, conflict events that cannot be
accurately located within a 25 Kilometer radius are dropped from the data,
which means a loss of information. As a result, some grid-cells will appear
more peaceful than they actually are, problem is that we cannot accurately
match the conflict event with the grid-cell. Alternatively we could leave in
all the observations, but in that case conflict is linked to certain grid-cell
characteristics that are incorrect, arguably introducing a more severe bias in
the estimates.

Using the GED to match conflict events with grid-cells, the data is used
to construct three main variables: the outcome variable, conflict incidence
between 2003-174; the temporal lag, a binary indicator for conflict incidence
between 1989-2002; and the spatial lag of lagged conflict incidence. The
spatial lag counts the number of neighbouring cells that reported at least one
conflict event between 1989-2002. Given the temporal and spatial correlation
of conflict, it is imported to account for these dynamics in the model.

Figure 2 plots the conflict data, aggregating the number of conflict years
between 2003-17 per grid-cell. As the figure illustrates, in general conflict
tends to be localized, clustering in particular places. A large number of these
clusters seem to be located in and around the Sahel region. The data also
shows the high prevalence of conflict in the eastern part of the DRC, a region
that has been restless since the end of the Second Congo War in 2003. The

4In addition a model is estimated using conflict prevalence, which counts the number of
years relative to the whole period for which there was reported conflict.
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lower southern part of the continent seems relatively peaceful with only a
number of isolated incidents in Mozambique and Zimbabwe.

Figure 2: Number of conflict years per grid-cell between 2003-17

2.3 Other possible determinants

Besides climatic conditions, this study considers a number of additional
variables to account for factors commonly associated with civil conflict. As
larger populations increase the pool of potential insurgents, as well as putting
more pressure on available local resources, population density is included in
the model.5 Discussion on the determinants of conflict is often framed in terms
of greed and grievance (Collier and Hoeffler, 2002), to distinguish between
economic and identity based motives for rebellion or violence. Concerning
economic motives, to account for lower opportunity costs for conflict, I follow
Henderson et al. (2012) and use the change in night light emissions, measured
by satellites as a proxy for economic activity. In this case change is measured
subtracting the grid-cell average between 1992-93 from the average for 2001-
02. The last years before measurement of the outcome variable are used
to prevent endogeneity issues as a result of reverse causality.6 Concerning
identity-based motivations for conflict an ethnic polarization index is included
in the model (Garcia-Montalvo and Reynal-Querol, 2005) using data from

5Data provided by Gridded Population of the World (version 4), using the 2000 estimate
(Center for International Earth Science Information Network, 2016).

61992-93 are the first available years.
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GeoEPR (Wucherpfennig et al., 2011). Normally the ethnic polarization
index would be calculated on the basis of population figures, associated with
different ethnic groups, but that kind of data is not readily available at the
level of the unit-of-analysis. Therefore, the area in a grid-cell covered by a
particular group is used. One caveat using this approach is that there can be
some overlap between different groups, meaning that the index exceeds the
unity interval. To correct for this, the values are normalized to restrict it to
values between zero and one.

Figure 3 provides an overview of the distribution of the data of various
variables in relation to conflict incidence: the black vertical line indicates the
value of an individual grid-cell with conflict incidence between 2003-2017, the
red lines indicate the averages for the whole sample. The figure illustrates
that for many variables there does not seem to be a particular strong patterns
in relation to conflict.

Figure 3: Overview of distribution of conflict determinants in relation to
conflict incidence. Each black line indicates the value for a grid-cell with
conflict between 2003-2017. The red line indicates the mean over the whole
distribution.

2.4 Data patterns

An exploratory analysis of the data reveals two important patterns, which are
i) that changes in temperature are not necessarily correlated with changes in
precipitation and ii) that there is a weak correlation between temperature
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and precipitation increases on the one hand and conflict incidence on the
other. For instance, the average change in the temperature anomaly is 0.46
(s.e.= 0.13) for grid-cells with reported conflict between 2003-17 compared
to 0.40 (s.e.=0.16) for the other grid-cells. The data shows a correlation of
0.17 between temperature and conflict incidence, which is considerably higher
compared to the correlation between precipitation change and conflict at 0.03.
Somewhat surprising is the fact that this correlation between precipitation
and conflict is positive, meaning that increases in precipitation are associated
with higher conflict risk, on average, although the magnitude is rather small.

Figure 4 plots the relation between temperature, precipitation, and conflict,
where the dotted lines indicate the sample averages for precipitation and
temperature; dividing the plot into four quadrants. The tick marks on the
x and y axis indicate the measured values for the grid-cells with reported
conflict (also indicated by the rod dots in the plot) and a visual inspection
shows that there does not seem to be a very strong pattern. Although there is
some clustering for temperature around the 0.4 and to a lesser extent the 0.6
mark, the precipitation distribution for conflict grid-cells seems to be normally
distributed around the mean. Indeed, the data shows that out of 639 cells with
conflict incidence, 167 grid-cells have changes in temperature that are above
the sample average and precipitation changes below the sample average. This
represents just 26% of the total similar to the percentage of observations with
conflict that have below average changes in both temperature and precipitation.
Again, there does not seem to be a strong empirical pattern that links adverse
changes in conflict - higher temperature and less precipitation - with higher
conflict risk.

Closer examination of the link between temperature and conflict shows that
there is a 14% chance of conflict onset in a grid-cell following a temperature
increase of at least half a standard deviation, compared to 11% for grid-
cells with temperature changes below this threshold.7 As a preliminary test
I further examine the conditional probability of conflict on temperature,
accounting for the temporal persistence in conflict by limiting the sample
to grid-cells that did not have reported cases of conflict incidence between
1989-2002. This approach does reduce the sample size from 2,557 to 1,882

7This probability is conditional on the grid-cell not having any reported conflict between
1989-2002. The autocorrelation in the conflict data is pretty strong as the probability of
conflict in a grid-cell conditional on having conflict in the respective grid-cells between
1989-2002 is 0.49. Similarly, for those grid-cells that did not experience any violent conflict,
or where there was none reported at least, the probability of conflict is just 0.16 between
2003-2017. This entails that there is a 51% chance of conflict offset so to speak between
the two periods and a 16% chance of conflict onset.
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Figure 4: Plot of changes in precipitation versus changes in temperature,
comparing the 1989-2002 benchmark period to 2003-2017. The red diamonds
indicate grid-cells with conflict, grey crosses are grid-cells without conflict.
Tick marks on the x and y axes show the distribution for the grid-cells with
conflict.
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cells, but still retains 73.6% of the original data. The conditional probability
is calculated using different thresholds on the 0.1 to 0.7 interval, using 100
equally sized increments. In other words, I calculate the probability of conflict
conditional on a temperature change of at least size i, where i is located on
the 0.1-0.7 interval. For instance, as discussed, for i = 0.5 this probability
corresponds to 0.23. The results of this exercise are summarized in figure5
which shows that there is a there is a gradual increase in conflict probability
as temperature increases: this probability peaks at 0.23 corresponding to a
temperature increase of about 0.61, after which it decreases again to reach a
minimum of 0.10 at a temperature increase of 0.68.

Figure 5: Conditional probability of conflict at different thresholds of the
change in the average temperature anomaly for cells without conflict between
1989-2002. Grey-shaded area represents 50% uncertainty interval.

3 Empirical framework

The explanatory power of the variables in the model is estimated using
Bayesian Model Averaging (BMA) (Raftery et al., 1997).8 Within the Bayesian
framework, the identification problem of conflict determinants is framed in
terms of uncertainty with regard to the ‘true’ set of variables, or model
uncertainty. If we have K different variables there are 2K different models
for the researcher to consider if we assume that no preference is given to a

8Using the ‘BMA’ package in R (Raftery et al., 2018).
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particular specification beforehand. To account for model uncertainty the
posterior probability is calculated for all possible model permutations, given
the theoretically relevant variables included in the data, and from these
posterior probabilities a weighted average is constructed over the most likely
models.

We can collect the K possible explanatory variables in matrix X and the 2K

possible models make up model spaceM = {M1, ...,MK}. The functional
form of the model can be written as

yi = α + βkXki + εki (4)

where yi is conflict incidence in cell i; α is a constant term; βk the effect
of the explanatory variable on conflict incidence in model k; and εki the
Gaussian error term. Within this framework the quantities of interest are the
model-weighted posterior distributions of the coefficients

Pr(β|y,X) =
2K∑
k=1

Pr(β|Mk, y,X)Pr(Mk|y,X) (5)

This equation provides a way of summarizing model uncertainty after having
observed the data. The latter term in this equation is the model weight - for
model Mk - which is based on the model’s posterior probability, or

Pr(Mk|y,X) = Pr(y|Mk, X)Pr(Mk)
Pr(y|X) (6)

where Pr(Mk) is the model’s prior probability and Pr(y|Mk, X) the marginal
likelihood. Similar to Zhukov (2016) a uniform distribution is used for the
model’s prior as there if no justification to prefer on model specification over
the other beforehand given the sensitivity of research results in the empirical
study of conflict (Hegre and Sambanis, 2006). A major advantage of the BMA
approach is that by estimating all 2K possible models it provides a general
assessment of a variable’s performance across the whole model space. This
means that we can assess whether a particular variable contributes consistently
to the models’ explanatory power by summing the posterior probabilities of

14



all the models that include the variable of interest (Montgomery and Nyhan,
2010).

Concerning statistical inference, we can obtain an estimate of the direction
and magnitude of an effect by looking at the expected value of a coefficient
which is obtained by averaging across the model space. Mathematically the
expected values for coefficient β is given by

E(β|y,X) =
2K∑
i=1

Pr(Mk|y,X) E(βk|Mk, y,X) (7)

As discussed in Zhukov (2016) there are a number of benefits associated
with BMA, which include i) giving an overall performance assessment across
different model specifications; ii) providing information on whether a variable
consistently contributes to the models’ performance; and iii) being a trans-
parent model selection tool preventing cherry-picking based on statistical
significance. In addition, it provides better predictions due to averaging across
all the possible models (Raftery et al., 1997).

4 Model estimation

Logit estimation using conflict incidence as outcome variable shows that there
is a strong link between temperature change and conflict risk, but weaker
between precipitation change and conflict risk (illustrated in figure 6. For 512
possible models the inclusion probability of temperature is 96.9% and only
16.4% for precipitation (panel a). Overall, these results might not come as too
big a surprise given the earlier discussion on empirical patterns in the data as
well as results in the existing literature. Although shifts in climatic conditions
at grid-cell level seem to be important in terms of explaining conflict risk,
there do not seem to be strong spillover effects where the conflict risk in cell i
is influenced by changes in climate in the k neighbouring cells, as the inclusion
probabilities of the spatial lag of temperature and precipitation are 6.4% and
9.1% respectively. The three strongest predictors of conflict are population
density and the temporal and spatial lag of conflict, each having a 100%
inclusion probability. The almost classical greed-or-grievance motivations for
conflict do not feature strongly across the models given the expected values
of the coefficient for night light emission, a proxy for income, and the ethnic
polarization index, accounting for identity-based motivations.
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In terms of the estimated magnitude, for the best model - with a posterior
probability of 0.57 - at the upper bound a two standard deviation increase in
temperature is associated with a 31% increase in conflict risk; this is similar
to the reported effect by the meta-analysis of Hsiang et al. (2013) (28%).
The average estimated effect for precipitation is considerably lower, with
a 1% increase in conflict risk following a two standard deviation increase.
The results are somewhat sensitive to using a longer benchmark period -
1981 to 2002 instead of 1989 to 2002 - as the inclusion probability 37.2% for
precipitation and 64.2% for the spatial lag of precipitation using the longer
benchmark.9 The results for temperature remain largely unaltered. In all,
the contribution of including precipitation variables in the model seems to
be minimal as there is almost no difference in the root mean squared error
(-0.004) when excluding information on changes in precipitation.

At the extensive margin variables accounting for shifts in climatic conditions
seem to be important factors explaining conflict risk, at least when considering
temperature. To scrutinize these results, the models are re-estimated focusing
on the intensive margin using the share of years between 2003-17 that a
grid-cell reported conflict. Given that this particular outcome variable is
bounded between 0 and 1, the data is fitted using a quasibinomial model as
ordinary least squares (OLS) regression would likely give biased estimates
as the fitted values are not constraint to the unity interval. Switching the
outcome variable to account for the prevalence of conflict between 2003-2017
does not lead to qualitatively different results. The major change is that
the inclusion probability of the precipitation variable increases by about 64
percentage points to 80.7 percent. The estimated magnitude of the effect is
relatively small with a coefficient of 0.3.

At this point it is good to reflect on the interpretation of the effect of one of
the other explanatory variables: population density. Given the use of conflict
data that is largely based on media reports, a correct interpretation of the
estimated effect of population on conflict is difficult as it is hard to differentiate
between different processes. On the one hand the results could suggest that
cells with higher population densities are subject to more competition over
local resources, but on the other hand we have to be aware of the possibility
of possible reporting bias, where events in rural areas might go unnoticed
because they are not that news-worthy. In addition there is the fact that
cities, increase population density, are important strategic targets and might
therefore attract conflict. This is an issue that has received relatively little
attention in the literature.

9Correlations are pretty high: 0.94 for temperature and 0.92 for precipitation.
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Figure 6: Local conflict determinants for conflict incidence (a) and the
share of conflict years between 2003-2017 (b). Each blue point in the plot
represent a draw from the posterior distribution for the respective variable
coefficient; with vertical lines indicate the mean and 66% uncertainty interval.
The posterior inclusion probability of a variable is reflected by the opacity
of the points with full transparency indicating P (β 6= 0|y,X) = 0 and full
opacity indicating P (β 6= 0|y,X) = 1.
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The analysis so far has been agnostic about the type of conflict, whereas
it could be the case that climate has a stronger link to particular types of
violence as past research has shown for instance that there is a stronger
link between climate variability and communal conflict compared to other
types of conflict (Fjelde and von Uexkull, 2012). Therefore, the models are
re-estimated changing the outcome variable to account for particular conflict
types, distinguishing between state-based or civil conflict, non-state or com-
munal conflict, and violence against civilians.10 The results, shown in figure 7,
are again qualitatively the same compared to the main model estimation, but
there is an increase in uncertainty associated with the estimated parameters.
For instance, with civil conflict as outcome variable (panel a) the probability
inclusion for population density drops to 33.6%, while the inclusion probability
of ethnic polarization increases to 90.5% when using violence against civilians
as outcome variable (panel c)

Concerning the variable accounting for climatic conditions, the results are
also fairly consistent although there is some heterogeneity across the different
outcome variables in terms of the uncertainty associated with the direction
of the estimated effect, as well as the magnitude. The largest changes occur
in the model linking climate to non-state conflict, which includes communal
conflict between different ethnic groups as well as violence between supporters
from different political parties (panel b). In the best model for this particular
type of conflict - with a posterior probability of 0.64 - the temperature variable
is not included as the inclusion probability is 23.1%. In contrast, the spatial
lag of temperature is included and has a magnitude similar to the temperature
variable in the main model with an expected value of 1.3 (s.e.=0.7). This
seems to suggest that in the context of communal conflict changes in the
local climate are more important compared to changes in the grid-cell itself.
Similarly, for the model focusing on civil conflict, increases in precipitation in
the neighbouring cells are linked to increased conflict risk in the grid-cell.

10There are 423 grid-cells with civil conflict, 405 with violence against civilians, and 253
with communal conflict.
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Figure 7: Local conflict determinants for different types of conflict: state-
based (a), non-state (b), and violence against civilians (c). Each blue point
in the plot represent a draw from the posterior distribution for the respective
variable coefficient; with vertical lines indicate the mean and 66% uncertainty
interval. The posterior inclusion probability of a variable is reflected by the
opacity of the points with full transparency indicating P (β 6= 0|y,X) = 0
and full opacity indicating P (β 6= 0|y,X) = 1.
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4.1 Cross-validation

Figure 8: Precision-recall curve in-sample prediction of conflict between
2003-2017 per grid-cell for the main model of the Bayesian Model Averaging
result (solid red line) and a benchmark model omitting the climate variables
(dashed line); the dotted line indicates the baseline.

As a final robustness test the out-of-sample predictive power is examined
to gauge if the variables accounting for the shift in local climate capture
an underlying relationship with conflict or, in contrast, the model just fits
the sample’s idiosyncrasies. For this test a benchmark is considered that
includes only information on population density and conflict patterns, i.e. the
variables shown to have a 100% inclusion probability in the regression analysis,
and compare this with a model space that includes variables accounting for
the shift in climate.11 The predictive performance is then compared to see
whether including information on temperature and precipitation improves the
predictive accuracy compared to a more parsimonious model. The predictions
are generated by leaving out one grid cell at a time and using information from
the remaining cells is to estimate the parameters and predict the outcome of
the left out cell: this process is repeated for all 2,525 grid-cells in the sample.

To measure the predictive accuracy the precision-recall curve is used which
plots the relation between the true positive rate (recall) and the precision
of the model, or the number of true positives relative to the predicted num-
ber of positives as is shown in figure 8 (Davis and Goadrich, 2006; Saito

11The results do not change when the other variables such as ethnic polarisation and
economic activity are considered as well.
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and Rehmsmeier, 2015).12 The precision-recall curve is preferred over the
more commonly used Receiver-Operator Characteristics (ROC) curve as it
is relatively easy for the ROC to correctly predict the large number of true
negatives, at different thresholds, when the outcome is a rare event, such as
conflict incidence, which will inflate the true negative rate.13 Figure 8 plots
the precision-recall curve for the two model spaces along with a baseline set
at 0.25, which represent the proportion of grid-cells with reported conflict
events in the data: a junk classifier randomly assigning probabilities would
attain this curve. The results show that omitting information on temperature
and precipitation produces poorer predictive results as the curve for the
benchmark is closer to the baseline.

An examination of summary statistics confirm this conclusion: F -score, or
harmonic mean of precision and recall (van Rijsbergen, 1979), is 046 for
the benchmark compared to 0.48 including the variables accounting for
changes in climate. In all a small difference. The divergence becomes slightly
more pronounced considering the area under the curve (AUC) which is
0.51 for the benchmark compared to 0.58 when including information on
climatic conditions. In both cases this is well above the baseline of random
guessing (0.25) which shows, focusing on the benchmark, that reasonably
accurate predictions can already be made on the basis of just a few structural
factors such as past dynamics of conflict and population density. Adding
information on climate, particularly temperature, improves the performance
of the model by about 7 points. The results also highlight that a relatively
simple benchmark, including only past information on population density and
conflict patterns, scores relatively well (26 points above the baseline).

Panel a in figure 9, which shows the prediction error for the model space
including the temperature and precipitation variables, illustrates that getting
accurate point predictions remains a challenging task, which does not come
as a very big surprise (Cederman and Weidmann, 2017). The model tends to
overpredict conflict based on historical patterns, as seen in Angola and South
Africa, while it has difficulties in correctly classifying new events, such as in
the Central African Republic, Libya, Nigeria, and Zimbabwe. We can contrast
these predictions with those of the benchmark to identify potential hot-spots of
climate-conflict as is done in panel b. Here the blue shade indicates grid-cells

12Recall is also known as sensitivity and is simply the number of correct predictions
relative to the total number of conflict cases in the sample. Precision is similar but it takes
the number of correct predictions relative to the number of correct predictions and false
positives, thereby penalising the latter.

13Rather than using precision, the ROC relies on specificity or the true negative rate,
which is basically the recall for non-conflict cases.
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where the benchmark predicts higher conflict probabilities; these are mainly
located in southern Africa and driven by past conflicts such as the violent
struggle against Apartheid in South Africa, and the civil wars in Angola
and Mozambique. In contrast, the red shades indicate grid-cells with higher
predicted probabilities when accounting for local changes in climate and these
are concentrated in three areas: Egypt, the Horn of Africa, and the larger area
around Lake Chad. The pattern in panel b reflects the temperature increase
as shown in panel a of figure 1. Focusing on the difference in predicted values
might be more fruitful to identify risk areas as is illustrated by the case of
northern Nigeria.

Figure 9: Prediction error (a) and difference in predicted value relative to
benchmark model (b) per grid-cell for conflict incidence between 2003-2017 .
For panel a red values indicate false positives while blue values indicate false
negatives. For panel b red values indicate higher predicted values relative to
the benchmark and blue vice versa.
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5 Conclusions

Given the lively debate on the correct interpretation of the results in the
climate-conflict literature, the jury seems to be still out concerning the
issue whether local climate is a strong predictor for conflict risk or if its
contribution is relatively marginal instead. An important limitation of the
existing literature, which this study has tried to address, is the reliance on
climate variability to proxy for climate change. As some have argued, it
is unlikely that the possible mechanisms linking climate to conflict can be
examined using high-frequency data, i.e. by relying on just annual variation in
temperature and precipitation. Therefore, this study focused on changes in the
long term, examining how the change in the average anomaly in temperature
or precipitation between 1989-2002 and 2003-17 affected conflict risk between
2003-17 across the African continent. The empirical analysis does lend some
support to the hypothesis that climate is linked to violent armed conflict. The
regression results showed that changes in temperature contributed consistently
to explaining variation in the conflict across a large number of different model
specifications. This result was robust to changing the outcome variable, using
longer benchmark periods, and accounting for spatial patterns in climate
change. Accounting for climate in the empirical model also improved the
predictive performance of the model. One remaining caveat of this study is
that it ultimately is another reduced-form estimation, in contrast with some
interesting recent contributions to the literature such as Maystadt and Ecker
(2014) and Crost et al. (2018). Although using the long-differences approach
gives some insight into local adaptive capabilities, the used research design
provides no information on the particular mechanisms linking climate and
conflict. The limitation of this study is partially due to data constraints as
there is relatively little information on for instance local commodity prices,
both in terms of spatial and temporal coverage. While there is no information
at all on local trade allowing to empirically test promising theories linking
climate change to conflict through market collapse as in Olsson (2016). These
remain challenges to be dealt with by further future research.

23



References
Berhe, M., D. Hoag, G. Tesfay, T. Tadesse, S. Oniki, M. Kagatsume, and
C. M. H. Keske (2017). The effects of adaptation to climate change on
income of households in rural Ethiopia. Pastoralism: Research, Policy and
Practice 7 (12).

Bohorquez, J., S. Gourley, A. Dixon, M. Spagat, and N. Johnson (2009).
Common ecology quantifies human insurgency. Nature 462 (7275), 911–4.

Buhaug, H. (2015). Climate-conflict research: Some reflections on the way
forward. Wiley Interdisciplinary Reviews: Climate Change 6 (3), 269–275.

Buhaug, H., J. Nordkvelle, T. Bernauer, T. Böhmelt, M. Brzoska, J. W.
Busby, A. Ciccone, H. Fjelde, E. Gartzke, N. P. Gleditsch, J. A. Goldstone,
H. Hegre, H. Holtermann, V. Koubi, J. S. A. Link, P. M. Link, P. Lujala,
J. O Loughlin, C. Raleigh, J. Scheffran, J. Schilling, T. G. Smith, O. M.
Theisen, R. S. J. Tol, H. Urdal, and N. von Uexkull (2014). One effect to
rule them all? A comment on climate and conflict. Climatic Change 127 (3),
391–397.

Burke, M. and K. Emerick (2016). Adaptation to climate change: Evidence
from US agriculture. American Economic Journal: Economic Policy 8 (3),
106–140.

Cederman, L.-E. and N. B. Weidmann (2017). Predicting armed conflict:
Time to adjust our expectations? Science 355 (6324), 474–476.

Center for International Earth Science Information Network (2016). Gridded
population of the world, version 4 (gpwv4): Population count. Accessed
06-07-2017.

Collier, P. and A. Hoeffler (2002). Greed and Grievance in Civil War. Oxford
Economic Papers 56 (4), 563–595.

Croicu, M. and H. Hegre (2018). A Fast Spatial Multiple Imputation Procedure
for Imprecise Armed Conflict Events.

Croicu, M. and J. Kreutz (2016). Communication Technology and Reports
on Political Violence: Cross-National Evidence Using African Events Data.
Political Research Quarterly.

Croicu, M. and R. Sundberg (2015). UCDP GED Codebook version 2.0.
Crost, B., C. Duquennois, J. H. Felter, and D. I. Rees (2018). Climate change,
agricultural production and civil conflict: Evidence from the Philippines.
Journal of Environmental Economics and Management 88, 379–395.

Davis, J. and M. Goadrich (2006). The Relationship Between Precision-Recall
and ROC Curves. Proceedings of the 23rd International Conference on
Machine learning – ICML’06 , 233–240.

Eck, K. (2012). In data we trust? A comparison of UCDP GED and ACLED

24



conflict events datasets. Cooperation and Conflict 47 (1), 124–141.
Fjelde, H. and N. von Uexkull (2012). Climate triggers: Rainfall anoma-
lies, vulnerability and communal conflict in Sub-Saharan Africa. Political
Geography 31 (7), 444–453.

Funk, C., P. Peterson, M. Landsfeld, D. Pedreros, J. Verdin, S. Shukla,
G. Husak, J. Rowland, L. Harrison, A. Hoell, and J. Michaelsen (2015). The
climate hazards infrared precipitation with stations—a new environmental
record for monitoring extremes. Scientific Data 2, 150066.

Garcia-Montalvo, J. and M. Reynal-Querol (2005). Ethnic polarization,
potential conflict, and civil wars. The American Economic Review 95 (3),
796–816.

Harari, M. and E. La Ferrara (2018). Conflict, climate, and cells: A disaggre-
gated analysis. The Review of Economics and Statistics.

Hegre, H. and N. Sambanis (2006). Sensitivity Analysis of Empirical Results
on Civil War Onset. Journal of Conflict Resolution 50 (4), 508–535.

Henderson, J., A. Storeygard, and D. Weil (2012). Measuring Economic
Growth from Outer Space. American Economic Review 102 (2), 994–1028.

Hsiang, S. and M. Burke (2014). Climate, conflict, and social stability: what
does the evidence say? Climatic Change 123 (1), 39–55.

Hsiang, S., M. Burke, and E. Miguel (2013). Quantifying the influence of
climate on human conflict. Science (August).

Hsiang, S., M. Burke, and E. Miguel (2014). Reconciling climate-conflict
meta-analyses: reply to Buhaug et al. Climatic Change.

Hsiang, S., K. Meng, and M. Cane (2011). Civil conflicts are associated with
the global climate. Nature 476 (7361), 438–41.

Klomp, J. and E. Bulte (2013). Climate change, weather shocks, and violent
conflict: A critical look at the evidence. Agricultural Economics 44 (s1),
63–78.

Linke, A. M., J. O’Loughlin, J. T. McCabe, J. Tir, and F. D. Witmer (2015).
Rainfall variability and violence in rural Kenya: Investigating the effects
of drought and the role of local institutions with survey data. Global
Environmental Change 34, 35–47.

Maystadt, J. and O. Ecker (2014). Extreme weather and civil war: Does
drought fuel conflict in Somalia through livestock price shocks? American
Journal of Agricultural Economics 96 (4), 1157–1182.

Montgomery, J. and B. Nyhan (2010). Bayesian model averaging: Theoretical
developments and practical applications. Political Analysis 18 (2), 245–270.

Olsson, O. (2016). Climate Change and Market Collapse: A Model Applied
to Darfur. Games 7 (1), 9.

25



Raftery, A., J. Hoeting, C. Volinsky, I. Painter, and K. Y. Yeung (2018).
BMA: Bayesian Model Averaging,. R package version 3.18.8.

Raftery, A., D. Madigan, and J. Hoeting (1997). Bayesian Model Averag-
ing for Linear Regression Models. Journal of the American Statistical
Association 92 (437), 179–191.

Rohde, R., R. Muller, R. Jacobsen, S. Perlmutter, A. Rosenfeld, J. Wurtele,
J. Curry, C. Wickhams, and S. Mosher (2013). Berkeley earth temperature
averaging process. Geoinformatics and Geostatistics: An Overview 1 (2).

Saito, T. and M. Rehmsmeier (2015). The precision-recall plot is more infor-
mative than the ROC plot when evaluating binary classifiers on imbalanced
datasets. PLoS ONE 10 (3), 1–21.

Schultz, K. and J. Mankin (2017). Is Temperature Exogenous? Conflict
Related Uncertainty in the Instrumental Climate Record in Sub-Saharan
Africa.

Selby, J. (2014). Positivist Climate Conflict Research: A Critique. Geopoli-
tics 19 (4), 829–856.

Sundberg, R. and E. Melander (2013). Introducing the UCDP Georeferenced
Event Dataset. Journal of Peace Research 50 (4), 523–532.

Theisen, O., N. Gleditsch, and H. Buhaug (2013). Is climate change a driver
of armed conflict? Climatic Change 117 (3), 613–625.

Tol, R. and S. Wagner (2009). Climate change and violent conflict in Europe
over the last millennium. Climatic Change 99 (1-2), 65–79.

van Rijsbergen, C. (1979). Information retrieval. Butterworth.
van Weezel, S. (2017). Communal violence in the Horn of Africa following
the 1998 El Niño. UCD Centre for Economic Research working paper
WP16/17.

Weidmann, N. (2013). The Higher the Better? The Limits of Analytical
Resolution in Conflict Event Datasets. Cooperation and Conflict 48 (4),
567–576.

Weidmann, N. (2015). On the Accuracy of Media-based Conflict Event Data.
Journal of Conflict Resolution 59 (6), 1129–1149.

Wischnath, G. and H. Buhaug (2014). On climate variability and civil war in
Asia. Climatic Change (122), 709–721.

Witsenburg, K. and W. Adano (2009). Of rain and raids: Violent livestock
raiding in northern Kenya. Civil Wars 11 (4), 514–539.

Wucherpfennig, J., N. Weidmann, L. Girardin, L. Cederman, and A. Wimmer
(2011). "politically relevant ethnic groups across space and time: Introducing
the geoepr dataset.". Conflict Management and Peace Science 28 (5), 423–
437.

26



Zhang, D., P. Brecke, H. Lee, Y. He, and J. Zhang (2007). Global climate
change, war, and population decline in recent human history. Proceedings of
the National Academy of Sciences of the United States of America 104 (49),
19214–9.

Zhukov, Y. (2016). Trading hard hats for combat helmets: The economics
of rebellion in eastern Ukraine. Journal of Comparative Economics 44 (1),
1–15.

27



UCD CENTRE FOR ECONOMIC RESEARCH – RECENT WORKING PAPERS  
 
WP17/22 David Madden: 'Mind the Gap: Revisiting the Concentration Index for 
Overweight' October 2017 
WP17/23 Judith M Delaney and Paul Devereux: 'More Education, Less Volatility? 
The Effect of Education on Earnings Volatility over the Life Cycle' October 2017 
WP17/24 Clemens C Struck: 'On the Interaction of Growth, Trade and 
International Macroeconomics' November 2017 
WP17/25 Stijn van Weezel: 'The Effect of Civil War Violence on Aid Allocations in 
Uganda' November 2017 
WP17/26 Lisa Ryan, Karen Turner and Nina Campbell: 'Energy Efficiency and 
Economy-wide Rebound: Realising a Net Gain to Society?' November 2017 
WP17/27 Oana Peia: 'Banking Crises and Investments in Innovation' December 
2017 
WP17/28 Stijn van Weezel: 'Mostly Harmless? A Subnational Analysis of the Aid-
Conflict Nexus' December 2017 
WP17/29 Clemens C Struck: 'Labor Market Frictions, Investment and Capital 
Flows' December 2017 
WP18/01 Catalina Martínez and Sarah Parlane: 'On the Firms’ Decision to Hire 
Academic Scientists' January 2018 
WP18/02 David Madden: 'Changes in BMI in a Cohort of Irish Children: Some 
Decompositions and Counterfactuals' January 2018 
WP18/03 Guido Alfani and Cormac Ó Gráda: 'Famine and Disease in Economic 
History: A Summary Introduction' February 2018 
WP18/04 Cormac Ó Gráda: 'Notes on Guilds on the Eve of the French 
Revoloution' February 2018 
WP18/05 Martina Lawless and Zuzanna Studnicka: 'Old Firms and New Products: 
Does Experience Increase Survival?' February 2018 
WP18/06 John Cullinan, Kevin Denny and Darragh Flannery: 'A Distributional 
Analysis of Upper Secondary School Performance' April 2018 
WP18/07 Ronald B Davies and Rodolphe Desbordes: 'Export Processing Zones 
and the Composition of Greenfield FDI' April 2018 
WP18/08 Costanza Biavaschi, Michał Burzynski, Benjamin Elsner, Joël Machado: 
'Taking the Skill Bias out of Global Migration' May 2018 
WP18/09 Florian Buhlmann, Benjamin Elsner and Andreas Peichl: 'Tax Refunds 
and Income Manipulation - Evidence from the EITC' June 2018 
WP18/10 Morgan Kelly and Cormac Ó Gráda: 'Gravity and Migration before 
Railways: Evidence from Parisian Prostitutes and Revolutionaries' June 2018 
WP18/11 Kevin Denny: 'Basic Stata Graphics for Economics Students' July 2018 
WP18/12 Ronald B Davies and Joseph Francois: 'Irexit: Making the Worst of a 
Bad Situation' July 2018 
WP18/13 Ronald B Davies: 'From China with Love: The Role of FDI from Third 
Countries on EU Competition and R&D Activities' July 2018 
WP18/14 Arnaud Chevalier, Benjamin Elsner, Andreas Lichter and Nico Pestel: 
'Immigrant Voters, Taxation and the Size of the Welfare State' August 2018 
WP18/15 Michael Spagat and Stijn van Weezel: 'On the Decline of War' August 
2018 
 

UCD Centre for Economic Research      Email economics@ucd.ie 
 


	WP18_16p.pdf
	Introduction
	Data
	Temperature and precipitation
	Civil conflict
	Other possible determinants
	Data patterns

	Empirical framework
	Model estimation
	Cross-validation

	Conclusions


