

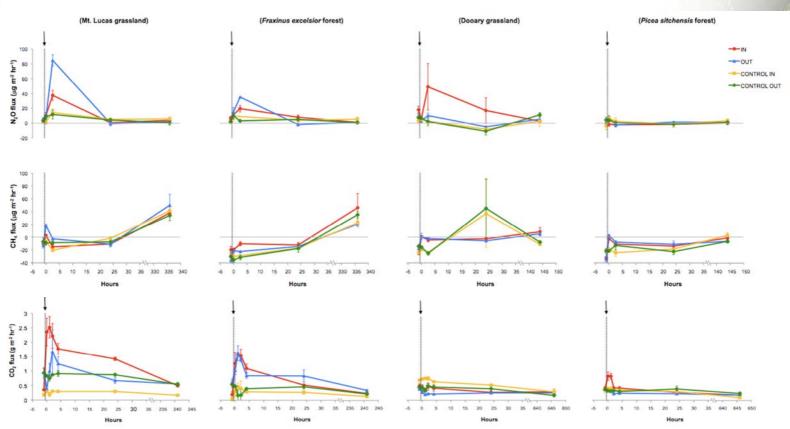
LAND USE CHANGE AND RE-WETTING EFFECTS ON GHG EMISSIONS

Giuseppe Benanti¹, Erica Cacciotti¹, Matthew Saunders¹, Brian Tobin², Saúl Otero¹ and Bruce Osborne¹

¹ UCD School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4

² University College Dublin, School of Agriculture, Food Science and Veterinary Medicine.

Email: giuseppe.benanti@ucdconnect.ie


 $\label{eq:Figure 1: some of the sites under investigation. Juncus effusus dominated grassland (Dooary; 1A) and a 22 year old Picea sitchensis forest (1B) .$

Future climate change projections indicate an increase in extreme weather events, with episodic droughts followed by periods of high rainfall. Earlier experiments indicated large and sustained emissions of carbon dioxide (CO_2) associated with such rewetting events that have been attributed to an increased decomposition rate, enhanced mineralization and release of inorganic N [1; 2]. Impacts on other greenhouse gases efflux, such as nitrous oxide (N₂O) and methane (CH₄), are, however, less clear. In the present study we investigated **the effect of long-term induced drought**, using field-deployed rain-out shelters, **followed by rewetting**, **on GHG emissions** from different forest ecosystems and associated grasslands (representing conditions prior to afforestation) in the Irish Midlands.

Figure 2: Effects of re-wetting on N₂O, CH₄ and CO₂ fluxes in different ecosystems (vertical bars represent the standard error; rewetting event indicated by arrow and dashed line).

The simulated summer drought and subsequent re-wetting experiment stimulated an increase in N₂O emissions from all sites with the exception of the 22 year old *Picea sitchensis* forest, while no effect of re-wetting was observed in CH₄ emissions from all sites. The increase in N₂O emissions in a single wetting event represented approximately **0.53** to **0.67%** of the total annual N₂O budget in the *Fraxinus excelsior* stand and grassland site respectively. The impact of re-wetting was much stronger in the grassland associated with the *Picea sitchensis* site where emissions increased from close to zero to approximately **786** µg N₂O m² d⁻¹ after the wetting event. In all ecosystems the observed increase in N₂O emissions lasted for the duration of one day. CO₂ emissions were higher in the *Fraxinus excelsior* stand and associated grassland site and the effect lasted for more than 10 days. The impacts of extreme drying and re-wetting on individual GHG emissions are likely to be influenced by site, ecosystem and land use and will be dependent on the number of drying and re-wetting cycles under future climate scenarios.

We would like to acknowledge the support of COFORD through the CARBIFOR 2 project for financial support

[1] Jarvis P, Rey A, Petsikos C et al. 2007. Tree Physiology 27: 929–940.
[2] Fisher T. 2009. Soil Biology and Biochemistry 41: 1577–1579.