
The Dynamics of Efficient Asset Trading
with Heterogeneous Beliefs�

Pablo F. BEKER # Emilio ESPINO ##

Department of Economics
University of Warwick

Department of Economics
Universidad Torcuato Di Tella

This Draft: February 19, 2009

Abstract
This paper analyzes the dynamic properties of portfolios that sustain dynam-

ically complete markets equilibria when agents have heterogeneous priors. We
argue that the conventional wisdom that belief heterogeneity generates contin-
uous trade and signi�cant �uctuations in individual portfolios may be correct
but it also needs some quali�cations. We consider an in�nite horizon stochastic
endowment economy where the actual process of the states of nature consists in
i.i.d. draws. The economy is populated by many Bayesian agents with hetero-
geneous priors over the stochastic process of the states of nature. Our approach
hinges on studying portfolios that support Pareto optimal allocations. Since
these allocations are typically history dependent, we propose a methodology to
provide a complete recursive characterization when agents know that the process
of states of nature is i.i.d. but disagree about the probability of the states. We
show that even though heterogeneous priors within that class can indeed gen-
erate genuine changes in the portfolios of any dynamically complete markets
equilibrium, these changes vanish with probability one if the support of every
agent�s prior belief contains the true distribution. Finally, we provide examples
in which asset trading does not vanish because either (i) no agent learns the true
conditional probability of the states or (ii) some agent does not know the true
process generating the data is i.i.d.

Keywords: heterogeneous beliefs, asset trading, dynamically complete mar-
kets.

�We thank Rody Manuelli and Juan Dubra for detailed comments. All the remaining errors are
ours.
# Corresponding Author: University of Warwick, Department of Economics, Warwick, Coventry
CV4 7AL, UK. E-mail: Pablo.Beker@warwick.ac.uk.
## Universidad Torcuato Di Tella, Department of Economics, Saenz Valiente 1010 (C1428BIJ),
Buenos Aires, Argentina. E-mail: eespino@utdt.edu.



1 Introduction

A long-standing tenet in economics is that belief heterogeneity plays a prime role

in explaining the behavior of prices and quantities in �nancial markets. In spite of the

emphasis that economists give to e¢ ciency, surprisingly, very little is known about

the implications of belief heterogeneity on dynamically complete markets. However,

there are some notable exceptions. Sandroni [20] and Blume and Easley [4] provide

an analysis of the asymptotic properties of consumption. Cogley and Sargent [7]

focus on asset prices. Our paper, instead, focuses on the e¤ect of belief heterogeneity

on asset trading.

Before proceeding it is useful to recall what is known about asset trading in a

dynamically complete markets equilibrium when agents have identical beliefs. Judd

et al. [14] considered a stationary Markovian economy where agents have homoge-

neous and degenerate beliefs but di¤erent attitudes towards risk and show that each

investor�s equilibrium holdings of assets of any speci�c maturity is constant along

time and across states after an initial trading stage. It follows that di¤erences in risk

aversion by itself cannot explain why investors change their portfolios over time.

We consider an exchange economy where both the endowments as well as the

assets returns are i.i.d. draws from a common probability distribution. Investors

who are in�nitely lived do not know the one-period-ahead conditional probability of

the states of nature and update their priors in a Bayesian fashion as data unfolds.1 We

begin with two examples of dynamically complete markets equilibrium that illustrate

that the conventional wisdom that belief heterogeneity causes signi�cant trade may

be correct but it also needs some quali�cations. In example 1, agents know the true

process is i.i.d. and they only disagree about the probability of the states of nature.

In the long run, conditional probabilities, wealth and portfolios converge. In example

2, agents do not know the true process is i.i.d., conditional probabilities converge

and yet wealth bounces back and forth between them in�nitely often so that each of

them holds almost all the wealth in�nitely many times. This second example shows

that even though agents may learn, prior belief heterogeneity may indeed generate

signi�cant �uctuations in the wealth distribution and the corresponding portfolios

that do not exhaust in the long run. We argue that the di¤erent dynamics in the two

examples re�ect di¤erences in the limit behavior of the likelihood ratio of the agents�

priors.

This paper links the evolution of the wealth distribution and the corresponding

1To avoid any confusion, we use the following terminology. By a prior, we refer to the subjective
unconditional probability distribution over future states of nature. In the particular case where
the prior can be characterized by a vector of parameters and a probability distribution over these
parameters, we call the latter the agent�s prior belief.
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portfolios in any dynamically complete markets equilibrium to the evolution of the

likelihood ratio. This is useful because the likelihood ratio is an exogenous variable

and several properties of its limit behavior are well understood from the statistics

literature (see Phillips and Ploberger [19] and references therein.) Our examples 1

and 2 raise the question of what type of belief heterogeneity matters for asset trading.

In order to answer this question, we �rst carefully assess a class of priors satisfying

two assumptions that are ubiquitous in the literature. Namely, every agent knows the

likelihood function generating the data and there is at least one agent who learns in

the sense that her one-period-ahead conditional probability converges to the truth. In

our setup, this is ensured by assuming that every agent knows the data is generated

by i.i.d. draws from a common (unknown) distribution and the support of their prior

beliefs contains the true probability distribution of the states of nature as in example

1. We �rst show that even though heterogeneous priors in that class can indeed

generate changes in the portfolios of a dynamically complete markets equilibrium,

these changes vanish with probability one. Very importantly, we fully characterize

the dynamics of portfolios and its corresponding limit. Afterwards, we show by means

of two additional examples that if one wants to argue that heterogeneity of priors can

have enduring implications on the volume of trade in a stationary environment then

one needs to relax one of the aforementioned assumptions; that is, either (i) no agent

learns the true conditional probability of states or (ii) some agent does not know the

likelihood function generating the data.

Since solving directly for the portfolios of a dynamically complete markets equi-

librium is not always possible, we follow an indirect approach developed by Espino

and Hintermaier [9]. This approach hinges on studying portfolios that support Pareto

optimal allocations. The di¢ culty is that belief heterogeneity makes optimal alloca-

tions history dependent because optimality requires the ratio of marginal valuations

of consumption of any two agents -which includes priors that could be subjectively

held- to be constant along time. Consequently, at any date the ratio of marginal

utilities at any future event must be proportional to the history dependent ratio of

the agents�priors about that event, i.e. the likelihood ratio of the agents�priors. This

ratio represents the novel margin of heterogeneity among agents considered in this

paper, which we call the B-margin of heterogeneity. The evolution of the B-margin
determines the dynamics of the optimal distribution rule of consumption and, conse-

quently, the evolution of the wealth distribution in any dynamically complete markets

equilibrium. The law of motion of this margin is typically history dependent and, very

importantly, the current state and the current B-margin are not enough to summa-
rize the history. Under the assumption that every agent knows the data is generated

by i.i.d. draws from a common (unknown) distribution but have di¤erent beliefs over
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the unknown parameters, this history dependence can be succinctly captured by the

agents� beliefs (over the parameters). This assumption allow us to use a strategy

similar to Lucas and Stokey�s [16] to obtain a recursive characterization of the set

of Pareto optimal allocations in our stochastic framework.2 The key insight is that

the planner does not need to know the partial history itself in order to continue the

date zero optimal plan from date t onwards. In fact, it su¢ ces that he knows the

state of nature, the agents�prior beliefs over probabilities and, very importantly, the

current B-margin, i.e. the likelihood ratios of the agents�priors that summarize how
the weight attached to each agent depends on history. We argue that the sequential

formulation of the planner�s problem is equivalent to a recursive dynamic program

where the planner, who takes a vector of welfare weights as given, allocates current

feasible consumption and assigns next period attainable utility levels among agents.

The planner�s optimal choice of continuation utilities induces a law of motion for wel-

fare weights that is isomorphic to the evolution of the likelihood ratio of the agents�

priors. Afterwards, we use the planner�s policy functions to characterize recursively

investors��nancial wealth in any dynamically complete market equilibrium. This

allows us to establish that the �nancial wealth distribution (and the corresponding

supporting portfolios) converges if and only if both the B-margin vanishes and the
agents�beliefs over the parameters become homogeneous.

When the agents know that the true process consists in i.i.d. draws from a

common distribution and the true distribution is in the support of their priors, the

well-known consistency property of Bayesian learning implies that the agents�prior

belief become homogeneous with probability one. To get a thorough understanding

of the limiting behavior of portfolios, therefore, what remains to be explained is the

asymptotic behavior of the B-margin. When the support of the agents�prior beliefs
over the parameters is a countable set containing the true probability distribution,

the true probability distribution over paths is absolutely continuous with respect to

the agents�priors and, therefore, the convergence of likelihood ratios follows from

Sandroni [20]. When the agents�prior beliefs have a positive and continuous density

with support containing the true parameter, the hypothesis in Sandroni [2] are not

satis�ed and so we apply a result in Phillips and Ploberger [19] to show that the

likelihood ratio of the agents�priors still converges with probability one. The impor-

tant message here is that the heterogeneity of priors by itself can generate changes

in portfolios but these changes necessarily vanish because the B-margin vanishes.
Furthermore, we show that portfolios converge to those of a rational expectations

equilibrium of an economy where the investors�relative wealth is determined by the

2Lucas and Stokey [16] characterize recursively optimal programs in a deterministic setting where
recursive preferences induce the dependence upon histories.
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densities of their prior beliefs evaluated at the true parameter and the date zero

welfare weight.3

To conclude we analyze the exact role played by the aforementioned assumptions

on priors and we argue that it is critical that they are coupled together. We do so

by providing two additional examples, each of which relax one of these assumptions,

in which the B-margin does not vanish and consequently portfolios change in�nitely
often. In example 3, agents know the data is generated by i.i.d. draws from a

common distribution but they do not have the true parameter in the support of their

prior beliefs and so no agent learns. We assume that their prior beliefs are such

that the associated one-period-ahead conditional probabilities have identical entropy,

a condition that ensures that the likelihood ratio of their priors �uctuates in�nitely

often between zero and in�nity and, consequently, portfolios �uctuate in�nitely often.

Finally, example 4 underscores the importance of assuming that every agent knows

the process of states consists in i.i.d. draws for the portfolios to converge. To stretch

the argument to the limit, we consider an example in which only one agent does

not know the data is generated by i.i.d. draws. This agent makes exact one-period-

ahead forecasts in�nitely often but it also makes mistakes in�nitely often though

rarely. We show that the likelihood ratio of these agents� priors fails to converge

with probability one implying that the set of paths where the equilibrium portfolio

converges has probability zero.

This paper is organized as follows. In Section 2 we review the related literature.

In section 3 we describe the model. In section 4 we present a simple example that

illustrate the main ideas in this paper. The recursive characterization of Pareto

optimal allocations is in section 5. Section 6 characterizes the asymptotic behavior of

the agents��nancial wealth and their corresponding supporting portfolios. Finally,

sections 7 and 8 discuss when the agents�portfolio converge and when it does not.

Conclusions are in section 9. Proofs are gathered in the Appendix.

2 Related Literature

This paper relates to two branches of the literature on the e¤ect of belief het-

erogeneity in asset markets: models aiming to explain the dynamic consequences of

belief heterogeneity on investors�behavior and models analyzing the market selection

hypothesis. Harrison and Kreps [13] and Harris and Raviv [12] who study the impli-

cations of belief heterogeneity on asset prices and trading volume, respectively, are

3 In particular, even though agents learn the true probability of states of nature, these limiting
portfolios need not coincide with those of an otherwise identical economy that starts with homoge-
neous priors and zero �nancial wealth.
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the leading articles of the �rst branch. These �rst-generation papers consider partial

equilibrium models where a �nite number of risk-neutral investors trade one unit of

a risky asset subject to short-sale constraints. Investors do not know the value of

some payo¤ relevant parameter but they observe a public signal and have heteroge-

neous but degenerate prior beliefs about the relationship between the signal and the

unknown parameter. Since they are risk neutral and have heterogeneous belief, they

have di¤erent marginal valuations and so trade occurs if and only if agents "switch

sides" regarding their valuation of the asset. In addition, Harrison and Kreps�[13]

show that an speculative premium might arise, in the sense that the asset price might

be strictly greater than every trader�s fundamental valuation. Since each investor is

absolutely convinced her model is the correct one, their disagreement does not vanish

as the data unfold.

The possibility that agents learn is addressed by Morris [17] who extends Harrison

and Kreps�[13] model to consider agents that have heterogeneous and non-degenerate

prior beliefs over the probability distribution of dividends. He characterizes the set

of prior beliefs for which the speculative premium is positive. He assumes the true

process is i.i.d., investors know this fact but they have heterogeneous prior beliefs

about the distribution of these draws with support containing the true distribution.

Since they are Bayesian, they eventually learn the true distribution. Consequently,

risk neutrality implies the price converges and the speculative premium vanishes. We

underscore that asset trading does not vanish because there is always a period in

the future when the asset changes hands once again. Morris�[17] asymptotic results,

however, are a direct consequence of the assumption that agents are risk-neutral.

Indeed, under risk-neutrality the intertemporal marginal rates of substitution are in-

dependent of the equilibrium allocation and, therefore, they are linear in the agents�

one-period-ahead conditional probabilities. This has two direct implications. On the

one hand, when the individuals� one-period-ahead conditional probabilities switch

sides perpetually, so do their intertemporal marginal rates of substitution and, there-

fore, new incentives for a change in the ownership of the asset arise in�nitely often.

On other hand, asset prices themselves are parameterized by the one-period-ahead

conditional probabilities and, thus, they converge together. In this paper, we ar-

gue that these forces do not operate in a setting where agents are risk-averse and

allocations are Pareto optimal. More precisely, Pareto optimality implies that the

agent�s intertemporal marginal rates of substitution must be equalized and, unlike

in Morris [17] where they switch persistently, every trader�s valuation of any future

income stream always coincide. Consequently, there is never a speculative premium

in spite of belief heterogeneity. Our analysis makes evident that the speculative pre-

mium is not necessarily driven by belief heterogeneity but, more importantly, by the
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di¤erences in the agents�intertemporal marginal valuations due to the existence of

short-sale constraints.4 In our setting, portfolios might still change persistently but

these changes depend purely on the asymptotic behavior of the e¢ cient allocation.

Furthermore, as we emphasized above, the convergence of the one-period-ahead con-

ditional probabilities by itself does not guarantee the convergence of allocations, asset

prices and portfolios.

Belief heterogeneity may have fundamental implications on the behavior of as-

set markets even in the absence of the aforementioned capital market imperfections.

In the context of the Lucas [15] tree model, Cogley and Sargent [6] and [7] focus

on the e¤ects of learning and prior belief heterogeneity, respectively, on asset prices

under the assumption that agents know the true likelihood function. In [6], they

consider an economy with a risk-neutral representative agent with a pessimistic but

non-degenerate prior belief over the growth rate of dividends. Even though learning

eventually erases pessimism, pessimism contributes a volatile multiplicative compo-

nent to the stochastic discount factor that an econometrician assuming correct priors

would attribute to implausible degrees of risk aversion.5 Cogley and Sargent [7] ana-

lyze the robustness of that �nding by considering an economy with complete markets

with some agents who know the true probability distribution (i.e., they add belief

heterogeneity). For a plausible calibration of their model, they show that unless the

agents with correct beliefs own a large fraction of the initial wealth, it takes a long

time for the e¤ect of pessimism to be erased. Their work is close in spirit to ours

in that they use a general equilibrium model without any additional market imper-

fection. Since they are principally interested in studying the market prices of risk,

however, they are silent about the implications of belief heterogeneity for trading vol-

ume. Consequently, the asset trading implications stemming purely from di¤erences

in priors are still an open question.

The second branch of the literature related to our paper analyses the market selec-

tion hypothesis and is exempli�ed by the work of Sandroni [20] and Blume and Easley

[4]. Sandroni [20] shows that, controlling for discount factors, if the true distribution

is absolute continuous with respect to some trader�s prior then she survives and any

other trader survives if and only if the true distribution is absolute continuous with

respect to her prior as well.6 He also considers some cases in which the true distri-

bution is not absolute continuous with respect to any agent�s prior. He shows that

4 Indeed, in any economy where trading constraints are occasionally binding for di¤erent agents,
the agent who prices the asset changes and thus the �speculative premium�can arise naturally.

5Their model can generate substantial and declining values for the market prices of risk and the
equity premium and, additionally, can predict high and declining Sharpe ratios and forecastable
excess stock returns.

6An agent is said to survive if her consumption does not converge to zero.
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the entropy of priors determines survival and, therefore, an agent who persistently

makes wrong predictions vanishes in the presence of a learner. Absolute continuity is

a strong restriction on priors that is not satis�ed, for instance, if the true process is

i.i.d., the agent knows this fact but her prior beliefs over the probability of the states

of nature have continuous and positive density.7 This is precisely the case that Blume

and Easley [4] consider and they prove that among Bayesian learners who have the

truth in the support of their priors, only those with the lowest dimensional support

can have positive consumption in the long run. Technically speaking, Blume and

Easley�s notion of convergence is in probability and they establish their asymptotic

result for almost all parameters in the support of the agent�s prior belief. Although

we do not focus on survival, one side contribution of this paper is to make Blume and

Easley�s results more robust because we show that every Bayesian agent with a prior

belief with the lowest dimensional support actually survives with probability one (not

just in probability), not only for almost every parameter in the support of her prior

belief but actually for all parameters in the support of her prior belief.8

Our treatment of priors is very general in that we consider a family that includes

priors for which the one-period-ahead conditional probability converges to the truth

regardless of whether the agents�priors merge with the truth or whether traders know

the true process consists in i.i.d. draws. In addition, it includes cases in which some

agents have the truth in the support of their priors while some other agent do not

learn the true one-period-ahead conditional probability and yet the latter survives as

in our example 4. To the best of our knowledge this is the �rst example of its kind

in the literature.

Our results characterizing the portfolios that support a Pareto optimal allocation

are a novel contribution to the literature since neither Sandroni [20] nor Blume and

Easley [4] analyze portfolio dynamics. Indeed, the mapping between consumption

and its supporting portfolio is only simple when agents have degenerate homoge-

neous priors as in Judd et al. [14]. This is most evident when one consider the case

where agents have homogeneous but non-degenerate prior beliefs. In this case, the

distribution of consumption is time independent while the supporting portfolios are

not because the state prices change as agents learn. We also contribute to the analy-

sis of the asymptotic behavior of portfolios since it is not evident that Sandroni�s

[20] and Blume and Easley�s [4] results on the limit behavior of consumption imply

that (i) portfolios must converge when likelihood ratios do and, very importantly,

7 In that case, since the entropy of every agent�s prior is the same, one cannot apply Sandroni�s
results relating survival with the entropy of priors either.

8This distinction is economically relevant because both in Blume and Easley�s [4] setting as well
as in ours the data (and agents� ultimate fate) may be produced by a probability measure with
parameters that may lie in a zero measure set of the agents�support.
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(ii) when portfolios converge, what the limiting portfolios are. The recursive charac-

terization of the �nancial wealth distribution that we obtain allows to answer these

two questions. First, since it provides a continuous mapping between the portfolios

supporting a PO allocation and the investors�likelihood ratios, it makes evident that

they converge together. Second, it makes possible to single out the PO allocation

that can be decentralized as a competitive equilibrium without transfers by means

of the application of a recursive version of the Negishi�s approach. This allocation is

parametrized by its corresponding welfare weight that depends upon date 0 prior be-

liefs, individual endowments and aggregate resources. Finally, and very importantly,

it allows to conclude that the limiting wealth distribution is pinned down by the

densities of their prior beliefs evaluated at the true parameter and the corresponding

date 0 welfare weights.

3 The Model

We consider an in�nite horizon pure exchange economy with one good. In this

section we establish the basic notation and describe the main assumptions.

3.1 The Environment

Time is discrete and indexed by t = 0; 1; 2; :::. The set of possible states of

nature at date t � 1 is St � f1; :::;Kg. The state of nature at date zero is known
and denoted by s0 2 f1; :::;Kg. We de�ne the set of partial histories up to date t as
St = fs0g �

�
�tk=1Sk

�
with typical element st = (s0; :::; st). S1 � fs0g � (�1k=1Sk)

is the set of in�nite sequences of the states of nature and s = (s0; s1; s2; � � � ), called
a path, is a typical element.

For every partial history st, t � 0, a cylinder with base on st is the set C(st) �
fs 2 S1 : s = (st; st+1; � � � )g of all paths whose t + 1 initial elements coincide with
st. Let Ft be the �-algebra that consists of all �nite unions of the sets C(st). The �-
algebras Ft de�ne a �ltration on S1 denoted fFtg1t=0 where F0 � ::: � Ft � ::: � F
where F0 � f;; S1g is the trivial ��algebra and F is the �-algebra generated by the
algebra

1S
t=0
Ft.

For any probability measure � : F ! [0; 1] on (S1;F), �st : F ! [0; 1] denotes

its posterior distribution after observing st.9 Let �t (s) be the probability of the

�nite history st, i.e. the Ft�measurable function de�ned by �t(s) � �(C(st)) for all
t � 1 and �0 � 1. Let �t be the Ft�measurable function de�ned by �t (s) � �t(s)

�t�1(s)
.

That is, given the partial history st�1 up to date t � 1, �t is the one-period-ahead

9Formally, �st (A) �
�(Ast)
�(C(st))

for every A 2 F , where Ast �
�
s 2 S1 : s =

�
st; s0

�
; s0 2 A

	
.
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conditional probability of the states at date t and �
�
�
��st�1 � denotes its realization

at st = � after the partial history st�1. Finally, for any random variable x : S1 ! <,
E� (x) denotes its mathematical expectation with respect to �:

Let �K�1 be the K � 1 dimensional unit simplex in <K , B
�
�K�1

�
be its Borel

sets and P(�K�1) be the set of probability measures on
�
�K�1;B

�
�K�1

��
. Con-

sider a set of probability measures on (S1;F) parameterized by � 2 �K�1, with
typical element ��, with the additional property that the mapping � 7! �� (B) is

B
�
�K�1

�
�measurable for each B 2 F . This set includes the subset of probability

measures on (S1;F) uniquely induced by i.i.d. draws from a common distribution

� : 2K ! [0; 1], where �(�) > 0 for all � 2 f1; :::;Kg, with typical element P �. We
make the following assumption.

A.0 The true stochastic process of states of nature is P �
�
for some �� >> 0.

We assume the true process of states of nature is i.i.d. to ease the exposition.

However, all our results hold true for any time-homogeneous Markov process.

3.2 The Economy

There is a single perishable consumption good every period. The economy is

populated by I (types of) in�nitely-lived agents where i 2 I = f1; :::; Ig denotes an
agent�s name. A consumption plan is a sequence of functions fctg1t=0 such that ct :
S1 ! R+ is Ft�measurable for all t and sup(t;s) ct(s) <1: The agent�s consumption
set, denoted by C, is the set of all consumption plans.

3.2.1 Preferences

We assume that agents�preferences satisfy Savage�s [21] axioms and, therefore,

they have a subjective expected utility representation. This representation provides a

prior Pi over paths and, as it is well-known, it also implies that agents are Bayesians

(i.e., they update their prior using Bayes� rule as information arrives). But, most

importantly, it does not otherwise restrict agent�s priors in any particular way.10

We denote by Pi the probability measure on (S1;F) representing agent i�s prior
and we make the standard assumptions that the utility function is time separable

and the discount factor is the same for all agents. That is, for every ci 2 C her

preferences are represented by

UPii (ci) = E
Pi

 1X
t=0

�t ui(ci;t)

!
;

10See Blume and Easley [3] for a complete discussion on the implications of Savage�s axioms.
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where � 2 (0; 1) and ui : R+ ! R+ is continuously di¤erentiable, strictly increasing,
strictly concave and lim

x!0
@ui(x)
@x = +1 for all i.

One particular family of priors is that where the agent believes that the true

process of states of nature belongs to a parametric family of probability measures,�
��
	
, but the agent does not know the parameter � 2 �K�1. That is, the probability

of every event A 2 F is

�(A) =

Z
�K�1

�� (A)� (d�) , (1)

where � 2 P(�K�1) is the prior belief over the unknown parameters. The hypothesis
of rationality can be further strengthened to require that the agent is a Bayesian who

knows that the process generating the data is i.i.d. but does not know the true

probability of the states of nature. We state this assumption as A:1.11

A.1 �� = P � for every � 2 �K�1.

We want to emphasize that A:1 says that even though agents agree that the states

of nature are generated by i.i.d. draws from a common distribution �, they might

still disagree about � itself. The following assumption imposes more structure on the

subjective distribution of � and it will be discussed further below.

A.2 � has density f with respect to Lebesgue that is continuous at �� with f (��) > 0.

Another interesting speci�cation of prior beliefs is a point mass probability mea-

sure on � de�ned as �� : F ! [0; 1] where

�� (B) �
�
1 if � 2 B
0 otherwise.

When priors belong to the class represented by (1), Bayes�rule implies that prior

beliefs evolve according to

�i;st (d�) =
��(st

��st�1 ) �i;st�1 (d�)R
�K�1 �

�(st jst�1 ) �i;st�1 (d�)
, (2)

where �i;0 2 P(�K�1) is given at date 0 and ��(st
��st�1 ) � ��

�
C
�
st
���

��
�
C
�
st�1

��
.

It is well-known that Bayesian learning is consistent for any prior satisfying A:1.

However, this property applies to more general speci�cations of priors (for instance,

those satisfying (1), see Schwartz [23, Theorems 3.2 and 3.3]), and since our example

4 in Section 8.2 does not satisfy A.1 but it does satisfy (1), we state the consistency

result in the following Lemma to make precise its scope.
11The celebrated De Finetti theorem states that this is equivalent to the prior being exchangeable.
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Lemma 1 Suppose that for �i;0� almost all � 2 �K�1 the probability measures

�� on (S1;F) are mutually singular. Then
�
�i;st

	1
t=0

converges weakly to �� for

���almost all s 2 S1, for �i;0� almost all � 2 �K�1:
Remark 1: It is ubiquitous in the learning literature related to asset pricing to

assume both that (i) every agent knows the likelihood function generating the data

and (ii) some agent learns the true conditional probability of the states. The latter

is guaranteed in our setup by strengthening A:1 to require that the true parameter,

��, is in the support of some agent�s prior. The case where this holds for every agent

is considered in sections 5, 6 and 7. Section 8 deals with the cases in which either (i)

or (ii) does not hold.

3.2.2 Endowments

Agent i�s endowment at date t is a time-homogeneous function of the current

state of nature, that is yi(st) > 0 for all st 2 f1; :::;Kg and the aggregate endowment
is y(st) �

PI
i=1 yi(st) � y < 1. An allocation fcigIi=1 2 CI is feasible if ci 2 C

for all i and
PI
i=1 ci;t(s) � y(st) for all s 2 S1. Let Y1 denote the set of feasible

allocations.

4 Heterogeneous Priors and Portfolios: Examples

The main purpose of this section is to illustrate our main results using simple

examples of dynamically complete markets equilibria. In Section 3 we assumed that

the range of utility functions was <+. This lower bound on utility will be used in
the proofs of Theorems 3 and 4. We have veri�ed the conclusions of those Theorems

directly for all of the examples in this section and in section 8.

Suppose there are two states, A:0 holds with �� (1) = 1
2 , two agents, u(c) = ln c

and yi(�) = �iy(�) > 0 for all � 2 f1; 2g where �1 + �2 = 1. Agents can trade

a full set of Arrow securities in zero net supply. Arrow security �0 pays 1 unit of

the consumption good if st+1 = �0 and 0 otherwise. The price of Arrow security

�0 2 f1; 2g and agent i�s holdings at date t after partial history st are denoted by
m�0

t (s) and a
�0

i;t(s), respectively. We assume that agents have no endowment of Arrow

securities, i.e. they have zero �nancial wealth at date 0.

In Appendix A we show that equilibrium consumption and portfolios are

ci;t(s) =
�
�i + �j

Pj;t(s)
Pi;t(s)

��1
�i yt(s);

a�
0

i;t(s) =
1

1� � y(�
0) �i

 �
�i + �j

Pj;t(s)
Pi;t(s)

pj(�
0jst )

pi(�
0jst )

��1
� 1
!
, �0 2 f1; 2g , (3)

where Pi;t(s) = Pi(C(s
t)) and pi(�0

��st ) = Pi(C(s
t; �0))=Pi(C(st)). Observe that

individual portfolios at date t are completely determined by the likelihood ratio at
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t + 1, Pj;t+1Pi;t+1
. Portfolios converge if and only if the likelihood ratio converges. Thus,

changes in portfolios are purely determined by the heterogeneity of priors.

The relevant margin of heterogeneity described by likelihood ratios changes as

time and uncertainty unfold. Consequently, (3) suggests that the conventional wis-

dom that changes in portfolios are fundamentally driven by heterogeneity in priors is

correct as long as this margin of heterogeneity persists. Bayesian updating, however,

imposes a strong structure on the limit behavior of beliefs, in the sense that agents

typically end up agreeing on the one-period-ahead conditional probability. What is

pending to explain is the limit behavior of likelihood ratios when one-period-ahead

conditional probabilities converge.

Benchmark Case: Homogeneous Priors
Agents have identical one-period-ahead conditional probabilities of state 1 after

observing partial history st, pi
�
1j st

�
. Then, the likelihood ratio Pj;t(s)

Pi;t(s)
= 1 for all t

and s. Consequently,

a�
0

i;t(s) = 0 for all t, s and �
0,

and thus portfolios are �xed forever. In every equilibrium, agents consume their

endowment every period and, then, consumption and Arrow Securities prices are

simple random variables with support depending only on the aggregate endowment.

More precisely,

ci;t (s) = �i y(st)

m�0

t (s) = �
1

2

y(st)

y(�0)
: �

From this result and as a direct consequence of the convergence of the one-period-

ahead conditional probabilities, one might hastily make the following conjectures:

� Conjecture I: Portfolios converge to a �xed vector while consumption and Ar-
row security prices converge to some simple random variable depending only on the

aggregate endowment.

� Conjecture II: Limiting portfolios, consumption and Arrow security prices are
those of an otherwise identical economy where agents begin with homogeneous priors

and zero �nancial wealth.

Example 1 shows that Conjecture II might fail even if Conjecture I holds.

Example 1: Heterogeneous Priors I
The agents�one-period-ahead conditional probabilities of state 1 are given by

p1
�
1j st

�
=
n1
�
st
�
+ 1

t+ 2
and p2

�
1j st

�
=
n2
�
st
�
+ 2

t+ 4
;
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where n�
�
st
�
stands for the number of times state � 2 f1; 2g has been realized at the

partial history st. Since we assume A:0 holds with �� (1) = 1
2 , the Strong Law of Large

Numbers implies that pi
�
1j st

�
! 1

2 (P
��� a:s:) as t!1, for every agent i 2 f1; 2g.

Therefore, both agents learn the true one-period-ahead conditional probability.

By the Kolmogorov�s Extension Theorem (Shiryaev [22, Theorem 3, p. 163]),

there exists a unique Pi on (S1;F) associated to the agent�s one-period-ahead con-
ditional probability. Moreover, Pi satis�es A:1 and A:2 and agents�prior beliefs over

� have densities f1 (�) = 1 and f2 (�) = 6 � (1� �) on (0; 1), respectively.12 The

likelihood ratio is

P1;t (s)

P2;t (s)
=

R 1
0 P

�
t (s) d�R 1

0 P
�
t (s) 6 � (1� �) d�

=
1

6

�[n1(st)+1] �[n2(st)+1]
�[t+2]

�[n1(st)+2] �[n2(st)+2]
�[t+4]

=
1

6
(t+3) (t+2)

(n1(st)+1) (n2(st)+1)
;

where � stands for the Gamma function.13 The Strong Law of Large Numbers can

be applied once again to show that

P1;t (s)

P2;t (s)
! 2

3
=
f1
�
1
2

�
f2
�
1
2

� P �
� � a:s:

It follows from (3) that portfolios converge to a �xed vector, that is

a�
0

1;t(s)!
1

1� � y(�
0) �1

 �
�1 + �2

3

2

��1
� 1
!
; �0 2 f1; 2g P �

� � a:s:

Although security prices, asset holdings and consumption all converge, we want to

underscore that only prices converge to those of an otherwise identical economy with

homogeneous priors. Indeed,

c1;t (s)! �1
�1+�2

3
2

y(st) < �1 y(st);

m�0

t (s)! � 1
2
y(st)
y(�0)

;

and thus Conjecture I holds but Conjecture II does not. The reason is that in

the economy that starts with homogenous prior beliefs the agents��nancial wealth

is zero while in the limit economy prior beliefs are homogeneous but the agents�

�nancial wealth is not zero. In this example limit asset prices are identical to those

of an otherwise identical economy that starts with homogenous prior beliefs because

logarithmic preferences make intertemporal marginal rates of substitution, and thus

asset prices, independent of the wealth distribution. In general, however, asset prices

12That is, agent i�s prior beliefs over � follow a Beta distribution B (i; i) on (0; 1), as in Morris
[17].
13Recall that if n is an integer, then � (n) = (n� 1)!
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do depend on the wealth distribution. In Section 6 we fully characterize the limit

wealth distribution and argue that it depends critically on date 0 priors. �

The following example shows that Conjecture I might be false as well.

Example 2: Heterogeneous Priors II
The agents�one-period-ahead-conditional probabilities of state 1 are given by

p1
�
1j st

�
=

1

1 + e
p
1=t

and p2
�
1j st

�
=

e
p
1=t

1 + e
p
1=t
:

i.e., agents believe that the states of nature are independent draws from time-varying

distributions. Observe that one-period-ahead conditional probabilities converge to 1
2

for both agents, i.e. agents learn, and have the same entropy. That is,

EP
��
( log p1;t+1j Ft) = EP

��
( log p2;t+1j Ft) :

The ratio of one-period-ahead conditional probabilities at date t after partial

history st�1 is a random variable, p1;t
p2;t
, that takes values in

n
e
p
1=t; 1

e
p
1=t

o
. The

logarithm of the likelihood ratio can be written as the sum of conditional mean zero

random variables as follows

log

�
P1;t(s)

P2;t(s)

�
= log

tY
k=1

p1;k (s)

p2;k (s)

=
tX

k=1

�
1sk=1 (s) log

�
e
p
1=t
�
+ (1� 1sk=1 (s)) log

�
1

e
p
1=t

��

=

tX
k=1

xk (s)

where xk (s) 2 f�
p
1=k;

p
1=kg, EP �

�
(xkj Fk�1) (s) = 0 and V arP

��
(xkj Fk�1) (s) =

EP
�� �

x2k
��Fk�1� (s) = 1=k. Consequently, the log-likelihood ratio is the sum of uni-

formly bounded random variables with zero conditional mean. Additionally, since the

sum of conditional variances of xk diverges with probability 1, it follows by Freedman

[11, Proposition 4.5 (a)] that

sup
t

tX
k=1

xk (s) = +1 and inf
t

tX
k=1

xk (s) = �1 P �
� � a:s:

and, therefore,

lim inf
P1;t(s)

P2;t(s)
= 0 and lim sup

P1;t(s)

P2;t(s)
= +1 P �

� � a:s:
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This behavior of the likelihood ratio implies that individual portfolios �uctuate

in�nitely often. In particular,

lim inf a�
0

i;t(s) = �
1

1� � �i y(�
0) and lim sup a�

0

i;t(s) =
1

1� � (1� �i) y(�
0):

Since each agent�s debt attains its so-called natural debt limit in�nitely often, indi-

vidual portfolios are highly volatile. Consequently, Conjecture I does not hold in this

example and, a priori, this is rather surprising since every agent learns the true one-

period-ahead-conditional probability. The fact that the one-period-ahead-conditional

probabilities converge certainly means that trade in each period becomes eventually

very small. However, since the likelihood ratio of agents�beliefs fails to converge, this

small trade compounds over large periods of time and so (in a su¢ ciently long span

of time) there are wide �uctuations in the distribution of wealth. �

Why does Conjecture I hold in example 1 while it fails in example 2? The main

di¤erence is that priors satisfy A:1 in example 1 but not in example 2. It turns out

that when A:1 holds for every agent, the likelihood ratios always converge and, thus,

Conjecture I holds in general.

However, to generalize these lessons to the setting described in section 3 one

faces two di¢ culties that we avoid in the examples by carefully choosing preferences,

individual endowments and priors. First, equilibrium portfolios are typically history

dependent in a more general setup. Closed-form solutions for asset demands as

in (3) are useful to tackle this di¢ culty but they are a particular feature derived

from logarithmic preferences and constant individual endowment shares. Second,

likelihood ratios are typically complicated objects which makes the analysis of their

behavior a nonstandard task. Closed-form representation for the likelihood ratio, as

in the examples above, simpli�es the analysis of its asymptotic properties but it is a

consequence of the particular family of priors that we choose.

The rest of the paper tackles the di¢ culties to extend the lessons from the exam-

ples to the more general setup described in section 3. Here we o¤er an outline. We

begin with a recursive characterization of e¢ cient allocations and their corresponding

supporting portfolios under the assumption that A.1 holds. In section 5, we show

that the evolution of any Pareto optimal allocation is driven solely by the evolution

of the likelihood ratios of the agents�priors and the agents�beliefs over the unknown

parameters, as in the examples. In section 6, we prove that the agents��nancial

wealth converges if and only if both the likelihood ratio as well as their beliefs (over

the unknown parameters) converge. Afterwards, we tackle the di¢ culties associated

with the lack of closed form for the likelihood ratios. In section 7, we consider a

broad class of priors satisfying A.1. We apply recent results in probability theory
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to prove that the likelihood ratios converge with probability one, as in example 1.

Finally, in section 8 we explain the exact role played by the assumptions that every

agent knows the likelihood function generating the data and that some agent learns

and we argue that it is critical that they are coupled together. We do so by providing

two additional examples, each of which relax one of these assumptions, in which the

likelihood ratio does not converge and consequently portfolios change in�nitely often

as in example 2.

5 A Recursive Approach to Pareto Optimality

In this section, we provide a recursive characterization of the set of Pareto opti-

mal allocations providing a version of the Principle of Optimality for economies with

heterogeneous prior beliefs.

Throughout this section we assume that A:0 and A:1 hold. It is well known that

under A:1, Bayes�rule implies that prior beliefs evolve according to

�i;st (d�) =
�(st) �i;st�1 (d�)R

�K�1 �(st) �i;st�1 (d�)
, (4)

where �i;0 2 P(�K�1) is given at date 0.

Lemma 2 Suppose agent i�s prior satis�es A:1. Then, for every B 2 F

Pi;st (B) =

Z
�K�1

P �st (B)�i;st (d�) : (5)

5.1 Pareto Optimal Allocations

A feasible allocation fc�i g
I
i=1 is Pareto optimal (PO) if there is no alternative

feasible allocation fbcigIi=1 such that UPii (bci) > UPii (c�i ) for all i 2 I.
It is well known that the set of PO allocations can be characterized as the solution

to the following planner�s problem. Given �0, s0 and welfare weights � 2 RI+, de�ne

v�(s0; �0; �) � sup
fcigIi=12Y1

IX
i=1

�i E
Pi

 X
t

�t ui(ci;t)

!
. (6)

Unlike the case where agents have homogeneous beliefs, the recursive characteri-

zation of PO allocations in our economy is rather tricky because belief heterogeneity

makes optimal allocations history dependent. This can be seen from the following
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(necessary and su¢ cient) �rst order conditions to the planner�s problem:

�i Pi;t(s)

�j Pj;t(s)

@ui(ci;t(s))
@ci;t

@uj(cj;t(s))
@cj;t

= 1 for all i, j 2 I, for all t and all s, (7)

IX
i=1

ci;t(s) = y(st). (8)

Since �j
�i
=

@ui(ci;0)
@ci;0

.
@uj(cj;0)
@cj;0

, the planner distributes consumption among agents to

make the ratio of marginal valuations of any two agents -which, we recall, include

priors that could be subjectively held- to be constant along time. Consequently,

under the optimal distribution rule of consumption, the ratio of marginal utilities,
@ui(ci;t(s))

@ci;t

.
@uj(cj;t(s))

@cj;t
, must be proportional to the likelihood ratio of the agents�pri-

ors, Pj;t(s) /Pi;t(s) . This ratio represents the novel margin of heterogeneity among

agents considered in this paper, which we call the B-margin of heterogeneity. The
B-margin is purely driven by heterogeneity in priors and its evolution determines the
dynamics of the optimal distribution rule of consumption. Indeed, when all agents

have the same priors the B-margin remains constant along time and the optimal dis-
tribution rule of consumption is both time and history independent. Consequently,

individual consumption depends only upon the current shock st (because it deter-

mines aggregate output) and the date 0 vector of welfare weights �. When agents

have heterogeneous priors, instead, the B-margin is history dependent and so is the
optimal distribution rule of consumption.

Now we argue that this history dependence can be handled with a properly chosen

set of state variables. Note that since condition (7) holds if and only if

@ui(ci;t(s))
@ci;t

@uj(cj;t(s))
@cj;t

=

R
�K�1 � (st+1) :::� (st+k) �i;st (d�)R
�K�1 � (st+1) :::� (st+k) �j;st (d�)

@ui(ci;t+k(s))
@ci;t+k

@uj(cj;t+k(s))
@cj;t+k

;

then the planner does not need to know the partial history itself in order to con-

tinue the date 0 optimal plan from date t onwards. Indeed, it is su¢ cient that

he knows the ratio of marginal utilities that the original plan induces at date t,
@ui(ci;t(s))

@ci;t

.
@uj(cj;t(s))

@cj;t
, the state of nature at date t, st, and the posterior beliefs,

�st�1 (d�), since �i;st (d�) =
�(st) �i;st�1 (d�)R

�K�1 �(st) �i;st�1 (d�)
. Moreover, since the ratio of mar-

ginal utilities at date t equals the likelihood ratio weighted by the date zero welfare

weights, �j Pj;t(s)�iPi;t(s)
, the di¢ culties stemming from the optimal plan history dependence

can be handled by using (�1P1;t(s); :::; �IPI;t(s); �st�1) as state variables summarizing

the history and the state of nature at date t, st, describing aggregate resources.

From the discussion above, we conclude that a PO allocation cannot be fully

characterized using only the agents�beliefs over the unknown parameters (that is,
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�st�1) and st as state variables as in the single agent setting (see, Easley and Kiefer

[8]). In a multiple agent setting, instead, the planner needs to distribute consumption

and because of this one needs to introduce (�1P1;t(s); :::; �IPI;t(s)) as an additional

state variable, which can be interpreted as the date t welfare weights, �i;t(s) = �i

Pi;t (s). These weights evolve according to the law of motion

�i;t(s) = �i;t�1(s)

Z
�K�1

� (st) �i;st�1 (d�) where �i;0(s) = �i. (9)

In Section 5.2 below we present a formal exposition of this result.

5.2 Recursive Characterization of PO Allocations

Given that in an environment with heterogeneous beliefs and learning PO alloca-

tions are typically history dependent, standard recursive methods cannot be applied.

We tackle this issue by adapting the method developed by Lucas and Stokey [16].

In Appendix B we show that v� is the unique solution of the functional equation14

v(�; �; �) = max
(c;w0(�0))

X
i2I

�i

8<:ui(ci) + �X
�0

Z
�K�1

�(�0)�0i(�; �) (d�) w
0
i(�

0)

9=; ; (10)

subject to

IX
i=1

ci = y(�) for all �; ci � 0; w0(�0) � 0 for all �0, (11)

�0(�0) � argmine�2�I�1
"
v(�0; e�; �0(�; �))� IX

i=1

e�i w0i(�0)
#
� 0 for all �0, (12)

where

�0i(�; �) (B) =

R
B �(�) �i (d�)R

�K�1 �(�) �i (d�)
for any B 2 B(�K�1). (13)

In the recursive dynamic program de�ned by (10) - (13), the current state, �,

captures the impact of changes in aggregate output while (�; �) summarizes and

isolates the dependence upon history introduced by the evolving B-margin of hetero-
geneity. The planner takes as given (�; �; �) and allocates current consumption and

continuation utility levels among agents. That is, instead of allocating consumption

from tomorrow on, the planner assigns to each agent the utility level associated with

the corresponding continuation sequence of consumption. Indeed, the optimization

problem de�ned in condition (12) characterizes the set of continuation utility levels

14 In sections 5.2 and 6, we abuse notation and let c to be a non-negative vector and ci its ith

component.
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attainable at (�0; �0(�; �)) (see Lemma 14 in Appendix B).15 The weights �0(�0) that

attain the minimum in (12) will then be the new weights used in selecting tomorrow�s

allocation.

The (normalized) law of motion for the welfare weights, �0i(�; �; �)(�
0), follows

from the �rst order conditions with respect to the continuation utility levels for each

individual and is given by

�0i(�; �; �)(�
0) � �i

R
�(�0)�0i(�; �) (d�)P

h �h
R
�(�0)�

0
h(�; �) (d�)

: (14)

Observe that the normalization is harmless since optimal policy functions are homo-

geneous of degree zero with respect to �.

It follows by standard arguments that the corresponding consumption policy func-

tion, ci(�; �), is the unique solution to

ci(�; �) +
X
h 6=i

�
@uh
@ch

��1� �i
�h

@ui(ci(�; �))

@ci

�
= y(�): (15)

for each i 2 I, where
�
@uh
@ch

��1
denotes the inverse function of @uh@ch

.

Given (s0; �0; �0), we say the policy functions (c; �
0) coupled with �

0
generates an

allocation bc if
bci;t(s) = ci(st; �t(s)),

�t+1(s) = �0(st; �t(s); �st�1)(st+1),

�st = �0(st; �st�1),

for all i and all t � 0 and s 2 S1 where �0(s) = �0 and �s�1 = �0. The following

Theorem shows that there is a one-to-one mapping between the set of PO allocations

and the allocations generated by the optimal policy functions solving (10) - (13).

Theorem 3 (The Principle of Optimality) An allocation (c�i )
I
i=1 is PO given

(�; �; �) if and only if it is generated by the policy functions solving (10) - (13).

15To understand condition (12) notice that the utility possibility set, i.e. the set of expected life-
time utility levels that are attainable by mean of feasible allocations, is convex, compact and contains
its corresponding frontier. The frontier of a convex set can always be parametrized by supporting
hyperplanes. Moreover, under our assumptions, the corresponding parameters can be restricted to
lie in the unit simplex and, therefore, they can be interpreted as welfare weights. Thus, a utility level
vector w is in the utility possibility set if and only if for every welfare weight � the hyperplane para-
metrized by � and passing through w, �w, lies below the hyperplane generated by the utility levels
attained by the PO allocation corresponding to that welfare weight �, attaining the value v(�; �; �).
This is why we must have �w � v(�; �; �) for all � or, equivalently, mine� [v(�; e�; �)� e�w] � 0. See
Appendix B for technical details.
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Informally, this result can be grasped as follows. The characterization of the

solution to the sequential formulation of the planner�s problem hints that once the

planner knows both the likelihood ratio weighted by the date zero welfare weights and

the beliefs at date t, he can continue the optimal plan from date t onwards. It is key

to understand that the consumption plan from date t+1 onwards can be summarized

by its associated utility levels which in turn can be summarized by a vector of welfare

weights. Theorem 3 shows that the date zero optimal plan is consistent in the sense

that the continuation plan is indeed the solution from date t onwards.

5.2.1 Discussion: An Alternative Approach

There is an alternative approach to state the dynamic program de�ned by (10) -

(13): instead of parametrizing allocations with welfare weights, the planner chooses

current feasible consumption and continuation utilities for both agents in order to

maximize the utility of agent 1 subject to two restrictions: (i) the utility of agent

2 is above some prespeci�ed level (the so-called promise keeping constraint) and (ii)

continuation utility levels lie in next period utility frontier. Very importantly, this

last condition implies that the corresponding value function de�nes the constraint

set.16 Since both in our approach as well as in the alternative one the corresponding

value function de�nes the constraint set, neither of the two dynamic programs is

standard in the sense that it is not obvious that any of the corresponding operators

satis�es one of Blackwell�s su¢ cient conditions, namely, discounting. Indeed, for any

function v that de�nes the constraint set there might be some a > 0 such that v + a

enlarges the feasible set of choices of continuation utilities with respect to v. The

key to show discounting in our approach is to restrict the set of functions to be

homogeneous of degree 1 with respect to the state variables, i.e. the welfare weights,

(a property that is satis�ed by v�, see Lemma 13 in Appendix B).17 Since v+ a is an

a¢ ne linear transformation of v, the choice of current consumption is the same for v

and v+ a. In addition, homogeneity of degree 1 of the value function with respect to

the welfare weights implies that w0 is the optimal choice for the constraint set de�ned

by v if and only if w0+ a is the optimal choice for the constraint set de�ned by v+ a.

This explains why homogeneity of degree 1 of the value function with respect to the

welfare weights is key to show that discounting holds in our setting.18

16Since we parametrized the utility levels with their associated welfare weights, our approach
amounts to replacing the promise keeping constraint by using the associated Lagrange multipliers as
state variables.
17Lucas and Stokey [16] do not make this restriction and so it is unclear whether discounting holds

in their approach.
18There is no obvious condition equivalent to homogeneity in the alternative approach described

above and then one needs to �nd the solution di¤erently. One plausible strategy would be to follow
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6 Determinants of the Financial Wealth Distribution

In this section we study the determinants of the �nancial wealth distribution that

supports a dynamically complete markets equilibrium allocation. First, we charac-

terize individual �nancial wealth recursively as a time invariant function of the states

(�; �; �). Later, we employ a properly adapted recursive version of the Negishi�s ap-

proach to pin down the PO allocation that can be decentralized as a competitive

equilibrium without transfers.

Given (�; �; �), we construct individual consumption using ci(�; �) and de�ne the

state price by19

M(�; �; �)(�0) = �

Z
�(�0)�0i(�; �) (d�)

@u1(c1(�
0;�0(�;�;�)(�0))/@c1

@u1(c1(�;�))/@c1
, (16)

The functional equation that determines agent i�s �nancial wealth is

Ai(�; �; �) = ci(�; �)� yi(�) +
X
�0

M(�; �; �)(�0) Ai(�
0; �0; �0), (17)

where �0(�; �) and �0(�; �; �)(�0) are given by (13) and (14), respectively. Note that

(17) computes recursively the present discounted value of agent i�s excess demand at

the PO allocation.

In Theorem 4, we show that Ai is well-de�ned. Furthermore, we apply Negishi�s

approach to show that there exist a welfare weight such that Ai is zero for every i:

Theorem 4 Suppose A.0 and A.1 hold. Then, there is a unique continuous function
Ai solving (17). Moreover, for each (s0; �0) there exists �0 = �(s0; �0) 2 RI+ such
that Ai(s0; �0; �0) = 0 for all i.

Remark 2: Observe that if agents have both homogeneous priors and dogmatic

beliefs (i.e., �i;0 = �
� for all i and for some � 2 �K�1), it follows immediately that

�i;t+1(s) = �0 and �i;st = �
� for all s and all t � 0 and for each agent i. Therefore,

ci;t(s) = ci(st; �0) for all s and all t � 0. Very importantly,the solution to (17) reduces
to a vector in RK and, thus, Ai(�0; ��) 2 RK such that Ai(s0; �0; ��) = 0 for all i.

the seminal idea pioneered by Abreu, Pearce and Stacchetti [1] and construct an alternative operator
that iterates directly on the utility possibility correspondence. Then, the value function (and the
corresponding policy functions) could be recovered from the frontier of the �xed point of that operator
on utility correspondences.
19The choice of agent 1 to de�ne M is without loss of generality since Pareto optimality implies

that the intertemporal marginal rates of substitution are equalized across agents.
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6.1 The Fixed Equilibrium Portfolio Property

We say that the �xed equilibrium portfolio (FEP hereafter) property holds if

there exists fai(1); :::; ai(K)g 2 <K such that ai(�) = Ai(�; �; �) for all (�; �; �) and

all i. If the FEP property holds, any portfolio that decentralizes a PO allocation

with a �xed set of non-redundant assets is kept constant over time and across states.

We say that the B-margin of heterogeneity vanishes on a path s if �t(s) converge on
s. Additionally, the FEP property holds asymptotically on s if individual �nancial

wealth, Ai;t(s) = Ai(�; �t(s); �st�1), converges on s for every i and � 2 S.
Judd et al. [14] show that the FEP property is always satis�ed after a once-

and-for all initial rebalancing when agents have homogeneous priors (the B-margin of
heterogeneity is constant) and degenerate beliefs. Speci�cally, Remark 6 implies that

ai(�) = Ai(�; �0; �
�) for all � since in their setting �i;0 = �

� for some � 2 �K�1 and
for all i, therefore, the agents��nancial wealth is a vector in RK in any dynamically

complete markets equilibrium.

When agents have homogeneous but non-degenerate prior beliefs, the welfare

weights are constant along time, �t(s) = �0, and the distribution of consumption

is given by ci(�) = ci(�; �0) for each i and so it remains unchanged as time and

uncertainty unfold. However, the wealth distribution, Ai;t(s) = Ai(�; �0; �st�1), is

still history dependent because the agents�learning process make state prices history

dependent. Consequently, the FEP property does not necessarily hold. To get a

thorough understanding of why the wealth distribution changes even though the

distribution of consumption does not, consider a two-agent and two-state economy

where yi(�) = 1 if � = i and 0 otherwise. Both agents�prior belief is that state 1 is very

likely (i.e. �0 concentrate most of its mass around �(1) = 1) while the true probability

of each state is, say, ��(�) = 1=2 for � 2 f1; 2g. Thus, agent 1 is richer than agent 2 and
this implies that agent 1�s date-zero welfare weight, �1;0(s0; �0), is relatively larger

than �1;0(s0; ��
�
) and she consumes accordingly forever. For t su¢ ciently large, �st�1

gets close to ��
�
and the present discounted value of agent 1�s endowment will not

be enough to a¤ord the �xed consumption bundle c1(�; �0). Consequently, she must

have accumulated su¢ cient �nancial wealth to make the consumption parametrized

by �0(s0; �0) a¤ordable (that is, Ai;t(s) = Ai(�; �0; �st�1) > 0 for all t > T ). The

remarkable feature is that the evolution of (homogeneous) beliefs has an impact only

on portfolios but not on consumption. This makes evident that Judd et al�s [14]

results need both homogeneous as well as degenerate beliefs.

In our setting, instead, portfolios typically change as time and uncertainty unfolds

because the changes in the B-margin of heterogeneity a¤ects the dynamics of the
wealth distribution through the evolution of the welfare weights. Therefore, the FEP
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property does not hold in a dynamically complete markets equilibrium when priors

are heterogenous implying that the result in Judd et al. [14] is not robust to the

introduction of this margin of heterogeneity. However, since agents observe the same

data, have the true model in the support of their priors and update their priors in a

Bayesian fashion, a much deeper question is whether this trading activity fades out

as the B-margin of heterogeneity vanishes. Our recursive approach permits to study
this issue directly.

The following proposition, a direct consequence of the continuity of Ai, under-

scores that if a PO allocation can be decentralized through a sequence of competitive

markets, the associated wealth distribution converges to a �xed vector for each �

whenever the B-margin of heterogeneity is exhausted. Consequently, asset trading
reduces to the minimum.

Proposition 5 Suppose A.0 and A.1 hold. If the B-margin of heterogeneity vanishes
on a path s, then the FEP property holds asymptotically on s (P �

� � a:s:)

7 Limiting Welfare Weights

In this section, we analyze how the B-margin of heterogeneity evolves over time
when A:1 holds and every agent has the true parameter in the support of their priors.

From condition (14) and Theorem 3, the ratio of welfare weights is

�i;t(s)

�j;t(s)
=

R
�K�1 � (st) �i;st�1 (d�)R
�K�1 � (st) �j;st�1 (d�)

�i;t�1(s)

�j;t�1(s)
=
�i;0
�j;0

Pi;t (s)

Pj;t (s)
, (18)

and, therefore, the asymptotic behavior of �t(s) depends on the limit behavior of the

likelihood ratios Pi;t(s)Pj;t(s)
.

Here, we show that when agents agree that the data is generated by i.i.d. draws

from a common distribution (A:1 holds), likelihood ratios converge and so do welfare

weights. However, we need to distinguish the case where the support of the agents�

prior beliefs is countable from that when it is uncountable. When the support is

countable, the true probability distribution is always absolutely continuous with re-

spect to the agents�priors and, therefore, the convergence of likelihood ratios follows

from Sandroni [20]. The assumption of countable support, however, seems too strong

since it rules out, for instance, the case of prior beliefs that satisfy assumption A:2.

When both A:1 and A:2 hold, the probability distribution that generates the data is

never absolutely continuous with respect to the agents�priors and so Sandroni�s re-

sult does not apply.20 Nonetheless, we show that likelihood ratios converge applying

a recent result by Phillips and Ploberger [19].
20Blume and Easley [4] also emphasize this point.
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7.1 Countable Support

We �rst consider the case where the support of every agent�s prior belief is

countable (i.e., for every i, the set B 2 B(�K�1) such that �i;0(B) = 1 is countable)
and, therefore, the true probability distribution is absolutely continuous with respect

to the agents� priors. As Sandroni [20] shows, this condition is equivalent to the

convergence to a positive (�nite) number of the ratio of the agent�s prior through

date t to the true probability distribution of the �rst t states. Indeed, in Proposition

6 we show that for every agent i,

Pi;t (s)

P �
�
t (s)

! �i;0 (�
�) P �

� � a:s: (19)

Proposition 6 Suppose A.0 and A.1 hold. If the support of every agent�s prior belief
is countable and �i;0 (�

�) > 0, then (19) holds.

In turn, Proposition 6 implies that the agent�s likelihood ratios also have a �nite

positive limit. Indeed,

�i;t(s)

�j;t(s)
=
�i;0
�j;0

Pi;t (s)

Pj;t (s)
! �i;0
�j;0

�i (�
�)

�j (�
�)

P �
� � a:s:

Since Ah is homogeneous of degree zero in the welfare weights and �h;st�1 con-

verges weakly to ��
�
for every agent h, it follows by Lemma 1 that for every state

� 2 f1; :::;Kg,

Ah(�; �t(s); �st�1)! Ah(�; �
�; ��

�
) P �

� � a:s:

where, for every h, ��h = �h;0 �h;0 (�
�) and �h;0 is the welfare weight de�ned in

Theorem 4. Therefore, we obtain the following result which completely characterizes

the limiting properties of the economy.

Theorem 7 Suppose A.0 and A.1 hold. If the support of every agent�s prior belief
is countable and �h;0 (�

�) > 0, then every e¢ cient allocation converges to the Pareto

optimal allocation parametrized by
�
�1;0 �1;0 (�

�) ; :::; �I;0 �I;0 (�
�)
�
, P �

��a.s. Fur-
thermore, the FEP property holds asymptotically with ah(�) = Ah(�; �

�; ��
�
) for all

� and h 2 I.

7.2 Uncountable Support

Now we turn to the case where the agent�s prior satis�es A:1 and A:2. Since

Sandroni�s result does not apply, we invoke a result in Phillips and Ploberger [19,
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Theorem 4.1] (stated in the appendix for completeness) to establish that under as-

sumptions A:0, A:1 and A:2

1
p
2 � fh(��)

(t ��)1=2

Ph;t (s)

P
b�t
t (s)

! 1 P �
� � a:s:, (20)

where b�t is the Maximum Likelihood Estimator (MLE) of � and �� is a constant

depending upon �� that we de�ne properly in the Appendix.

Proposition 8 Suppose A.0 and A.1 hold. If every agent�s prior belief satis�es A.2,
then (20) holds.

This result can be manipulated to show that if agent i and j�s priors satisfy A.1

and A.2, then

�i;t(s)

�j;t(s)
=
�i;0
�j;0

Pi;t (s)

Pj;t (s)
! �i;0
�j;0

fi (�
�)

fj (�
�)

P �
� � a:s.

By a reasoning analogous to the one we used in the countable case, it follows that

for every state � 2 f1; :::;Kg,

Ah(�; �t(s); �st�1)! Ah(�; �
�; ��

�
) P �

� � a:s:

where, for every h, ��h = �h;0 fi (�
�) and �h;0 is the welfare weight de�ned in Theorem

4. We summarize all these results in the following theorem.

Theorem 9 Suppose A.0 and A.1 hold. If every agent�s prior belief satis�es A.2,
then every e¢ cient allocation converges to the Pareto optimal allocation parametrized

by [�1;0 f1 (��) ; :::; �I;0 fI (��)], P �
��a.s. Furthermore, the FEP property holds as-

ymptotically with ah(�) = Ah(�; ��; ��
�
) for all � and h 2 I.

7.3 Discussion

Theorems 7 and 9 argue forcefully that when the true parameter is in the support

of every agent�s prior belief and they know the data is generated by i.i.d. draws from a

common distribution (i.e., A:1 holds), the equilibrium allocation of the economy with

heterogeneous priors converges to that of an otherwise identical economy with correct

priors where the wealth distribution is determined by f��hgh2I : That is, the density
of the agents�prior beliefs, evaluated at the true parameter, and the date 0 welfare

weights are su¢ cient to pin down the limiting wealth distribution. This result is

particularly appealing since it only requires to know exogenous parameters describing

the economy at date zero. Indeed, it allows to compute the limiting allocation without

solving for the equilibrium.
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The mechanics to obtain our results, then, is to exploit Ah�s homogeneity of de-

gree zero to normalize welfare weights and then to show the convergence of these

normalized welfare weights. To get a thorough understanding, it is key �rst to recog-

nize that the driving force of the equilibrium allocation dynamics is the evolution

of the welfare weights. Observe that agent h�s welfare weight, �h, is the planner�s

current valuation of an additional unit of agent h�s utility. By consistency, then,

�h�
R
�
�
�0
�
�0h(�; �; �) (d�) is the planner�s current valuation of an additional unit of

agent h�s next period utility at state �0. This is the economics behind the law of

motion (18), before normalizing the welfare weights. Secondly, since the evolution of

these weights is fully driven by the behavior of likelihood ratios, we are lead to study

their dynamics.

However, the study of the limit behavior of these ratios is a non-trivial task. The

�rst problem one faces is that both the numerator and the denominator are vanish-

ing and, consequently, it is crucial to understand their relative rate of convergence.

Evidently, this asks for an appropriate normalization. While looking for the proper

normalization, we found some technical di¢ culties that forced us to treat separately

the cases with countable and uncountable support. In the countable case, the analysis

in Sandroni [20] suggests that P �
�
t is the normalization that works. In the uncount-

able case, on the other hand, the work of Phillips and Ploberger [19] suggests that P
b�t
t

is the proper normalization. Therefore, as long as A:1 holds and the true parameter

is in the support of every agent�s prior belief, we can conclude that relative welfare

weights converge to positive numbers for both the countable and the uncountable

case.

So far we have made two critical assumptions regarding the support of the agent�s

prior belief, namely, (i) it contains the true parameter and (ii) it has the same di-

mension for every agent. The logic behind these two assumptions is as follows. As

Blume and Easley [4] and Sandroni [20] argue forcefully, when some agent learns the

truth, (i) and (ii) are necessary to rule out that the likelihood ratio converges to zero

for some pair of agents and, therefore, to rule out that the welfare weight goes to

zero for some agent. Evidently, consumption vanishes and their wealth approaches

the so-called natural debt limit (see condition (17)) for those agents whose welfare

weights converge to zero. The limiting economy, therefore, mimics the economy where

those agents�property rights on their individual endowments have been redistributed

among the remaining agents. But then those agents are basically irrelevant to under-

stand the properties of the long-run behavior of the individuals�portfolios supporting

PO allocations.
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8 Persistent Trade

In this section we argue, by means of two examples, that to show the FEP

property holds asymptotically it is necessary to assume that some agent learns the

true conditional probability of the states (section 8.1) and that every agent knows

the likelihood function generating the data (section8.2).

8.1 Example 3: Dogmatic Priors

Judd et al. [14] show that the FEP property holds for economies with homo-

geneous and degenerate priors. On the one hand, we have shown forcefully that the

FEP property holds asymptotically provided that the agents have priors satisfying

A:1 and the support of their prior beliefs contains the true parameter. These two

assumptions ensures the agents learn the true conditional probability of the states.

Here we show that this last property is necessary in the sense that when it is not

satis�ed, the FEP property may not hold even if agents�priors satisfy A:1, no matter

how close they are to the truth and with respect to each other.

For simplicity, we assume there are two states of nature, that is K = 2, and two

agents whose priors beliefs are point masses on �1 and �2, respectively, where �1 6= �2
and �� ln �1�2 +(1��

�) ln 1��11��2 = 0: Since agents have heterogeneous "dogmatic" priors

with the same entropy, then it can be shown that both agents survive.21, 22 The ratio

of one-period-ahead conditional probabilities, p1;tp2;t
, is a simple random variable that

takes values in
n
�1
�2
; 1��11��2

o
. The logarithm of the likelihood ratio can be written as

the sum of conditional zero mean random variables as follows:

log

�
P1;t(s)

P2;t(s)

�
= log

tY
k=1

�
�1
�2

�1sk=1(s) �1� �1
1� �2

�1�1sk=1(s)
=

tX
k=1

�
1sk=1 (s) log

�
�1
�2

�
+ (1� 1sk=1 (s)) log

�
1� �1
1� �2

��

=

tX
k=1

xk (s) ,

where EP
��
(xkj Fk�1) (s) = 0 and varP

��
(xkj Fk�1) (s) = EP

�� �
x2k
��Fk�1� (s) =

EP
�� �
x2k
�
> 0. So, the log likelihood ratio is the sum of uniformly bounded random

21See Blume and Easley [5] for a general analysis of optimal consumption paths in i.i.d. economies
where agents have degenerate prior beliefs.
22The assumption that priors are dogmatic is not necessary for the result to be true. The necessary

condition is that no agent has the true in the support of her prior and that the limit of each agent�s
prior beliefs has identical entropy.
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variables with zero conditional mean and conditional variance bounded away from

zero. Once again, it follows by Freedman [11, Proposition 4.5 (a)] that

sup
t

tX
k=1

xk (s) = +1 and inf
t

tX
k=1

xk (s) = �1 P �
� � a:s:,

and, therefore,

lim inf
P1;t(s)

P2;t(s)
= 0 and lim sup

P1;t(s)

P2;t(s)
= +1 P �

� � a:s:

Inspecting condition (18), it is evident that welfare weights do not converge in this

example. Since prior beliefs are degenerate at �i, posteriors are also degenerated at �i
and, therefore, agent i�s �nancial wealth is Ai(�; �t(s);

�
��1 ; ��2

�
). We can conclude

that the FEP property does not necessarily hold asymptotically.

8.2 Example 4: Di¤erent Likelihood Functions

In example 2 we show that the FEP property may not hold asymptotically

when no agent satis�es A:1. To underscore the importance of assuming that A:1

holds for every agent, here we consider, instead, the case in which A:1 does not hold

for one agent while it holds for the other. One agent, on the one hand, has a prior

satisfying A:1 and A:2 and, therefore, he ends up learning the true parameter with the

implication that his one-period-ahead conditional probability converge to the truth.

The other agent, on the other hand, does not know that the data is generated by

i.i.d. draws from a common distribution (i.e., he has a wrong "model" in mind). For

some partial histories his one-period-ahead conditional probability is correct while

for some others it is incorrect. The appealing feature of this example is not only that

he survives but also the FEP property does not hold since agent 2 generates genuine

asset trading in�nitely often.

For simplicity, we assume there are only two states of nature every period, that

is K = 2. For a �xed prior satisfying A:1 and A:2 for agent 1, let �� 2 �1 be an
element of the support of agent 1�s prior belief such that �1;st

w! ��
�
, P �

� � a:s: By
Lemma 1 we know �� lies in a �1;0�full measure subset of �1. Choose also � 2 �1

and for each partial history st de�ne

ep� �� ��st � �
8>><>>:
�� (�) if �tk=1

ep�(skjsk�1 )
p1(skjsk�1 ) � 1

� (�) if �tk=1
ep�(skjsk�1 )
p1(skjsk�1 ) > 1

That is, ep� �� ��st � is given by the true one period-ahead conditional probability when-
ever the likelihood ratio �tk=1

ep�(skjsk�1 )
p1(skjsk�1 ) is smaller than or equal to one. When that

ratio is strictly greater than one, on the other hand, ep� �� ��st � is given by � 2 �1.
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Now we construct a probability measure on (S1;F) with the property that,
after each partial history st, its one period-ahead conditional probability coincides

with ep� �� ��st �. We begin de�ning probability measures n eP �t o1
t=1
on f(S1;Ft)g1t=0 as

follows:

eP �1 (s) � ep� (s1 js0 )eP �t+1 (s) � ep� �st+1 ��st � eP �t (s) 8s =
�
st; :::

�
and 8t � 1.

By the Kolmogorov�s Extension Theorem there exists a unique probability measureeP � on (S1;F) that coincides with n eP �t o1
t=1

when restricted to f(S1;Ft)g1t=0.23

Remark 3: If � = ��, then eP �� = P �� .
8.2.1 Agent 2�s priors

Now we are ready to de�ne agent 2�s priors. Clearly, there exists 0 < " < 1 such

that " < min f��; 1� ��g � max f��; 1� ��g < 1� ": De�ne

m� � argmin
"�m�1�"

(�� logm+ (1� ��) log (1�m)) ,

and let m�
t denote the i.i.d. random variable that takes values m� and 1 � m� in

states 1 and 2, respectively.24 Let ��t denote the i.i.d. random variable that takes

values �� and 1� �� in states 1 and 2, respectively.
Agent 1 knows the data is generated by i.i.d. draws from an unknown common

distribution and so his prior is

P1 (B) �
Z
�1
P � (B)�1;0 (d�) for any B 2 F .

The prior of agent 2 is

P2 (B) �
Z
�1

eP � (B)�2;0 (d�) = Z
�1

eP � (B)�m�
(d�) = ePm�

(B) ,

and agent 2�s one period ahead conditional probability is given by

p2;t+1 (s) �
P2;t+1 (s)

P2;t (s)
=
ePm�
t+1 (s)ePm�
t (s)

= epm� �
st+1

��st � .
Remark 4: Notice that agent 2�s one period-ahead probability is in�nitely often

bounded away from the true one period-ahead conditional probability and so he never

23Clearly, the family
n eP � : � 2 �1

o
consist of probability measures on (S1;F) such that for each

B 2 F , � ! eP � (B) is B ��1
�
�measurable.

24 (m�; 1�m�) is the probability distribution that minimizes entropy among those for which the
probability of state 1 is larger than ". This property guarantees thatm� is di¤erent from �� eventually.
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learns the true parameter. At �rst reading this seems to contradict Lemma 1 above.

However, that Lemma only asserts that for almost all possible parameters, according

to agent 2�prior belief, he almost surely learn the parameter value. But according to

agent 2�s prior belief, �� is in a zero measure set and so there is no reason to expect

consistency when �� is the true parameter generating the data.

The following proposition shows that the likelihood ratio of 2�s prior to 1�s prior

�uctuates at least between 1 and +1. The intuition behind this result is as follows.
On the one hand, the likelihood ratio cannot be both bounded away from and greater

than one eventually, i.e. one cannot have lim inf P2;t(s)P1;t(s)
> 1. If this were the case,

agent 2�s one-period-ahead conditional probability would be bounded away from the

truth eventually. Since agent 1�s one-period-ahead conditional probability converges

to the truth, the likelihood ratio would converge to zero almost surely. But this

contradicts the assumption that the likelihood ratio is greater than one eventually.

So, it must be the case that lim inf P2;t(s)P1;t(s)
� 1. On the other hand, the set of paths

where the likelihood ratio is greater than one in�nitely often has full measure. To see

this, consider its complement, the set of paths where the likelihood ratio is smaller or

equal to one in �nite time. On those paths, agent 2�s one-period-ahead conditional

probability is correct in �nite time and, since agent 1�s prior satis�es A:1 and A:2,

the likelihood ratio diverges almost surely, contradicting the initial assumption.25

Therefore, the set of paths where the likelihood ratio is smaller than or equal to one

in �nite time must have zero measure. To clinch the result notice that since the ratio

of one-period-ahead conditional probabilities is bounded away from one in�nitely

often, the likelihood ratio exceeds any pre-speci�ed upper bound in�nitely often on

the set of paths where the likelihood ratio is greater than one in�nitely often.26 Thus,

it must diverge along some subsequence of periods, i.e. lim sup P2;t(s)P1;t(s)
= +1.

Proposition 10 Suppose A.0 holds. If agent 1�s prior satis�es A:1 and A:2, then
lim inf

P2;t(s)
P1;t(s)

� 1 and lim sup P2;t(s)P1;t(s)
= +1 P �

� � a:s.

25 If agent 1 had a prior belief with countable support (so that A:2 does not hold) then the truth
would be absolute continuous with respect to 1�s prior and so the likelihood ratio would not diverge
even if 2 were correct every period.
26To see why, consider the event where the ratio of agent 2�s to agent 1�s one-period-ahead condi-

tional probabilities is bounded away from one. The conditional probability of that event is bounded
away from zero in�nitely often on the set of paths where the likelihood ratio is greater than one
in�nitely often. This is because only agent 1�s one-period-ahead conditional probability converges
to the truth on those paths. Therefore, the conditional probability of the event "the likelihood ratio
exceeds a pre-speci�ed upper bound in a �xed number of periods" is also bounded away from zero
in�nitely often on the set of paths where the likelihood ratio is greater than one in�nitely often. To
clinch the result we need to argue that such event actually occurs in�nitely often. An application of
Levy�s conditional form of the Second Borel-Cantelli Lemma shows the latter is true on the set of
paths where the likelihood ratio exceeds one in�nitely often.
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8.2.2 Dynamics of Portfolios: On the Failure of the FEP property

We consider again the economy described in Section 4 where portfolios are given

by (3). Proposition 10 makes it clear that agents 1 and 2 survive. Agent 1�s one-

period-ahead conditional probability converge to the truth while agent 2 makes mis-

takes in�nitely often. However, agent 2�s one-period-ahead conditional probability

are also correct in�nitely often. Whether this is su¢ cient to o¤set the disadvantage

stemming from his mistakes depends on the speed of agent 1�s learning process. As-

sumption A:2 ensures that this convergence rate is small enough to make both agents

survive. Moreover, since the likelihood ratio �uctuations do not damp out, wealth

�uctuations do not damp out either. It follows immediately that the FEP property

fails and, consequently, asset trading purely generated by heterogeneous priors does

not vanish. We summarize these results in the following proposition; the proof is

omitted since it is a direct consequence of Proposition 10 and the arguments above.

Proposition 11 Suppose A.0 holds. If agent 1�s prior satis�es A:1 and A:2, then,
P �

� � a:s:,
(a) agents 1 and 2 survive on s.

(b) the wealth of agent 1 is in�nitely often close to its lower bound on s.

(c) the FEP property does not hold asymptotically on s.

8.2.3 Further Remarks

In Sandroni�s [20] terminology, agent 1 eventually makes accurate next period

predictions while agent 2 does not and yet both agent survive. At a �rst glance,

then, Proposition 11 (a) might seem to contradict the results in Sandroni. However,

no contradiction exists because this example does not satisfy the assumptions of

his propositions. Indeed, his �rst result applies to the case in which the truth is

absolutely continuous with respect to some agent�s prior, an assumption that is not

satis�ed in this example (again, A:0, A:1 and A:2 rule out absolute continuity for

agent 1). His second result concerns economies where agents whose one-period-ahead

conditional probabilities converge to the truth coexist with others whose one-period-

ahead conditional probabilities are bounded away from the truth eventually. This

result does not apply either because agent 2 does not belong to any of these categories.

This example does not �t in the general setting described by Blume and Easley

[4] either since they only consider economies where every agent�s prior satis�es A:1.27

27They do have an example in which agent 1 satis�es A:1 while agent 2 does not and yet the
latter survives. However, their example di¤ers from ours in that agent 2 not only learns the true
one-period-ahead conditional probability but also, and most importantly, likelihood ratios converge
with probability one.
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That is, the margin of heterogeneity in priors they consider is the one arising from

di¤erences in the dimension of the agents�support. However, since nothing in the

Savage approach to decision making imposes assumption A:1, it is also important to

address the e¤ect of the margin of heterogeneity stemming from di¤erences in the

agents� likelihood functions (i.e., agents having mis-speci�ed models). We explore

that margin in example 4 and our �ndings, stated in Proposition 11, strongly suggest

that the additional assumption A:1 shuts down a margin of heterogeneity that might

be critical not only for survival but also for asset pricing and trading volume.

9 Concluding Remarks

If agents know that the data is generated by i.i.d. draws from a common distri-

bution and every agent has the true probability distribution over states of nature in

the support of her prior beliefs, then investors change their portfolios with the arrival

of new information but these changes necessarily vanish in any dynamically complete

markets equilibrium. Therefore, persistent changes in portfolios can be attributed

to di¤erences of opinion about the content of new information only if one assumes

that either (i) no agent learns the true conditional probability of the states or (ii)

some agent does not know the likelihood function generating the data or (iii) the

conditional probability of the states of nature changes along time.
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10 Appendix A

In this Appendix we show that (3), used throughout Examples 1 - 4, denotes the

equilibrium Arrow security holdings.

First, observe that the planner�s problem is

v�(s0; �0; �) = max
fcig2i=12Y1

2X
i=1

�i E
Pi

 1X
t=0

�t log ci;t

!
The �rst order conditions imply that

�i �
t Pi;t (s)

1

ci;t (s) (�)
= �t(s)(�) for all i, t and s, (21)

where �t(s)(�) denotes the Lagrange multiplier corresponding to the feasibility con-

straint at date t on s. The corresponding optimal allocation is fully characterized

by

ci;t (s) (�) =
�i Pi;t(s)

�i Pi;t(s)+�j Pj;t(s)
yt (s) for all i, t and s. (22)

Let �i;t(s)(�) =
�t(s)(�)
Pi;t(s)

and qi;t(s)(�) =
�i;t(s)(�)

�i;0(s)(�)
. Now, de�ne

Ai;0(�) = EPi

 1X
t=0

qi;t(�) (ci;t(�)� yi;t)
!

= EPi

 1X
t=0

qi;t(�)
�

�i Pi;t
�i Pi;t+�j Pj;t

� �i
�
yt

!
:

Using (21) and (22) it is easy to check that

Ai;0(�) =
y(s0)
1�� (�i � �i) :

It is a routine exercise to show that the PO allocation corresponding to (�1; �2) =

(�1; �2) can be decentralized as a competitive equilibrium with sequential markets

where a full set of Arrow securities can be traded. To pin down the corresponding

asset holdings, we �rst compute the value of excess demand at date t on path s

Ai;t(s) = EPi

0@ 1X
j=0

qi;t+j(�1;�2)
qi;t(�1;�2)

(ci;t+j(�1; �2)� �iyt+j)

������Ft
1A (s)

= �i y(st)
1��

"�
�i + �j

Pj;t�1(s)
Pi;t�1(s)

pj(stjst�1 )
pi(stjst�1 )

��1
� 1
#
:

Thus, equilibrium portfolios at date t are

a�
0

i;t(s) =
�i y(�

0)
1��

 �
�i + �j

Pj;t(s)
Pi;t(s)

pj(�
0jst )

pi(�
0jst )

��1
� 1
!
; �0 2 f1; 2g :
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11 Appendix B

In this Appendix we establish the results in Sections 4 and 5.

Proof of Lemma 2. Observe �rst that

pi(sk

���sk�1 ) = Z
�K�1

�(sk)�i;sk�1 (d�)

for any 1 � k � t. Then, we have thatZ
�K�1

P � (B)�i;st (d�) =

Z
�K�1

P � (B)
�(st)�i;st�1 (d�)R

�K�1 �(st)�i;st�1 (d�)

=
1

pi(st jst�1 )
:::

1

pi (s1 js0 ))

Z
�K�1

P � (B) �(st):::� (s1)�i;0 (d�)

=
1

Pi (C(st))

Z
�K�1

P � (Bst) �i;0 (d�)

=
Pi (Bst)

Pi (C(st))
= Pi;st (B) :

Before proving Theorem 3, we need some de�nitions and preliminary results. We

begin de�ning the utility possibility correspondence. In Lemma 12 we show that the

utility possibility correspondence is well-behaved and in Lemma 13 we characterize

the value function of the planner�s problem. Lemma 14 provides a useful representa-

tion of the utility possibility frontier. The results in these three Lemmas allow us to

de�ne the operator given by (10) - (12). In Proposition 15 we argue that the operator

has a unique �xed point and in Proposition 16 we show that the value function of

the planner�s problem v� is the unique �xed point of the operator.

Given the state of nature and prior beliefs at date zero, s0 = � and �0 ��
�1;0; :::; �I;0

�
= �, de�ne the utility possibility correspondence by

U(�; �) = fw 2 RI+ : 9 fcig
I
i=1 2 Y

1; UPii (ci) � wi 8i; s0 = �; �0 = �g:

Now we show that the utility possibility correspondence is well-behaved, i.e. it is

compact and convex-valued.

Lemma 12 U(�; �) is compact and convex-valued for all (�; �).

Proof of Lemma 12. Boundedness follows because Y1 is bounded: Convexity

follows from the strict concavity of ui:

To prove that U(�; �) is closed, take any sequence fwng such that wn 2 U(�; �)
for all n and wn ! w 2 RI+: Take the corresponding sequence fcng � Y1. Since Y1
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is compact under the sup-norm, there exists a convergent subsequence fcnkg such
that cnk ! c 2 Y1. Thus, it follows by de�nition that UPii (c

nk
i ) � w

nk
i for all k and

for all i: Since ui is continuous and C is compact, then UPii is continuous under the

sup-norm. Thus, it follows that UPii (ci) � wi; for all i. Consequently, w 2 U(�; �) by
de�nition and U(�; �) is closed.

The following result characterizes the value function v� and hints how to restrict

the set of functions to consider in (10)-(13).

Lemma 13 The value function v�(�; �; �) is bounded and continuous for all (�; �; �).
Moreover, v� is homogeneous of degree 1 (hereafter HOD 1) and increasing in �:

Proof of Lemma 13. Boundedness follows because Y1 is bounded and � 2
(0; 1). Let Y k � fc 2 Y : ci(st) � ci;t (s) = 0 for all t � kg be the k�truncated set of
feasible allocations. Note that Y k � Y k+1 � Y1 and de�ne

v�k(�; �; �) � max
c 2 Y k

X
i2I

�i U
Pi
i (ci)

Suppose that
n
(�ni )

I
i=1

o
is a sequence of probability measures such that �ni converges

weakly to �i 2 P(�K�1) for all i: Given k; note that

kX
t=0

�t
Z
�K�1

 X
st

P �
�
C(st)

�
ui(ci(s

t))

!
�ni (d�) ;

converges to
kX
t=0

�t
Z
�K�1

 X
st

P �
�
C(st)

�
ui(ci(s

t))

!
�i (d�) ;

since P �
�
C(st)

�
is continuous and bounded for all t and st. Thus, it follows from the

Maximum Theorem that v�k(�; �; �) is continuous in (�; �) for all �.

Note that v�k(�; �; �) � v�k+1(�; �; �) � v�(�; �; �) for all (�; �; �):Hence, v�k(�; �; �)!
v�(�; �; �) for each (�; �; �) since there exists some c� 2 Y1 attaining v�(�; �; �): Now
we show that this convergence is uniform.

Given any (�; �; �); let c� 2 Y1 attain v�(�; �; �) and de�ne c�k as its k�truncated
version: Then,

0 � v�(�; �; �)� v�k(�; �; �) �
IX
i=1

�i(U
Pi
i (c

�
i )� UPii (c

�k
i )) �

�k

1� � maxi ui(y):

Since � 2 (0; 1), this convergence is uniform (i.e., the RHS is independent of (�; �; �))
and thus v�(�; �; �) is continuous.
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We now show that the set of PO allocations can be parametrized by welfare

weights �. Indeed, it is straightforward to prove that

v�(�; �; �) = sup
w 2 U(�;�)

IX
i=1

�i � wi; (23)

Notice that the maximum in (23) is attained since the problem consists in maximizing

a continuous function on a set that is compact by Lemma 12.

The next result shows that the continuation utility levels lie in the utility possi-

bility set if and only if (12) is satis�ed.

Lemma 14 w 2 U(�; �) if and only if w � 0 and mine�2�I�1
h
v(�; e�; �)�PI

i=1 e�i wii �
0.

Proof of Lemma 14. We �rst show that w 2 U(�; �) if and only if w � 0 and
v�(�; �; �) � �w for all � 2 �I�1. To see this, observe �rst that for any w 2 U(�; �);
it follows by de�nition (23) that v�(�; �; �) � �w for all � 2 �I�1.

To show the converse, suppose that w � 0 and v�(�; �; �) � �w for all � 2 �I�1

but w =2 U(�; �): This implies that @ ew 2 U(�; �) such that ew � w: Since U(�; �) is
convex, it follows by the separating hyperplane theorem that 9 � 2 RI+=f0g such that
�w � � ew for all ew 2 U(�; �): Since U(�; �) is closed, �w > � ew for all ew 2 U(�; �),
where � can be normalized such that � 2 �I�1: But then v�(�; !; �) � ! w > ! ew for
all ew 2 U(�; �): This contradicts (23).

Finally, observe that v�(�; �; �) � �u for all � 2 �I�1; is satis�ed if and only if

mine�2�I�1
"
v(�; e�; �)� IX

i=1

e�i wi# � 0.

Now we de�ne the domain where the operator is de�ned. De�ne

F � ff : S � RI+ � P(�K�1)! R+ : f is continuous and kfk <1g:
FH � ff 2 F : f is increasing and HOD 1 in �g

FH is a closed subset of the Banach space F and thus a Banach space itself.

Continuity is with respect to the weak topology and thus the metric on F is induced

by k:k :
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For any v 2 FH , de�ne the operator

(Tv) (�; �; �) = max
(c;w0(�0))

X
i2I

�i

8<:ui(ci) + �X
�0

Z
�K�1

�(�0)�0i(�; �) (d�)w
0
i(�

0)

9=; (24)

subject to

IX
i=1

ci = y(�) for all �; ci � 0; w0(�0) � 0 for all �0, (25)

mine�2�I�1
"
v(�0; e�; �0(�; �))� IX

i=1

e�i w0i(�0)
#
� 0 for all �0, (26)

where

�0i(�; �) (B) =

R
B �(�) �i (d�)R

�K�1 �(�) �i (d�)
for any B 2 B(�K�1). (27)

In the following proposition we establish that the operator T is a contraction on

FH and then we apply standard arguments to show that the operator has a unique

�xed point in FH . Furthermore, Proposition 16 below shows that the value function

(6) is, indeed, the unique solution to (24)-(27).

Proposition 15 There is a unique function v 2 FH solving (24)-(27) and the cor-

responding policy functions are continuous.

Proof of Proposition 15. We �rst show that T : FH ! FH .

Suppose that f 2 FH : Since ui(ci) � maxui(y) and 0 � w0i(�0) �
f(�0) for all

i and all �0, it follows that kTfk < 1: Since �0(�; �) is weakly continuous in � for
all � (Easley and Kiefer [8, Theorem 1]), it follows by the Maximum Theorem that

(Tf) (�; �; �) is continuous in (�; �) for all � (Easley and Kiefer [8, Theorem 3]). Note

that this implies that there exists a solution that attains (Tf) (�; �; �):

Observe that �0(�; �) does not depend on � and consequently the constraint cor-

respondence is independent of welfare weights. Thus, it follows from standard argu-

ments that (Tf) (�; �; �) is HOD 1 and increasing in �. Consequently, T : FH ! FH :

Now we show that the operator T satis�es Blackwell�s su¢ cient conditions.

(i) Monotonicity. Suppose that f � g: Then, if for all �0

mine�2�I�1
"
f(�0; e�; �0(�; �))� IX

i=1

e�iw0i(�0)
#
� 0;
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it follows that

mine�2�I�1
"
g(�0; e�; �0(�; �))� IX

i=1

e�iw0i(�0)
#

� mine�2�I�1
"
f(�0; e�; �0(�; �))� IX

i=1

e�iw0i(�0)
#
� 0:

and then the constraint set is enlarged. Consequently, (Tv) (�; �; �) � (Tg) (�; �; �)
for all (�; �; �):

(ii) Discounting. Consider any arbitrary a > 0 and let
�bc; bw0(�0)� attain T (f +a).

Fix (�0; �0(�; �)); denote f(e�) = f(�0; e�; �0) and de�ne
Ua � fw 2 RI+ : f(e�) + a � � � w; 8e� 2 �I�1g;
B � fw 2 RI+ : w � w0 + a; for some w0 2 U0g:

To show thatB � Ua, notice that w 2 B implies that e��w � e��(w0 + a) � f (e�)+a
for all e� 2 �I�1, since w0 2 U0 implies e� � w0 � f (e�) for all e� 2 �I�1.

To check that Ua � B, consider any w 2 Ua: There are three cases to consider
corresponding to di¤erent regions in Figure 1 below. (i) If w � a (see Region I, Figure
I), let w0 = 0 2 U0 and thus w 2 B (see Region I). (ii) If w � a (see Region II); let
w0 = w � a � 0 and thus w0 2 U0 since for any e� 2 �I�1, e� � w0 = e� � (w � a) =e� � w � a � f(e�).

(iii) To consider the third case (see Regions III and IV), suppose to simplify that

I = 2 and let w1 � a and w2 < a. Fix w2, let e� 2 [0; 1] and de�ne
Ua1 (w2) � fw1 � 0 : f(e�; 1� e�) + a � e�w1 + (1� e�)w2; 8e� 2 [0; 1]g

= fw1 � 0 : f(e�; 1� e�) + (a� w2) � e�(w1 � w2); 8e� 2 [0; 1]g:
De�ne wa1(w2) � supUa1 (w2) and note that

wa1(w2) = min
0�e��1

�
f(e�; 1� e�)e� +

(a� w2)e�
�
+ w2

= min
0�e��1

�
f(1;

1e� � 1) + (a� w2)e�
�
+ w2

= f(1; 0) + (a� w2) + w2 = f(1; 0) + a;

where the second line follows from HOD 1 and the last line from the monotonic-

ity assumption about f and (a � w2) > 0. Very importantly, note that wa1(w2) is

independent of w2 for all w2 � a, i.e. wa1(w2) = wa1 = f(1; 0) + a for all w2 � a.
De�ne w0 = (f(1; 0); 0) � 0 and let e� 2 �I�1. If e�1 = 0, then e� �w0 = 0 � f (e�) :

If e�1 > 0; then
f (e�) = e�1 f �1; e�2e�1

�
� e�1 f (1; 0) = e� � w0;
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and thus w0 2 U0.28 Finally, notice that w � (wa1; a) = w0 + a and w0 2 U0:

Consequently, we can conclude that B = Ua: See Figure 1 below.

f(0,1)+af(0,1)

a

a

I

II

III

IV

Ua

U0

u2

u1

f(1,0)

f(1,0)+a

Figure 1:

Notice that if (bc; bw0) attain T (f + a); then there exists ew0(�0) 2 U0 such thatew0(�0) � bw0(�0) � a for all �0: By monotonicity, �bc; ew0(�0) + a� also attain T (f + a):
Observe that for any (�; �; �); it follows by de�nition that

Tf(�; �; �) �
IX
i=1

�ifui(bci) + �X
�0

Z
�K�1

�(�0)�0i(�; �) (d�) ew0i(�0)g;
28We underscore here that without assuming that f is HOD 1 and monotone (i.e., f 2

FH), this result does not necessarily hold. More precisely, these assumptions guarantee that

argmin
�
f(e�;1�e�)e� + a�w2e�

�
= 1: If any of these two assumptions is not satis�ed (i.e., f =2 FH),

on the other hand, it is easy to construct examples such that

wa1 = min

�
f(e�; 1� e�)e� +

a� w2e�
�
> min

f(e�; 1� e�)e� +min
a� w2e� = w01 + a� w2:
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and thus
T (f + a)(�; �; �)� Tf(�; �; �)

�
IX
i=1

�ifui(bci) + �X
�0

Z
�K�1

�(�0)�0i(�; �) (d�) ( ew0i(�0) + a)g
�

IX
i=1

�ifui(bci) + �X
�0

Z
�K�1

�(�0)�0i(�; �) (d�) ew0i(�0)g
= �a;

and therefore, since (�; �; �) was arbitrarily chosen, we can conclude that the operator

T satis�es discounting. Consequently, it follows by the contraction mapping theorem

that there exists a unique v 2 FH such that v = Tv:

Proposition 16 v� 2 FH is the unique solution to (24) - (27).

Proof. Given s0 = � and ci 2 C; de�ne for each �0

�0ci = f�0ci(st) = ci(st) for all t � 1 : (s0; s1) =
�
�; �0

�
g;

as the �0�continuation of ci: Also, let

Pi;�0(s
t) =

Pi(C(s
t))R

�K�1 �(�
0)�0i(�; �) (d�)

;

for all st such that t � 1. Note that

v�(�; �; �) = max
u2U(�;�)

IX
i=1

�iui = max
c2Y1

X
i2I

�iU
Pi
i (ci)

= max
c2Y1

IX
i=1

�i

8<:ui(ci(�)) + �X
�0

Z
�K�1

�(�0)�0i(�; �) (d�)U
Pi;�0
i (�0ci)

9=;
= max

c2Y
w0(�0)2U(�0;�0(�;�))

IX
i=1

�i

8<:ui(ci(�)) + �X
�0

Z
�K�1

�(�0)�0i(�; �) (d�)w
0
i(�

0)

9=;
= max

c2Y
w0(�0)�0

IX
i=1

�i

8<:ui(ci(�)) + �X
�0

Z
�K�1

�(�0)�0i(�; �) (d�)w
0
i(�

0)

9=;
subject to

h
v�(�0; e�; �0(�; �))�PI

i=1 e�iw0i(�0)i � 0 for all e� 2 �I�1: Here, the second
line follows from the de�nition of UPii (ci); the third follows from the de�nition of

U(�0; �0(�; �)) and the last from Lemma 5. Consequently, v� uniquely solves (RPP)

by de�nition.
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Theorem 3 uses our previous results to conclude that the corresponding version

of the principle of optimality holds in our setting.
Proof of Theorem 3. Now we show that the set of policy functions (c; �0; w

0
)

solving (RPP) generates a Pareto optimal allocation. Suppose, on the contrary, that

the allocation (c�i )
I
i=1 generated by the policy functions is not Pareto optimal. Then,

there exists an alternative allocation (bc�i )Ii=1such that
IX
i=1

�i

8<:ui(c�i (�)) + �X
�0

Z
�K�1

�(�0)�0i(�; �) (d�)U
Pi;�0
i (�0c

�
i )

9=;
>

IX
i=1

�i

8<:ui(bci(�)) + �X
�0

Z
�K�1

�(�0)�0i(�; �) (d�)U
Pi;�0
i (�0bci)

9=;
= v�(�0; �0; �0(�; �))

Observe that
PI
i=1 c

�
i (�) = y(�) and

�
U
Pi;�0
i (�0c

�
i )
�I
i=1

2 U(�0; �0(�; �)) for all �0.
It follows by Lemma 14 that

v�(�0; e�; �0(�; �)) � IX
i=1i

e�iUPi;�0i (�0c
�
i )

for all e� 2 �I�1 and all �0: But this contradicts that the policy functions (c; �0; w0
)

solves (RPP) for v�:

On the other hand, since the argument holds for any arbitrary feasible bc; the
converse follows and, thus, we can conclude that any PO allocation (c�i )

I
i=1 coupled

with its corresponding
�
U
Pi;�0
i (�0c

�
i )
�I
i=1

solve (24) - (27).

Proof of Theorem 4. Let F be de�ned as before. Consider the alternative

operator eT de�ned by
( eTM)(�; �; �) = (ci(�; �)� yi(�))u01(c1(�; �))

+
X
�0

�

Z
�K�1

�(�0)�01(�; �) (d�) M(�
0; �0(�; �; �)(�0); �0(�; �)).

Step 1. First we check that eT : F ! F: Suppose that M 2 F: Consider �rstX
�0

�

Z
�K�1

�(�0)�01(�; �) (d�) M(�
0; �0(�; �; �)(�0); �0(�; �)), (28)

and observe that �0 and �0 are both continuous. Also, it follows by de�nition

that
R
�K�1 �(�

0)�01(�; �) (d�) is continuous. Thus, the expression 28 is continuous

in (�; �; �): Since M is bounded, its boundedness follows fromX
�0

Z
�K�1

�(�0)�01(�; �) (d�) = 1.
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Notice now that @u1(c1(�;�))@c1
= �i

�1

@ui(ci(�;�))
@ci

for all i. Since ui is concave for all i,

it follows that

0 � c@ui(c)
@ci

� ui(c) � ui(y),

for all c > 0. Also, observe that this implies that

0 � yi
@u1(c1)

@c1
� y @u1(c1)

@c1
=

 
IX
i=1

ci

!
@u1(c1)

@c1
� u1(y)I.

Consequently, (ci(�; �)� yi(�)) @u1(c1(�;�))@c1
is uniformly bounded. Clearly, it is

also continuous since the policy functions are continuous. Thus, we can conclude

that eTM 2 F .
Step 2. Now we check that eT satis�es Blackwell�s su¢ cient conditions and, thus,

it is a contraction mapping.

We start with discounting. Consider any a > 0 and note that

eT (M + a)(�; �; �) = (ci(�; �)� yi(�))
@u1(c1(�; �))

@c1

+
X
�0

�

Z
�K�1

�(�0)�0i(�; �) (d�) M(�
0; �0(�; �; �)(�0); �0(�; �)) + �a:

= ( eT (M)(�; �; �) + �a.
Monotonicity is obvious. IfM(�; �; �) � D(�; �; �) for all (�; �; �), it is immediate

that ( eTM)(�; �; �) � ( eTD)(�; �; �) for all (�; �; �).
Therefor, we can apply the contraction mapping theorem to conclude that eT is a

contraction with a unique solution Mi 2 F for each i.
To complete the proof, de�ne Ai(�; �; �) = Mi(�; �; �)=u

0
1(c1(�; �; �)): It can be

checked immediately that Ai is a continuous function which is the unique �xed point

of the operator T de�ned by (17) Notice thatX
i

Ai(�; �; �) =
X
i

(ci(�; �)� yi(�)) +
X
i

X
�0

M(�; �; �)(�0)Ai(�
0; �0; �0)(29)

=
X
�0

M(�; �; �)(�0)
X
i

Ai(�
0; �0; �0):

Note that the operator de�ned by (29) has a unique solution as well. SinceR(�; �; �) =

0 for all (�; �; �) solves (29), it follows by uniqueness thatX
i

Ai(�; �; �) = 0; for all (�; �; �).

Step 3. Finally, we show that there exists some �0 = �(s0; �0) such thatAi(s0; �0; �0) =

0 for all i, given (s0; �0).
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Note �rst that if �i = 0; then ci(�; �) = 0 and consequently Ai(�; �; �) < 0 for all

(�; �): De�ne the vector-valued function g on �I�1 as follows:

gi(�) =
max[�i �Ai(s0; �; �0); 0]P
imax[�i �Ai(s0; �; �0); 0]

, (30)

for each i: Note that H(�) =
P
imax[�i�Ai(s0; �; �0); 0] is positive for all � 2 �I�1.

Also, gi(�) 2 [0; 1] and
P
i gi(�) = 1 for all �: Thus, g is a continuous function

mapping �I�1 into itself. The Brower�s �xed point theorem implies that there exists

some �0 = �(s0; �0) such that �0 = g(�0).

Suppose now that �i;0 = 0 for some i. By de�nition (30), this implies that

�Ai(s0; �0; �0) � 0: But we have already argued that �Ai(s0; �0; �0) > 0 if �i;0 =

gi(�0) = 0. This would lead to a contradiction and, hence, �i;0 > 0 for all i. This

implies that �i;0 �Ai(s0; �0; �0) > 0 for all i. Therefore,

H(�0)�i;0 = H(�0)gi (�0) = max[�i;0 �Ai(s0; �0; �0); 0] = �i;0 �Ai(s0; �0; �0).

This implies that H(�0) = H(�0)
P
i �i;0 =

P
i �i;0 �

P
iAi(s0; �0; �0) = 1. There-

fore, �i;0 = �i;0 �Ai(s0; �0; �0) for all i and thus Ai(s0; �0; �0) = 0 for all i.

12 Appendix C

In this Appendix we establish the results in Sections 6 and 7.

Proof of Proposition 6. Since the support of agent i�s prior belief is countable,

then the true probability distribution over paths is absolutely continuous with respect

to agent i�s prior distribution. By Proposition B.2 in Sandroni [20], P �
� � a:s:,

0 < lim
t!1

Pi;t(s)

P �
�

t (s)
<1, (31)

and since P �
�
is not absolutely continuous with respect to P � for all � 6= ��, then

P �
�
is not absolutely continuous with respect to

X
� 6=��

P �t (s)
�i;0(�)

1��i;0(�)
. It follows by

Propositions B.1 and B.2 in Sandroni [20] that, P �
� � a:s:,

lim
t!1

X
� 6=��

P �t (s)
�i;0(�)

1��i;0(��)

P �
�
t (s)

= 0. (32)
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Therefore, P �
� � a:s:,

lim
t!1

Pi;t(s)

P �
�

t (s)
= �i;0 (�

�) + lim
t!1

X
� 6=��

P �t (s)�i;0 (�)

P �
�
t (s)

= �i;0 (�
�) +

�
1� �i;0 (��)

�
lim
t!1

X
� 6=��

P �t (s)
�i;0(�)

1��i;0(��)

P �
�
t (s)

= �i;0 (�
�)

where the last equality follows by (32).

The following Theorem, due to Phillips and Ploberger [19, page 392], will be

used in the proof of Proposition 8. Before stating the Theorem, we introduce some

notation. Let �� �
�
1
�� +

1
1���

�
. Let Qh;t be the measure de�ned by the following

Radon Nykodim derivative

Qh;t (s)

P �
�
t (s)

=

p
2 � fh (��)

B
1=2
t (s)

elt(
b�t(s)), (33)

where lt (�) � ln P �t
P �

�
t

, b�t is the Maximum Likelihood Estimator (MLE) of �, Bt (�) is

the conditional quadratic variation of the score and Bt = Bt (��).

Theorem 17 (Phillips and Ploberger) Assume the following conditions hold:
(C1) lt (�) is twice continuously di¤erentiable with derivatives l

(1)
t (�) and l(2)t (�).

(C2) Under P �t , l
(1)
t (�) is a zero mean L2 martingale and lim

t!1
Bt (�)!1, P ��a.s.

(C3) lim
t!1

l
(2)
t (�)
Bt(�)

+ 1 = 0 P ��a.s.
(C4) There exist continuous functions wt

�
�; �0

�
such that wt (�; �) = 0 and such that

for some � > 0 and for all �; �0 2 N� (��) = f� : j� � ��j < �g we have

l
(2)
t (�)� l(2)t

�
�0
�

Bt
� wt

�
�; �0

�
P �

� � a:s: for each t � 0,

lim
t!1

wt
�
�; �0

�
= w1

�
�; �0

�
P �

��a.s. uniformly for �; �0 2 N� (��) and w1 (�; �) = 0.

(C5) lim
t!1

b�t = ��, P ���a.s.
(C6) For any � > 0 and !� = f� : j� � ��j � �g we have

lim
t!1

B
1=2
t

Z
!�

f (�)
P �t (s)

P �
�
t (s)

d� = 0 P �
� � a.s.

(C7) The density of the prior belief, f (�), is continuous at �� with f (��) > 0.

If Qh;t is the measure de�ned by the Radon Nykodim derivative in (33), then

lim
t!1

Ph;t(s)

P �
�

t (s)

Qh;t(s)

P �
�

t (s)

= 1 P �
� � a.s.
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Proof of Proposition 8. We need to verify that (C.1) - (C.7) in Theorem 17

hold. Let nt be the number of times that state 1 has occurred up to date t.

(C.1) holds trivially since ln P �t
P �

�
t

= ln �nt (1��)t�nt
(��)nt (1���)t�nt is twice continuously di¤er-

entiable.

(C.2) holds because l(1)t (�) = nt
� �

t�nt
1�� and so

EP
�
st�1

h
l
(1)
t (�)

i
= �

�
n1;t�1 + 1

�
� n2;t�1
1� �

�
+ (1� �)

�
n1;t�1
�

� n2;t�1 + 1
1� �

�
=

�
n1;t�1 + 1�

�

1� �n2;t�1
�
+

�
1� �
�

n1;t�1 � n2;t�1 � 1
�

=

�
n1;t�1 +

1� �
�

n1;t�1

�
�
�
�

1� �n2;t�1 + n2;t�1
�

=
n1;t�1
�

� n2;t�1
1� �

= l
(1)
t�1 (�) .

Let "k (�) = l
(1)
k (�)� l(1)k�1 (�). Then "k (�) takes values

1
� and �

1
1�� with probabilities

� and 1� �. Therefore,

Bt (�) =
Xt

k=1
EP

�
st�1

h
"k (�)

2
i

=
Xt

k=1

 
�

�
1

�

�2
+ (1� �)

�
� 1

1� �

�2!

=
Xt

k=1

�
1

�
+

1

1� �

�
= t

�
1

�
+

1

1� �

�
and we conclude that Bt (�)!1 P ��a.s., as t!1.

(C.3) Notice that by the SLLN,

l
(2)
t (�)

Bt (�)
=
�
�
n1;t
�2
+

n2;t
(1��)2

�
t
�
1
� +

1
1��

� ! �1 P � � a:s:; as t!1.

so the desired result holds.

(C.4) De�ne wt
�
�; �0

�
= w1

�
�; �0

�
�

max

�
1

(�0)2
� 1
�2
; 1

(1��0)2
� 1

(1��)2

�
1
��+

1
1���

. Clearly, wt
�
�; �0

�
is continuous, wt (�; �) = w1 (�; �) = 0 and, trivially, wt

�
�; �0

�
! w1

�
�; �0

�
a:s:
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�
P �

��
uniformly for every �; �0 2 N� (��). In addition,

l
(2)
t (�)� l(2)t

�
�0
�

Bt
=

n1;t

�
1

(�0)2
� 1

�2

�
+ n2;t

�
1

(1��0)2
� 1

(1��)2
�

t
�
1
�� +

1
1���

�
=

n1;t
t

�
1

(�0)2
� 1

�2

�
+

n2;t
t

�
1

(1��0)2
� 1

(1��)2
�

�
1
�� +

1
1���

�
� wt

�
�; �0

�
P �

� � a:s:

(C.5) Notice that b�t = n1;t
t ! �� P �

� � a:s: by the SLLN.
(C.6) By the SLLN, we can take T (s) such that for all t � T (s) a:s: P �

�
,

n1;t
t 2 (�� � �=2; �� + �=2). In addition, there exists e� such that for every � 2 !�,

sup
x2(����=2;��+�=2)

�x(1��)1�x

(��)x(1���)1�x � 1�
e�. Then,

B
1=2
t

Z
!�

f (�)
P �t
P �

�
t

d� = B
1=2
t

Z
!�

f (�)
�n1;t (1� �)n2;t

(��)n1;t (1� ��)n2;t d�

= B
1=2
t

Z
!�

f (�)

 
�
n1;t
t (1� �)

n2;t
t

(��)
n1;t
t (1� ��)

n2;t
t

!t
d�

� B
1=2
t

�
1� e��t

=
p
t ��

�
1� e��t

where the inequality in the third line holds P �
� � a:s: The result follows because

p
t
�
1� e��t ! 0 as t!1.
(C.7) It follows by assumption (A.2).

Proof of Proposition 10. We begin with four Lemmas that will be useful to
prove the main result. Lemma 18 shows that the set of paths where lim inf P2;t(s)P1;t(s)

� 1
has full measure. Lemma 21 argues that lim sup P2;t(s)P1;t(s)

= +1 on the set of paths

where the likelihood ratio is greater than one in�nitely often. Lemmas 22 and 23

show that the latter set also has full measure.

Lemma 18 P � a:s:, lim inf P2;t(s)P1;t(s)
� 1.

Proof of Lemma 18. Consider 
1 �
n
s : lim inf

P2;t(s)
P1;t(s)

> 1
o
. For each s 2 
1

there exists T2 (s) such that

P2;t (s)

P1;t (s)
> 1 8t � T2 (s) .
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Since, P �
� � a:s:, p1;t (s) ! �� (st) there exists T1 (s) such that for every t � T1 (s),

" < p1;t (s) < 1 � ". Let T (s) � max fT1 (s) ; T2 (s)g. On the one hand, by the
de�nition of P2 one has that for every s 2 
1,

TY
t=T (s)

m�
t (s)

p1;t (s)
=

TY
t=T (s)

p2;t (s)

p1;t (s)
>
P2;T (s) (s)

P1;T (s) (s)
> 0 8T � T (s) .

and it follows that


1 �
(
s : lim inf

T!1

TY
t=1

m�
t (s)

p1;t (s)
> 0

)
(34)

On the other hand, by the SLLN for uncorrelated random variables with uniformly

bounded second moments, P �
� � a:s,

1

T

TX
t=1

�
log

�
m�
t (s)

p1;t (s)

�
� EP �

�
�
log

m�
t

p1;t
jFt�1

��
! 0 as T !1.

and, P �
� � a:s:, since p1;t (s)! �� (st) we also have that

1

T

TX
t=1

EP
��
�
log

m�
t

p1;t
jFt�1

�
! EP

��
�
log

m�
t

��t

�
< 0 as T !1.

It follows that, P �
� � a:s,

1

T

TX
t=1

log

�
m�
t (s)

p1;t (s)

�
! EP

��
�
log

m�
t

��t

�
< 0 as T !1,

and so, P �
� � a:s,
TX
t=1

log

�
m�
t (s)

p1;t (s)

�
! �1 as T !1,

TY
t=1

m�
t (s)

p1;t (s)
! 0 as T !1.

But then, (34) implies that 
1 lies in a zero measure subset of 
, as desired.

We continue with two results that we will need to prove Lemma 21. The �rst

is Levy�s conditional form of the Second Borel-Cantelli Lemma which follows from

a more general result due to Freedman [10, Proposition 39] and is stated without

proof as Lemma 19. The second result, stated in Lemma 20, shows that on any path

on which some event occurs in�nitely often, the event consisting of the �rst event

followed by any �nite string of realizations of state 1 also occurs in�nitely often.

For an event E 2 F , let 1E denote the indicator function. Recall that

f
t i:o:g =
(
s :

1X
t=1

1
t(s) = +1
)
.
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Also, de�ne


N1;t = fs : st�N = ::: = st = 1g .

Lemma 19 (Levy�s Conditional form of the 2nd Borel-Cantelli Lemma) Let
f
tg1t=0 be a sequence of events adapted to the �ltration fFtg1t=0. Then

1X
t=1

1
t(s) = +1 P � a:s: s 2
�es : 1X

t=1

EP [1
t jFt�1 ] (es) = +1�.
Lemma 20 Let f
tg1t=0 be a sequence of events adapted to the �ltration fFtg1t=0.
Then

8N � 1
1X
t=1

1
t�N\
N1;t
(s) = +1 P �

� � a:s: s 2 f
t i:o:g .

Proof of Lemma 20. Notice that

s 2 
t�N\
N�11;t�1 ) EP
��
h
1
t�N\
N1;t

���Ft�1i (s) = P �� �st = 1����Ft�1� (s) = �1 > 0,
where we use the convention that 
01;t = 
 to handle the case where N = 1.

For s 2 f
t i:o:g arbitrarily chosen, there exists a sequence ftkg1k=1 such that
s 2 
tk for every k = 1; 2; � � � . Since 
01;t = 
, s 2 
(tk+1)�1 \ 


1�1
1;(tk+1)�1 and

therefore

1X
t=1

EP
��
h
1
t�1\
11;t

���Ft�1i (s) �
1X
k=1

EP
��
h
1
(tk+1)�1\


1
1;tk+1

���Ftki (s)
�

1X
k=1

P �
�
�
stk+1 = 1

����Ftk� (s) = +1,
and it follows by Lemma 19 that

P1
t=1 1
t�1\
11;t(s) = +1 P �

� � a:s: s 2 f
t i:o:g.
Suppose that the result holds for N � 1. So, for P ��-a.s. s 2 f
t i:o:g arbitrarily

chosen there exists ftkg1k=1 such that s 2 
tk�(N�1)\

N�1
1;tk

= 
(tk+1)�N \

N�1
1;(tk+1)�1

so that

1X
t=1

EP
��
h
1
t�N\
N1;t

���Ft�1i (s) �
1X
k=1

EP
��
h
1
(tk+1)�N\


N
1;tk+1

���Ftki (s)
�

1X
k=1

P �
�
�
stk+1 = 1

����Ftk� (s) = +1,
and it follows by Lemma 19 that

P1
t=1 1
t�N\
N1;t

(s) = +1 P �
� �a:s: s 2 f
t i:o:g.

That completes the induction argument and the proof.
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Lemma 21 P �
� � a:s: s 2

nes : P2;t(es)P1;t(es) > 1 i.o.
o
, lim sup P2;t(s)P1;t(s)

= +1.

Proof of Lemma 21. Let s 2
nes : P2;t(es)P1;t(es) > 1 i.o.

o
and a > 1. Since p1;t (s)!

�� (st), there exists T (s) such that for every t � T (s), �� (st) � "
2 � p1;t (s) �

�� (st) +
"
2 . Without loss of generality, suppose m

� > �� + "
2 . Let T

a be the smallest

integer such that
�

m�

��+ "
2

�T
> a. Consider the event


T
a

1;t �
�es : P2;t�1�Ta (es)

P1;t�1�Ta (es) > 1 and est�Ta = ::: = est = 1
�
.

By Lemma 20 it follows that s 2
�

T

a

1;t i.o.
	
P �

� � a:s: s 2
nes : P2;t(es)P1;t(es) > 1 i.o.

o
.

Therefore, P �
� � a:s: s 2

nes : P2;t(es)P1;t(es) > 1 i.o.
o
, there exists a subsequence ftkg1k=0

such that s 2 
Ta1;tk and so

P2;tk (s)

P1;tk (s)
=

p2;tk (s)

p1;tk (s)
� � � p2;tk�T

a (s)

p1;tk�Ta (s)

P2;tk�1�Ta (s)

P1;tk�1�Ta (s)

=
m�

p1;tk (s)
� � � m�

p1;tk�Ta (s)

P2;tk�1�Ta (s)

P1;tk�1�Ta (s)

>
m�

p1;tk (s)
� � � m�

p1;tk�Ta (s)

>

�
m�

�� + "
2

�Ta+1
> a,

where the �rst inequality uses the property that
P2;tk�1�Ta (s)

P1;tk�1�Ta (s)
> 1. It follows that

lim sup
t!1

P2;t (s)

P1;t (s)
> a, P �

� � a:s: s 2
�es : P2;t (es)

P1;t (es) > 1 i.o.
�
.

Since a was arbitrarily chosen, it follows that

lim sup
t!1

P2;t (s)

P1;t (s)
= +1, P � a:s: s 2

�es : P2;t (es)
P1;t (es) > 1 i.o.

�
,

as desired.

Lemma 22 P �
� � a:s: s 2

nes : lim sup P2;t(es)P1;t(es) � 1
o
, there exists T (s) such that

P2;t(s)
P1;t(s)

� 1 8t � T (s)

Proof of Lemma 22. Let 
1 �
nes : lim sup P2;t(es)P1;t(es) � 1 and P2;t(es)

P1;t(es) > 1 i.o.
o
.

Let s 2 
1. Since 
1 �
nes : P2;t(es)P1;t(es) > 1 i.o.

o
, then by Lemma 21

lim sup
P2;t (s)

P1;t (s)
= +1 P �

� � a:s: s 2 
1,

and it follows that P �
�
(
1) = 0, as desired.
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Lemma 23 P2;t(s)
P1;t(s)

> 1 i.o. P �
� � a:s:

Proof of Lemma 23. Let 
1 �
n
s : 9T (s) such that P2;t(s)P1;t(s)

� 1 8t � T (s)
o
.

Then, for every s 2 
1
tY

k=T (s)

p2;k (s)

p1;k (s)
�
P1;T (s)�1 (s)

P2;T (s)�1 (s)
<1 for all t � T (s) .

By de�nition of agent 2�s priors,

tY
k=T (s)

p2;k (s)

p1;k (s)
=

tY
k=T (s)

��k (s)

p1;k (s)
8s 2 
1.

and it follows that


1 �
(
s : lim sup

T!1

TY
t=1

��t (s)

p1;t (s)
< +1

)
(35)

Since A:2 implies that P �
�
is not absolutely continuous with respect to P1, it follows

by Sandroni [20, Propositions B.1 and B.2.] that

tY
k=T (s)

��k (s)

p1;k (s)
! +1 as t!1,

and so (35) implies that 
1 lies in a zero measure subset of 
. It follows that,

P �
� � a:s:, P2;t(s)P1;t(s)

> 1 i.o.

Now we conclude the proof of Proposition 10 arguing that, P�a:s:, lim sup P2;t(s)P1;t(s)
=

+1. Indeed, on the one hand by Lemma 22 and Lemma 23, P ���a:s:, lim sup P2;t(s)P1;t(s)
>

1. On the other hand, by Lemmas 21 and 23 one concludes that, P �
� � a:s:,

lim sup
P2;t(s)
P1;t(s)

= +1. �
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