Originally published in Library Hi Tech, column, vol 22, no 1, 2004.

Whither HTML?

AUTHOR

Dr Judith Wusteman is based at the Department of Library and Information Studies at University College Dublin, Ireland.

judith.wusteman@ucd.ie

http://www.ucd.ie/wusteman/

PROFESSIONAL BIOGRAPHY

Judith Wusteman joined the staff of the Department of Library and Information Studies at University College Dublin in September 1997. Prior to this, she spent seven years as a lecturer in computer science at the University of Kent at Canterbury. Her research interests are in electronic publishing, specifically XML and digital libraries, ejournals, document structure and text encoding. She has been involved in various electronic library projects and has provided SGML and XML consultancy for ejournal, encyclopedia and digital library systems.

KEYWORDS

HTML, XHTML, XHTML 2.0, modularization, well-formed XML, WWW

ABSTRACT

HTML has reinvented itself as an XML application. The working draft of the latest version, XHTML 2.0, is causing controversy due to its lack of backward compatibility and the deprecation – and in some cases disappearance - of some popular tags. But is this commotion distracting us from the big picture of what XHTML has to offer? Where is HTML going? And is it taking the Web community with it?

REINVENTING HTML

Once HTML 4 was published, the HTML Working Group closed for business. It was assumed that developments in XML and the increasing use of Cascading Style Sheets (CSS) would make further maturation of the standard unnecessary. Six months later, the group was reformed and, nearly six years later, it’s busy producing controversial new versions of HTML.

WHERE ARE WE NOW?

What happened to reactivate the HTML Working Group was the realisation that HTML was going to be around for some time after all and that an XML version might be a good idea. It was perceived that such a version might make it easier to repurpose content for the variety of browser devices that was beginning to appear. And so XHTML began its evolution.

As defined in the XHTML 1.0 specification, “XHTML is a family of current and future document types and modules that reproduce, subset and extend HTML 4”[1]. It has already gone through several versions since XHTML 1.0 was initially published in January 2000. The latter was simply HTML 4 reformulated in XML. It could be used with XML software but would also operate in HTML 4 conforming user agents by following some simple guidelines. In other words, it was a route for entry to XML world but with backward compatibility.

The three “flavours” of XHTML 1.0 were Strict, Transitional and Frameset. The Strict version aimed at separation of content and presentation and was designed to be used in conjunction with CSS. The Transitional version turned a blind eye to some presentational features, such as bgcolor, text and link attributes in the body tag, and hence catered for those browsers that couldn’t understand style sheets. The Frameset version was the least important of the three as, by then, the move away from the use of frames had begun in earnest.

The next stage was the modularisation of the elements and attributes into “convenient collections for use in documents that combine XHTML with other tag sets” [2]. XHTML Basic (December 2000) [3] was a minimal build of such modules, targeted at mobile applications. On the other hand, XHTML 1.1 (May 2001) [4] was a modular version of XHTML 1.0 Strict and was designed to “serve as the basis for future extended XHTML Family document types”. In other words, separation of presentation and content, along with modular design, would be future hallmarks of HTML.

And now XHTML 2.0 is emerging; the first working draft (WD) appeared in August 2002 and the fifth and latest in May 2003 [5]. XHTML 1.1 introduced modularisation; XHTML 2.0 substantially updates it and, importantly, introduces some external modules in the form of XForms, XML Events and Ruby. According to Steven Pemberton, HTML Working Group Chair, the aims of XHTML 2.0 include more “usability, accessibility, internationalisation and device independence”(Dyer, 2003).

XHTML 2.0: THE CHANGES

Unfortunately, what has made the news with XHTML 2.0 isn’t the bigger vision but the list of features that have been dropped or deprecated (in other words, “in the process of being removed” [5]). Many of the changes can be grouped according to the two XHTML design aims of less scripting and less presentational markup.

Less scripting

In XHTML 2.0, the Working Group aimed to add “new functionality that people have been looking for, that they need and have been doing up to now with scripting” (Dyer, 2003). There are four main developments here: XForms, XML Events, Ruby and XFrames. All are to be welcomed, not least because they all reduce the dependency on scripting.

XForms, the next generation of forms for the Web, is a major advance, as I explained in my previous column (Wusteman, 2003). It relies on XML Events which provides a generic method of specifying the actions that should happen when events occur. XML Events doesn’t just support predefined events, such as a mouse clicks, it also allows the developer to define their own events and indicate what should happen when they’re triggered (Chase, 2002).

The inclusion of the Ruby module in XHTML 2.0 is of particular relevance to East Asian Web documents. Ruby annotations are short runs of text alongside base texts, most often used to provide pronunciation guides.

Finally in this category of changes is XFrames, not strictly part of the XHTML standard, although the first WD was released within twenty-four hours of the first XHTML 2.0 WD. This is a welcome relaunch of a feature that was always a great idea in theory but always problematic in practice. The lack of usability of traditional frames, - the unintuitive workings of the back and reload buttons and difficulty in bookmarking and searching - can all be solved using JavaScript. XFrames solves them without scripting. The basis of this simple solution is to make the URI for each frame content part of the URI for the overall document. So when the user moves to a different frame for part of the page, the overall URI of the page changes.

The move away from scripting is a very positive step for the Web. However, it does epitomise an approach to HTML and the Web in general that could be described as more purist than its predecessor and that will, as a result, alienate some. XForms and XML Events, in particular, although certainly more academically satisfying, are also more abstract in concept. In the case of XML Events, as with XSLT, the less common declarative programming paradigm is used rather than the more prevalent procedural one.

Less presentation, more structure

The purist theme is continued with a further move towards complete separation of presentation and structure. The changes that are most clearly identified with this process are:

· The deprecation of the br element and its replacement with the line element, l. br is a presentational element whereas l describes the content’s function. But the semantic difference appears to be very slight for the inconvenience it will cause with legacy data.
· The removal of other presentational elements such as b, i, big, small and tt. This is controversial; as Daniel Glazman (2002), author of Netscape and Mozilla Composer, points out “you don’t always want to add semantics to a piece of text you want to see in bold-italic”.

· An attempt to abandon the inline style attribute - and its reintroduction in WD 5 with the rider that its use is “strongly discouraged” [5]. This reinstatement may have something to do with Glazman’s comment (2002) that dropping it was enough “to make XHTML 2.0 an (sic) harmful decision”. So we’ll still be able to define styles directly within elements, for example <P style="font-size: 12pt; color: fuchsia">.
· The supplementing of headings h1 to h6 with new elements h and section, representing unordered headings and sections. For example,

<h1>Whither HTML?</h1>

<h2>XHTML 2.0: The changes</h2>

<h3>Less Scripting</H3>

<h3> Less Presentation, More Structure</h3>

 could be rewritten as

<section><h>Whither HTML?</h>

<section><h>XHTML 2.0: The changes</h>

<section><h>Less Scripting</h></section>

<section><p>..</p><h> Less Presentation</h></section>

</section>

 </section>

An advantage of the new elements is that sections can now be self-contained and not just identified by the position of headings. So, for example, information connected to a section could appear before the heading, as in the section above headed Less Presentation. The disadvantages are that it complicates what can be very simple. For example, if the heading level can only be inferred from the depth of section nesting, what happens if you want to cut and paste?

h1 to h6 are not yet deprecated. “The working group has not yet addressed this suggestion” [5] but no doubt they will be deprecated in the future. The introduction of h and section won’t cause too much consternation until h1 to h6 are deprecated - and then people will get very upset.

The aim of all these changes is to enforce the marking up of content according to function and the use of style sheets for appropriate presentation. As the WD explains, “HTML is at heart a document structuring language. XHTML2 takes HTML back to these roots” [5].

I won’t pretend that this argument doesn’t have huge academic appeal. And, with devices such as voice-activated systems just around the corner, it’s true that identifying the “structural meaning of content” is becoming commercially relevant for the first time (Chase, 2002). Unfortunately, the changes listed above, and a few other backward incompatibilities such as deprecation of the img tag, are just too traumatic for some.

The Disappearing img

The change that has hijacked discussion of XHTML 2.0 is the deprecation of the img element in favour of object. applet and the non-standard embed are similarly afflicted. object appeared in the HTML 4.0 specification but has only really been used for embedding multimedia and Java applets.

The object element has the advantage that, if an object can’t be displayed, that object’s contents will be displayed instead. In the following example, if a PNG image can’t be displayed, a GIF will appear. Failing both, a text description will be inserted. Notice that object also specifies the image’s MIME type, another nice addition.

<!-- First try to display PNG image -->

<object

 data="coverpage.png"

 type="image/png">

 <!-- Else, try to display GIF -->

 <object

 data="coverpage.gif"

 type="image/jpeg">

 <!-- Else display text -->
 <p>Journal coverpage</p>

 </object>

</object>

But, as Mark Pilgrim (2003) explains, object won’t work properly in Internet Explorer (IE) because it was introduced as a Microsoft-specific tag in IE 3.0 for embedding ActiveX controls. Even if ActiveX is enabled in a particular browser, the image is rendered with “a nasty border and 2 sets of scroll bars”. And IE doesn’t allow nesting – it just renders all the images. Ironically, Pilgrim’s clever workarounds to allow the use of object tags involve scripting.

Of course, the W3C couldn’t have predicted the Eolas patent suit [6]. The latter covers the automatic launching of embedded objects such as Flash, Real Player and PDF readers. Hence, it affects certain uses of the object element. The full implications are not yet clear; although Microsoft has lost the case, it is appealing. It has also stated that, in its view, violation of the patent can be avoided by embedding active content using …scripting. It doesn’t appear to be the ideal time to move to object.
Why did the authors of XHTML 2.0 choose to deprecate img? It’s simple, it works and it has helped to make the Web a success. However, it has never received the approval of some SGML purists, maybe because it’s one of the few HTML features that doesn’t have a basis in SGML. But anyone who has ever tried to display images in SGML will understand why HTML didn’t follow the same model.

A theme in the evolution of HTML appears to be coercion. It would be great if the W3C could persuade everyone to write aesthetically pleasing HTML. But trying to force a philosophy on a very large installed market place is usually not successful. Pragmatism is necessary in the real world.

A pragmatic approach would encourage people to use object without throwing away img. And it would extend the img tag to enable the features allowed in object, such as an attribute for MIME types. Why not? One of the attractive new features in XHTML 2.0 is that any element can now be a link; the href attribute has joined a group of attributes common to all elements. But if it was possible to add the href attribute to any element, why was it not possible to add a MIME type attribute to img?

Of course, it’s not perfect but the img tag is perceived as being a cornerstone of HTML; even if it’s broken, people still want to use it.

THE BIGGER VISION

According to Nicolas Chase (2002), the “big news” in XHTML 2.0 is that backward compatibility has been dropped. But that is to miss the bigger vision.

At the end of the day, the removal or addition of individual elements may infuriate or inspire but it’s not going to have a lasting impact on the evolution of the Web. The features of XHTML that will have such an impact, if they are allowed to, are well-formed XML and modularisation. These are developments that could change the future of the Web.

Well-formed XML

“When we produced XHTML in 1999” says Pemberton, “many people didn’t see the point. ….The initial advantages were very small,” (Dyer, 2003). But the long-term advantages of HTML as well-formed XML are enormous.

Until XHTML, HTML was only human-readable; now it is, to some extent, machine-readable

(even without the unlikely success of the Semantic Web project). XML was built to be processed automatically and to enable the easy creation of utilities using standard tools. The Web site production process is increasingly taking advantage of this. XSLT is now widely used to repurpose content for different output devices and for on-the-fly transformation of results from server-side XML databases. Other XML tools are coming to the fore as well; it’s likely, for example, that XPath will become central in content management systems for the selection of fragments of content. And producing output from XML-based data doesn’t even require delivery of XHTML. It can always be dumbed down to HTML 4, although the latter is not suitable for small form factor devices such as PDAs and mobiles.

The push towards XHTML will come from the big publishers, those maintaining and delivering huge amounts of data, because they will want to repurpose for different output devices. There is an enormous growth in small form factor devices. But, while desktop computers and servers are becoming increasingly powerful, the same is not true for these small devices. The progress in battery technology has not mirrored that of chip technology. Mobile device resources will remain limited for the foreseeable future. And well-formed XML requires considerably fewer resources for parsing and display than HTML 4.

As Tim Bray (2003) comments, peoples’ home pages aren’t going to change to XHTML any time soon. But that doesn’t mean that there are no advantages of HTML as well-formed XML for smaller sites and businesses. XML means standard tools and, hence, simpler creation of small as well as large applications. The move from HTML 4 to XHTML 1.0 is worth it for almost everyone.

Modularisation

Mature modularisation is probably the only significant advantage of XHTML 2.0 over its predecessor.

But what an advantage! If modularisation works and is adopted, it could transform the way Internet applications are built and lead to added innovation in the market place.

HTML is being used across an increasingly diverse range of devices including small form factor devices, television devices, even fridges. Content needs to be tailored for all of these and more in an economically feasible way. Modularisation makes this possible because it provides a standard method for a device to indicate which elements it can support and for a Website to specify which elements it requires for delivery of its content.

Modularisation also means that developers aren’t constrained by the set of tags defined by the HTML Working Group; everyone is given the ability to incorporate domain-specific vocabularies in XHTML documents. It may also provide a way out of the stranglehold that Microsoft has developed over browser technology.

It’s painfully obvious that a few key players control everything on the desktop at present. If they don’t move, nothing changes. IE has developed little in the last few years and, if Microsoft’s plans are realised, it will stay the same until some time “between late 2006 and mid-2008” (Kovar, 2003) when IE 7 is released along with Longhorn, the next version of the operating system. That means nothing will really change until between 2008 and 2010 when the new browser has been widely adopted. And IE 7 won’t be available as a standalone browser; it will only be accessible as part of an operating system upgrade.

In the meantime, the evolution of HTML - as it’s used, not as it’s described in a W3C specification - is constantly held back as we wait for the big browsers to implement some feature or other. And many potential applications never get written because the only way to implement them would be to develop a new browser from scratch.

To enable any sort of change, a way must be found for small groups of open source or commercial developers to build on what has been done already and to add their own new features and applications. This is possible only to a limited extent with plugins. XHTML modularisation should make the process much easier.

If the key browsers, particularly IE, Mozilla and Safari, support XHTML modularisation, the Web will be opened up to innovation. Mozilla has shown the way; it has been rebuilt around a modular core and a suite of extensions. For example, an extension has already been written to display MathML. And the Minimo (Mini Mozilla) project [7], in which a slimmed-down version of the Mozilla browser will be available for small devices such as palmtops, is a direct result of modularisation.

Pemberton comments “there are some things coming up that make me think IE will evolve into a shell that won’t be doing much processing itself. It’ll just be a way of combining different markup languages via plugins” (Dyer, 2003). It’s not clear whether Microsoft is planning to adopt the W3C version of modularisation for IE. Even if it’s not, all is not lost. Obviously, the more native the browser support for a feature, the more possibilities there are. But much of XHTML modularisation can be implemented outside IE, using third party tools that use IE for rendering, such as the XForms plugin, FormsPlayer [8].

Of course, modularisation is a double-edged sword; if you allow anyone to add any modules they like, they will - and HTML loses its status as the lingua franca of the Web. There has to be a balance between enabling new applications to be built and having so many implementations that there is no interoperability. XHTML 2 provides the wherewithal for developers large and small to write their own customised modules whilst also providing standard modules.

Could modularisation re-democratise HTML? That depends on how you define democracy. Andrew Watts (2000) sees it as “splitting the web into the "haves" (those organisations who are XML-literate) and the "have nots" (who are frozen with using HTML and scripting languages).” To exploit XHTML modularisation in the “near future requires a fairly significant grasp of many XML concepts and technologies” which some small organisations won’t have.

This is only true if content authors hand-coded HTML - and that wasn’t even true in 2000. You don’t need any knowledge of XML if your word processor generates it for you. Since Watts made these comments, XML has become the native file format of Star Office and is also supported by Microsoft Office II. Yes, the related standards in the XML family such as XSLT do involve a steep learning curve. But the application of modularisation doesn’t require any XML standard except XML. Modularisation will enable tool providers and open source software developers to create new and powerful tools which will aid both the “haves” and the “have nots”.

Coercive purism for the sake of academic coherence is unnecessary. But modularisation needn’t be coercive and it isn’t purist.

PRAGMATISM

The HTML WG is reported to be unconcerned about the lack of backward compatibility in XHTML 2.0 [5]:

Thanks to XML and stylesheets , ..strict element-wise backwards compatibility is no longer necessary.

The assumption is that XHTML will only be used for new documents and applications; no one will bother to convert legacy data or update existing applications. However, this makes for a very uncomfortable transition phase. Old content that needs one set of applications exists in parallel with new content that needs another set. Thus, device code becomes longer and more complex, a major issue for mobile devices.

 XHTML 2 is a “member of the XHTML Family of markup languages” [5] but it’s not, and isn’t intended to be, the same language as XHTML 1.1. At the same time, “XHTML 2 [has the] same name as the language it’s not replacing, the same MIME type and the next major version number” (Pilgrim, 2003). This makes it almost impossible to tell what version of XHTML a document is written in until it has been downloaded and parsed. It also makes it impossible to enable HTTP content negotiation, in which different versions of the same document are supplied depending on the capabilities of the device.

Breaking backward compatibility hinders the adoption of new standards. The marketplace is largely pragmatic. If it perceives that it’s getting something new, it may move towards it. But if the perception is that it’s losing something important, this is much less likely. The perception with XHTML 2.0 is that some of the Web’s cornerstone features are being lost.

But the Web has never been solely defined by W3C standards; it’s also defined by what is implemented. And all previous versions of HTML have been implemented in a way that’s more pragmatic than the standard itself. The marketplace will look for a pragmatic solution. For XHTML 2.0, this could include support for some of the features that have been dropped in the move from XHTML 1.1. The W3C could pre-empt unrest by proposing a transitional version of XHTML 2.0 which reintroduces some features of XHTML 1.1 whilst retaining the advantages of modularisation and well-formed XML.

The purist quest to remove all presentational aspects from HTML has been a distraction. XHTML 2.0 is in danger of being represented, not as the version in which modularisation became mature and hence opened the Web to innovation, but as the version that got rid of the img tag.

NOTES

[1] XHTML™ 1.0 The Extensible HyperText Markup Language (Second Edition),

W3C Recommendation 26 January 2000, revised 1 August 2002:

http://www.w3.org/TR/xhtml1/
[2] Modularisation of XHTML™,W3C Recommendation 10 April 2001:

http://www.w3.org/TR/xhtml-modularization/
[3] XHTML™ Basic, W3C Recommendation 19 December 2000:

http://www.w3.org/TR/xhtml-basic/
[4] XHTML™ 1.1 - Module-based XHTML, W3C Recommendation 31 May 2001:

http://www.w3.org/TR/xhtml11/
[5] XHTML™ 2.0. W3C Working Draft 6 May 2003: http://www.w3.org/TR/xhtml2/
[6] FAQ on US Patent 5,838,906 and the W3C: http://www.w3.org/2003/09/public-faq

[7] Minimo Project: http://www.mozilla.org/projects/minimo/

[8] FormsPlayer: http://www.formsplayer.com/

REFERENCES

Bray, T. (2003) “Web Architectures and XML”, Trinity College Dublin, 19 November 2003.

Chase, N. (2002) “The Web's future: XHTML 2.0”, IBM developerWorks, Web Architecture XML Zone, September 2002.
Available at: http://www-106.ibm.com/developerworks/web/library/wa-xhtml/
Dyer, R. (2003) “The XML.com Interview: Stephen Pemberton”, 21 May 2003. Available at:

http://www.xml.com/pub/a/2003/05/21/pemberton.html
Glazman, D. (2002) “Comments on 2002-12-12 XHTML 2.0 WD”, 18 December 2002. Available at:

http://lists.w3.org/Archives/Public/www-html/2002Dec/0113.html

Kovar, J.F. (2003) “Gartner: Longhorn Delays Will Affect Windows Upgrades”, Information Week,

11 December 2003. Available at: http://www.informationweek.com/story/showArticle.jhtml?articleID=16700197
Pilgrim, M. (2003) “The vanishing image: XHTML 2 Migration Issues”, XML.com, 2 July 2003. Available at: http://www.xml.com/pub/a/2003/07/02/dive.html
Watts, A. (2000) “HTML 4.0, XHTML 1.0 and XHTML 1.x - splitting the web?”, October 4 2000. Available at: http://groups.yahoo.com/group/XHTML-L/message/1050

Wusteman, J. (2003) "Web Forms: The Next Generation", Library Hi Tech, vol 21, no 3, 2003.

