First appeared in Library Hi Tech, vol 21, no 2, 2003.

XML to the desktop

Judith Wusteman
AUTHOR

Dr Judith Wusteman is based at the Department of Library and Information Studies at University College Dublin, Ireland.

judith.wusteman@ucd.ie

http://www.ucd.ie/~lis/staff/wusteman/index.html

Professional Bibliography

Judith Wusteman joined the staff of the Department of Library and Information Studies at University College Dublin in September 1997. Prior to this, she spent seven years as a lecturer in computer science at the University of Kent at Canterbury. Her research interests are in electronic publishing, specifically XML and digital libraries, ejournals, document structure and text encoding. She has been involved in various electronic library projects and has provided SGML and XML consultancy for ejournal, encyclopedia and digital library systems.

Keywords

XML, browsers, delivery formats, libraries

ABSTRACT

Now that XML is five years old, is it time for elibraries to start exploiting its full potential by delivering it to the end user rather than converting it to HTML first? What, if any, would be the advantages to users and providers? Could browsers cope? And is it worth the bother?

HAVE THINGS CHANGED?

Less than two years ago, Michael Seadle (2001) commented that “end-users on the Internet do not love XML yet”. Have things changed enough that library users might now welcome XML arriving at their desktops? Would it be advantageous for users if it did? And is there browser support to make this possible? Of course, in many areas, XML will have achieved its full potential only when it has disappeared into the pipework, when it isn’t obvious whether an application is actually using XML. There is a whole range of potential applications of XML to libraries for which the delivery of an XML file to the desktop would be irrelevant. But for those for which it could be relevant, is now the time to stop dumbing down to HTML and let the end-user have the real thing?

 MAINTAINING XML - BUT DELIVER SOMETHING ELSE

There are already many library-related projects that are storing, processing and managing XML, some for the markup of full documents, some for metadata. But practically all of them are delivering something else, often HTML – or, if they are delivering XML, it’s only in the form of XHTML.

The eScholarship initiative at the California Digital Library [1] has, made five hundred books available online in “fully searchable XML”, marked up using the Text Encoding Initiative (TEI) DTD. But the only XML display format enabled is XHTML. As with many projects, the XML is transformed on the fly at the server using XSLT stylesheets; the resulting XHTML is presented using CSS. Again, in common with many projects, the open source Apache Cocoon middleware [2] is used for this transformation.

The Lector Longinquus Latin texts project [3] at the Center for Electronic Texts in the Humanities (CETH) is using Cocoon in a similar way. The transformation to HTML is seen as a stop-gap until XML becomes “the standard for Web delivery of structured information….in the near future”. But, Brian Hancock and his colleagues at CETH believe that “the near future isn't quite here yet” (Hancock, B. 2003, personal communication, 17 February). CETH’s Michael Giarlo thinks that “It'll probably be another 2- 3 years… before directly served XML really gets the support it needs.” CETH logs indicate that many of their users access the project via “older browsers”. However, they have already begun to experiment with XML delivery; a sample XML text is made available which “renders well with Netscape 7.1 and Mozilla 1.0.1” [3].

One of the projects most concerned to explore the potential of XML in the ejournal sphere was the UIUC Digital Library Testbed [4]. Again, dynamic conversion of XML to HTML on the server and display using CSS was chosen. For the duration of the project (1999-2001), lack of “native XML support in commercial web browsers” [5] hampered attempts at XML rendering.
Some projects do provide the option of XML delivery. The Oxford Text Archive [6], for example, offers delivery of some of its electronic texts, corpora and reference works in XML, marked up using the teixlite DTD, that is, the XML version of the TEI Lite DTD [7].

The examples so far all involve the use of XML to mark up full document texts as well as metadata. Other projects use XML to structure only metadata. Again, in most cases, the XML is largely invisible by the time the information arrives at the user’s desktop. There are many implementations of the Open Archives Initiative (OAI) [8], for example. The protocol it enables makes it possible to “query multiple databases over the Web and receive the results in XML” (Banergee, 2002). But there are, as yet, few examples where those search results aren’t converted to HTML before viewing.

On the other hand, XML is one of several dissemination formats for MEDLINE bibliographic citation data [9]. The user can save real XML but, if they choose the “Display XML” option, the result displayed is actually in HTML. Here’s a snippet of some fictitious results viewed via a browser using the “Display XML” option:

<Author>

<LastName>Wusteman</LastName>

<ForeName>Judith C</ForeName>

<Initials>JC</Initials>

</Author>

and what you see if you view the page source:

<Author>

<LastName>Wusteman</LastName>

<ForeName>Judith C</ForeName>

<Initials>JC</Initials>

</Author>

The latter is embedded in an HTML document.

XML SUPPORT

At this point, I should clarify what I mean by “delivering XML to the desktop” - it’s a bit of vague description. Obviously, transforming XML to HTML at the server doesn’t count - but does transforming XML to HTML at the client count as XML delivery? I would say that it does only if the transformation process is initiated by the user and under their control so that they can choose to side-step it and access the real XML if they wish. On a related issue, I would count browser display via plugins of XML applications such as CML, MathML, and SVG as constituting “delivery of XML to the desktop”, although native browser support would be preferable. The latter is beginning to emerge for SVG and MathML but is unlikely for CML. A “universal plug-in architecture” for CML is a more realisable goal (Murray-Rust, P. 2003, personal communication, 28 February).

So is delivery of XML to the desktop realistic? The answer to this question depends on several factors including what you are delivering and why. But the major factor has to be the level of XML support in browsers.

What I mean by “XML support” depends on the application in question. But I would suggest that it could require support for some or all of the following standards: XML, CSS, DOM, XSLT, XHTML, Namespaces, SVG, SMIL, XLink, MathML and SOAP.

It seems fair to assume that, to base a delivery system on the concept, XML browser support would have to be of an advanced nature. So what is “advanced XML support”? In the table (at end of article), I suggest my own - no doubt contentious - definition of levels of XML support from basic to advanced. I have also listed some of the more popular browsers, indicating what XML support they have and how it can be graded.

THE BROWSERS

The browsers listed in the table have been grouped into families:

· Internet Explorer

This family includes IE for Windows and the Mac, the current AOL for Windows and previous versions of AOL for the Mac.

IE 5.0 [10] was the first widely-used browser to provide “direct” support for XML display. In actual fact, it involves conversion to DHTML within the browser, using a Working Draft version of the XSLT standard and subsequent display with rather flaky CSS. But the resulting “coloured, syntax-highlighted version of the XML document, with collapsible views” [11] helped many of us visualise what might be possible with XML delivery. IE 6.0 [12] has far more advanced XML support, as the table details.

· Mozilla

IE may have been first but the Mozilla family is the best in terms of support for both XML and other W3C standards. Family members include Netscape 6 [13] and beyond, Mozilla [14], Phoenix [15], Galeon [16], Chimera [17], Epiphany (Dumbill, 2003) and DocZilla [18].

· Opera

 In 2000, Opera 5.0 [19] was receiving “international acclaim from end-users and the industry press for being faster, smaller and more standards-compliant than other browsers” [20]. Mozilla has caught up but Opera is still a browser to watch.

· KHTML

The family based on the KHTML engine includes Apple Safari [21] for the Mac and Konqueror [22] for Linux and Unix. In February 2003, Café Con Leche [23] reported that Apple had posted a new beta of Safari “that can display XML pages with CSS style sheets in the browser for the first time. XSLT does not appear to be supported yet.” The reporter liked the interface innovations enough to predict “The long, dark domination of Internet Explorer may be finally coming to an end. :-)”. But then IE for the Mac has always been unacceptably slow. The irony is that Mac IE 5.0 has far better standards compliance than its Windows equivalent.

· Experimental Browsers

Both XSmiles [24] and the W3C testbed browser Amaya [25] have excellent and innovative support for XML but neither are widely used.

As Tim Bray has commented “the browser ecosystem is becoming an interesting place again” [26].

WHO IS USING WHAT?

A reading of the table would suggest that any of the following browsers has sufficiently advanced XML support to enable an acceptable level of XML delivery: Internet Explorer 6, Netscape 7.x, Mozilla 1.x, Opera 7, Amaya and XSmiles.

 So should electronic libraries start to deliver XML now? Unfortunately, in answering this question, we must first look, not at the innovative features in Mozilla, but at the percentage of users for each browser.

The inaccuracy of browser usage statistics is legend; the figures vary widely between sources. Statistics relating to use of different Mozilla-based browsers may be inaccurate as it can be difficult for statistics gatherers to distinguish between them. A further cause of inaccuracy can arise from Opera’s pragmatic habit of announcing to the server that it is actually Internet Explorer. No wonder different sources of statistics vary on actual percentages.

But they all agree that IE dominates the market, with Netscape and Mozilla trailing far behind. On February 3rd 2003, OneStat.com [27] reported that more than 60% of all users were using IE 6.0 and over 33% were using versions 5.0 or 5.5. Microsoft’s “total global usage share” was put at 95.3, Mozilla’s total was 1.2 and that of Netscape Navigator was 2.9%. The only browsers without XML support for which statistics were significant were Netscape 4.0 at 1.0% and IE 4.0 at 0.9%.

So, at the time of writing (February 03), over 61% of users have advanced XML browser capabilities and almost 97% have reasonable XML capability. In addition, users appear to be upgrading their browsers more quickly than ever before. In particular, the move from one version of IE to the next seems to be accelerating, with the number of IE 6.0 users increasing by percentage points every month. This is probably due, in part, to the long-delayed arrival of Windows XP. But a fair number of Windows 98 users have also moved to IE 6.0. Even if some elibrary applications are attracting users with older browsers, the rate of change of browser use alone should point to advanced XML capabilities for the majority of users within a year.

As well as considering the statistics, we also need to ponder future plans and possibilities. Might Netscape win the march on IE again? It lost it largely due to the inordinate amount of time it took to replace a standards-feeble Netscape 4 with an impressive Netscape 7. It is also worth pointing out that AOL plan to move to a Mozilla-based product for Windows, bringing with it 35 million users.

 The cynic might warn against the assumption that, as far as XML support in browsers goes, things can only get better. A market share of over 80% can be dangerous; perhaps Microsoft will decide that it will start doing things its own way again to lock in its users.

And finally, are there any generalisations we can make about browsers used for library-related applications? At one level, one would hope that the answer was No; everyone is a potential user of the “library without walls”. But some generalisations may be possible within more specific user groups. Would an engineering library’s users be more likely to run Mozilla and those of an art and design library run Mac browsers? Probably. And, if we are developing tools for use solely within libraries, such as kiosks or CD content delivery, we can simply choose the browser that has the required features. The Mac-based iCab browser [28] may be a useful option in these circumstances; it includes a “kiosk mode” that can restrict user access to certain pages. Alternatively, Opera’s ability to run on less powerful hardware than its major competitors may be a deciding factor.

Of course, there will be some projects for which my definition of “advanced XML support” is inadequate; I don’t claim that browser support makes XML delivery possible for all elibrary projects.

Support for chemistry, for example, is still inadequate. But I do think that there are many projects out there that could already be providing an XML delivery option.

IS IT WORTH THE BOTHER?

But should we aim at XML as “the standard for Web delivery of structured information”[3]? Is it worth the bother? Roy Tennant of the eScholarship initiative thinks not:

“In the early days of XML, I was of the opinion that before long Web browsers would be XML-capable and we would be shipping all kinds of XML straight to the desktop. But now I don’t think that at all… it doesn’t make much sense to ship XML to the client.”

(Tennant, R. 2003, personal communication, 27 February)

I would accept that, for some projects, the gains from XML delivery may not outweigh the work involved in providing it - at present. Ironically, this may be true for some aspects of STM journal publishing, one of the arenas in which XML delivery could offer the most exiting advances for author and reader. XML is widely used in the journal lifecycle but often “primarily to record formatting. It is devoid of useful scientific markup and is based on the publishers’ business model needs and not on the readers’ or authors’ requirements” (Murray-Rust, P. 2003, personal communication, 28 February). There would be little point in delivering that XML to the user; the answer here has to be to rethink what and how we are marking up.

But, in many projects, I would argue that XML delivery is already worth the bother. As Ron Gilmour (2001) has commented, “Web users will become dissatisfied with receiving HTML digests of research data. Providing data in the form of XML allows users to manipulate the data for themselves, whether with tools provided by the author or with those that they create themselves”.

An increasing proportion of elibrary projects maintaining XML documents will do so using native XML databases that allow complex queries. This begs the question: why then would you want the results to be in XML? Among the answers to this would be if you wanted to combine your results with those of one or several other systems or with your own metadata.

XML delivery could also enable complex sorts on large XML documents without requiring reloading from the server. Imagine the scenario in which a user accesses the results of a major search query; the XML file contains, say, 350 bibliographic records and is half a megabyte in size. With it is delivered an XSLT stylesheet. The user decides to sort the file by author and chooses the appropriate option; the stylesheet is used to sort the file at the client. Now the user wants to sort the file by date. At the click of a button, she has triggered a Javascript which reruns the stylesheet for this alternative sort. If all of this were performed at the server, the entire transformed file would have to be delivered to the client every time [29]. To save even more loading, the stylesheet for a particular library system could be cached while the user was accessing the site.

User control over the display provided by delivery of XML plus XSLT stylesheets might be of particular interest to libraries looking to supply a consistent user experience across content aggregated from several suppliers. Customised printer-friendly output would be just one advantage of this method. It could be argued that the advantages of such user control might be minimal; it could simply be a case of transforming XML to HTML at the client rather than at the server. But even here, there can be advantages, in this case to the document provider; the use of XSLT transformations on the server can consume a lot of processing power.

There are also size advantages; a complex mathematical expression or chemical molecule is likely to be much smaller if represented in MathML and CML respectively than a JPEG or a movie file. And metadata can often be more succinctly described in XML than HTML.

Peter Murray-Rust (2003, personal communication, 28 February) believes that “there is a technical and moral imperative to make our data available in XML…ninety percent or more of scientific information gets lost in the publication process.” And Miller (2000) comments that “A search result in XML …has structure and functionality”. Allowing the user to manipulate data is certainly an attractive proposition, though one that not all providers of information would be happy about. Do you really want to make your XML source file, representing an encoded finding aid, a chemical compound, a mathematical expression or other experimental data or creative work, available to the end-user in its entirety? Concerns over loss of data ownership might well surface. As David Ruddy comments in relation to EAD finding aids [30], sending the entire source file to the user “may raise document security issues, depending on whether your institution includes sensitive information in its EAD instances, such as processing notes or cost figures, or information about donors.” In this case, says Ruddy, one of the simplest methods of removing this information prior to publication is to convert to HTML at the server, either on the fly or in batch, “sending out only the information intended for public consumption.”

In a similar vein, Roy Tennant (2003, personal communication, 27 February) comments “Our books exist as one XML file. That means we would be shipping, in many cases, over a megabyte of text to someone’s desktop simply to see the table of contents or a chapter.”

But converting XML to HTML isn’t the only method of removing or selecting material; it should be reasonably straightforward to do this while still delivering XML. Indeed, as editor of a special issue of a journal, I recently received the following query from a potential author (Murray-Rust, P. 2002, personal communication, 18 October):

“Do you practice what you preach? We would like to publish in XML…We would supply different stylesheets so the article can be viewed in different ways - for example we can already filter the thesis to omit the experimental details, or extract only the analytical data, etc. It runs on any XML-aware browser - MSIE, Amaya, Mozilla, etc.”

Having checked with the managing editor, I had to say “Sorry, no”. And, to be fair, this would be the standard response from a journal publisher at present. But I would agree with Murray-Rust (2003, personal communication, 28 February) when he worries that, without more pro-activity on the part of the information community, we may well get “stuck into the publisher’s model” over the next few years.

DISPLAY XML BUT…

In 2001, EBSCOhost introduced full-text article delivery in XML to end-users [31]; in 2002, it abandoned this delivery format. At the time, only IE version 5.0 and above could take advantage of this feature and a critical mass of such browsers didn’t exist. In the first quarter of 2003, somewhere around 96% of browser users have at least the XML capability of IE 5.0; over 63 % of these have more. Less than 2% are using browsers with no XML capability at all. These figures point to viable XML delivery. But for what material?

Lack of robust and consistent XLink or XPointer support means that it is not yet time to convert entire Web sites to XML. There are work-arounds for displaying links and images in some browsers. For example, Mozilla allows the use of the XHTML Namespace within a different XML application to enable links and images [32]. But this illustrates a caveat: basing elibrary systems on non-standard components of any browser can cause legacy problems.

A related caveat is that it is better for systems to attempt detection of browser capability rather than browser version. When accessed via any browser other than IE, the pioneering EAD Finding Aids project at the Cornell Institute for Digital Collections [33] returns the message “You've requested an XML document, but your browser is not XML capable. We've delivered an HTML version instead.” To be fair, this is an experimental system. A more significant illustration of the principle is the current spat between Microsoft and Opera. The latter alleges dishonest tactics on the part of Microsoft “to make Opera look like it is displaying pages improperly when people view MSN” (Broersma, 2003). In response, Opera have released a “Bork” edition of Opera 7 for Windows that behaves differently on just one Web site. “Users accessing the MSN site will see the page transformed into the language of the famous Swedish Chef from the Muppet Show” [34].

Any system delivering XML needs to cater - in a standard way - for all the browsers that have a wide usage at present. If you want to find out what is possible with XML delivery, take a look at the latest version of Mozilla, Netscape, Opera, Amaya or XSmiles. But to determine the level of XML functionality that the majority of your users are likely to have by 2004, you need to look at IE 6.

Deliver XML? Yes but, for the time being, you’ll still have to cater for the minority of Web browsers with little or inadequate XML support.

NOTES

[1] eScholarship initiative: http://escholarship.cdlib.org/

[2] Apache Cocoon: http://xml.apache.org/cocoon/

[3] Lector Longinquus: Latintexts XML Conversion Project: http://harvest.rutgers.edu/ceth/xml/

[4] UIUC Digital Library Testbed: http://dli.grainger.uiuc.edu/idli/reports.htm

[5] UIUC Digital Library Testbed Final Report: http://dli.grainger.uiuc.edu/idli/progress_reports/final_report.htm

[6] The Oxford Text Archive: http://ota.ahds.ac.uk/

[7] The Electronic Text Center Introduction to TEI and Guide to Document Preparation

(David Seaman): http://etext.lib.virginia.edu/tei/uvatei.html

[8] Open Archives Initiative: http://www.openarchives.org/

[9] NCBI PubMed: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
[10] Cover Pages – Microsoft Support for XML: http://xml.coverpages.org/xmlMicrosoft.html

[11] The XML FAQ (Editor Peter Flynn): http://www.ucc.ie/xml

[12] Internet Explorer 6: http://www.microsoft.com/windows/ie/default.asp

[13] Netscape Navigator: http://channels.netscape.com/ns/browsers/

[14] XML in Mozilla: http://www.mozilla.org/newlayout/xml/

[15] Phoenix: http://www.mozilla.org/projects/phoenix/phoenix-release-notes.html

[16] Galeon: http://galeon.sourceforge.net/

[17] Chimera: http://www.mozilla.org/projects/chimera/

[18] DocZilla http://www.doczilla.com/
[19] Opera: http://www.opera.com

[20] W3Schools.com, The Norwegian Opera:

 http://www.w3schools.com/browsers/browsers_opera.asp

[21] Apple Safari: http://www.apple.com/safari/

[22] Konqueror: http://www.konqueror.org/

[23] Cafe con Leche XML News and Resources, February 13, 2003: http://www.ibiblio.org/xml/news2003.html

[24] X-Smiles: http://www.xsmiles.org/
[25] Amaya: http://www.w3.org/Amaya/

[26] The Web Standards Project, Buzz Archive, January 2003: http://www.webstandards.org/buzz/archive/2003_01.html

[27] OneStat.com, February 03 2003: http://www.onestat.com/html/aboutus_pressbox18.html
[28] iCab Internet Browser: http://www.icab.de/index.html
[29] Example illustrating saving of local transformations in Mozilla: http://www.mozilla.org/newlayout/xml/debugdemos/books/books.xml
[30] EAD Help Pages - EAD in XML: http://www.iath.virginia.edu/ead/xml.html

[31] EBSCO Press Release March 15 2001: http://www-uk.ebsco.com/home/whatsnew/ehost44.stm

[32] Example illustrating use of XHTML (and XLink) in Mozilla for linking and images: http://www.mozilla.org/newlayout/xml/debugdemos/tocdemo/rights.xml
[33] Cornell Institute for Digital Collections: EAD/XML Finding Aids Project: http://cidc.library.cornell.edu/xml/

[34] Opera Press Releases: Opera releases "Bork" edition -The Swedish Chef Goes After Microsoft

 (Feb 14, 2003): http://www.opera.com/pressreleases/en/2003/02/14/

REFERENCES

Banerjee,K. (2002), “How Does XML Help Libraries?”, Computers in Libraries, Vol. 22, No. 8, September. Available at: http://www.infotoday.com/cilmag/sep02/Banerjee.htm

Broersma, M. (2003), “Opera 'borks' MSN in standards spat”, CNET News.com, February 14. Available at: http://zdnet.com.com/2100-1104-984632.html
Dumbill, E. (2003) “An epiphany in browsing”, WriteTheWeb, 17 February 2003. Available at

http://writetheweb.com/Members/edd/Articles/2003-02-epiphany
Gilmour, R. (2001), “Serving XML: Practical Techniques for the Dissemination of Structured Electronic Information”, Library Hi Tech, Vol. 19, No. 4, pp. 408-414.
Miller, D.R. (2000), “XML: Libraries' Strategic Opportunity”, netConnect, Library Journal, Summer. Available at: http://xmlmarc.stanford.edu/LJ/

Seadle,M. (2001), “A love affair with markup”, Library Hi Tech, Vol. 19, No. 3, pp. 207-209.
TABLE : Some of the more common Web browsers and details of their XML support

	Browser

family
	Name
	User % (Feb 03)
	XML Support

	
	
	
	Overall Support
	Basic
	Reasonable
	Advanced

	
	
	
	
	XML 1.0
	CSS1
	DOM1
	XSLT
	XHTML 1.0
	DOM2
	CSS2
	Namespaces
	 SVG
	 MathML
	 RDF
	 Other

	Internet Explorer
	IE 6.0
	60.26
	(
	(
	(
	(
	(
	(
	(
	(
	(
	(
	(
	-
	SAX 2

SMIL 2

CDF

	
	IE 5.5
	16.8
	(
	(
	(
	(
	(
	(
	-
	(
	(
	(
	(
	-
	CDF

	
	IE 5.0

(Win)
	16.4
	
	(
	(
	(
	(
	(
	-
	(
	(
	(
	(
	-
	

	
	IE 5.0

(Mac)
	
	(
	(
	(
	(
	(
	(
	-
	(
	(
	(
	(
	-
	

	
	IE 4.0
	0.9
	-
	-
	-
	-
	-
	-
	-
	(
	-
	(
	(
	-
	

	Mozilla

	1.3B
	1.2
	(
	(
	(
	(
	(
	(
	(
	(
	(
	(
	(
	(
	As 1.0 + improved CSS & DOM and XML pretty-printing

	
	1.0
	
	(
	(
	(
	(
	(
	(
	(
	(
	(
	(
	(
	(
	XML Base

XML-RPC

(CSS 3)

(DOM 3) (XLink)

FIXptr

SOAP

	
	Netscape 7.x
	0.64
	(
	(
	(
	(
	(
	(
	(
	(
	(
	-
	(
	(
	As

Mozilla 1

	
	Netscape 6.x
	1.26
	(
	(
	(
	(
	(
	(
	(
	(
	(
	-
	(
	(
	(XLink)

	
	Netscape 4.x
	1.0
	-
	-
	(
	-
	-
	-
	-
	-
	-
	(
	(
	-
	

	Opera
	Opera 7.1
	0.03
	(
	(
	(
	(
	-
	(

	(
	 (
	(
	(
	(
	-
	WAP

WML

(CSS3)

	
	Opera 6.0
	0.7
	(
	(
	(
	(
	-
	(

	-
	 (
	(
	(
	(
	-
	

	KHTML
	Konqueror 3.1
	
	(
	(
	(

	(
	-
	(
	(
	(
	(
	-
	-
	-
	(DOM3)

	
	Safari
	0.11
	
	
	
	
	
	
	
	
	
	
	
	
	

	Experimental
	XSmiles 0.71
	
	(
	(
	(
	Y
	(
	(
	
	-
	(
	(
	-
	-
	(XSL-FO)

SMIL 2

XForms

(X3D)

XML Signature

XML Events

	
	Amaya 7.2
	
	(
	(
	(
	(
	 -
	(

	
	(
	(
	(
	(
	(
	(XLink)

(XPointer)

Annotea

(XSL-FO)

KEY TO TABLE

	XML Features :

(= Full support - or as good as!

(= Almost full support

(or () = Partial support

- = No support

Y = Support exists but level not documented

(= via plugin or Java Applet

(= via special browser version

Empty cell = No information available
	Overall XML Support Level :

 (= Advanced

 (= Reasonable

 (= Basic

 ​- = None

 FIXptr is a simplified non-compatible version of XPointer

 Supports XHTML Basic, XHTML 1.0 + Modularisation and some of XHTML 1.1

 Supports XHTML Basic, XHTML 1.0 and some of XHTML 1.1

 Supports XHTML 1.0 and 1.1

� FIXptr is a simplified non-compatible version of XPointer

� Supports XHTML Basic, XHTML 1.0 + Modularisation and some of XHTML 1.1

� Supports XHTML Basic, XHTML 1.0 and some of XHTML 1.1

� Supports XHTML 1.0 and 1.1

