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ABSTRACT

Within the UK, large amounts of livestock wastes are applied to grassland farming systems both as excreta from grazing
animals and as slurries. A consequence of this management practice is the opportunity for potential pathogens to disperse
through the soil following the input of hydrological energy derived from rain events. This study reports findings froma
field drainage experiment in Devon whereby agricultural drainage waters were monitored for Escherichia coli immediately
following a five-month cattle grazing period. A comparison was made between the different hydrological export routesin
transferring E. coli from soil to receiving waters. Storm waters mobilised bacteria at much higher concentrations than
occurred during base flows suggesting the existence of energy thresholds for the entrainment and successful transfer of
soil, waste and biological colloids from within the soil matrix. The results of the post-grazing phase of this study propose
that faecal bacteria, introduced to grasslands via grazing cattle, travel through different transfer pathways when combined
with hydrological energy of precipitation events.
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INTRODUCTION

Within the U.K. each year, an estimated 150 M tonnes of livestock-derived faecal wastes are applied to grasslands
(Nicholson et al., 2000; Smith and Frost, 2000). A large proportion of this, about 90 M tonnes, is applied to land in the
form of manure and slurry (Smith and Frost, 2000). The remainder is deposited directly as excreta by grazing livestock.
Contained within faecal material is a broad range of micro-organisms that are common inhabitants of the gastro-intestinal
tract of cattle; an unknown proportion of which may be pathogenic to humans. The introduction of livestock wastes to
agricultural soils enhances the potential for contamination of soils and surface waters and increases the risk of transmission
to awider community. Many studies have acknowledged agriculture as a vector of food chain contamination through the
faecal-oral transmission route (e.g. Bryan, 1977; Bates et al., 1994; Wight et al., 1997; Natvig et al., 2002; Solomon €t al .,
2002). Howeuver, it is only recently that attention has shifted to the pathogen transmission risk associated with runoff from
pasturesin facilitating gastro-intestinal infections within the human population.

The increasing frequency with which agriculture is associated with bacterial contamination of surface waters continues to
heighten public awareness of farming as a significant source for the loading of soil with enteric bacteria (e.g. Fenlon et al .,
2000; Ogden et al., 2001; Vinten et al., 2002; Aitken, 2003). In response, there exists a need to detail faecally-derived
potential pathogen movements at the field scale in order to identify conditions which favour their export via carrying
drainage waters and simultaneously to develop management strategies that satisfy the requirements of the EU Water
Framework Directive.

Throughout a typical year, grassland management is likely to give rise to three different phases of potential loading and
subsequent transport of faecal bacteria: (1) the slurry application period, (2) the grazing season and (3) the post-grazing
season. Each period in the agricultural calendar is associated with a different set of environmental conditions that
contribute to the potential for transfer. In addition, the survivability of the micro-organisms as a function of both carrier
medium and time adds another dimension to the potential for bacterial loading of receiving waters. It has been
demonstrated that, within catchments and sub-catchments, grassland farming practices are capable of contributing
considerably to the loading of receiving waters with faecally-derived bacteria (Patni et al., 1985; Heinonen-Tanski and
Uusi-Kamppa, 2001; Nagels et al., 2002). However, what remains to be understood is the relative contribution of the suite
of hydrological pathways available to these microbes in facilitating their transfer from source to receptor as driven by
rainfall events.

This study evaluates the transfer of E. coli from 1 ha experimental plots during the post-grazing phase to assess the
differencesin the number of cells exported via defined hydrological pathways. This bacterium was used as an indicator for
the routes of faecally-derived cells in connecting pathways. Comparisons were made between the routes of transfer
associated with both undrained grasslands and those with artificial drainage.

MATERIALSAND METHODS

The experimental field site was established in 1982 as the Rowden Drainage Experiment (NGR SX 650 995) at North
Wyke, Devon. Thisfacility provided the current study with atotal of 8 hillslope lysimeters of 1 haarea, half of which were
installed with mole and pipe drains (40 and 85 cm, respectively) to re-route water loss from the field. The hydrological
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isolation of each plot alowed for a comparison of transfer routes from drained and undrained grassland lying on a slope of
between 5 and 10 degrees. The soil comprised an Ap horizon (0-30 cm) of 37% clay, 5% organic matter and a well-
developed fine subangular block structure overlying a well developed coarse prismatic-structured subsoil of 40% clay
(Findlay et al. 1984). This clay loam of the Hallsworth series is comparable with many other soils where grassland
production predominates (Armstrong and Garwood, 1991) and represents the single most common hydrological soil type
in the UK (Haygarth et al., 1998). The impermeable clay layer in the B horizon prevents any natural vertical drainage
below 30 cm making the soil conduciveto lysimetry.

The undrained plots have a single hydrological pathway that incorporates all overland flow and interflow to a depth of 30
cm. This composite flow is collected in gravel filled ditches installed at 30 cm depth at plot boundaries. Mole and pipe
drains provide drained plots with a secondary export route in addition to the composite pathway that is found in undrained
plots. Samples were collected with a 2-tiered approach using a manual weekly baseline sampling programme
complemented with a manual plus automated intensive storm event sampling strategy. Sampling commenced with the
emergence of drainage water and spanned the complete drainage period. Each of the 4 replicate drained and undrained
plots had been grazed for 5 months with 4 steers. Soil cores to adepth of 7 cm were also sampled to relate numbers
emerging in drainage waters to those determined in the upper soil matrix. A weather station already located at the site
accommodated a rain gauge and soil temperature probes. Detailed instrumentation was installed for one replicate of each
plot and included a flow level recording device as described by Talman (1983), TDR probes (Campbell Scientific CS616)
and automated water sampling units (Buhler Montec 1011 Epic). Operation of all deviceswas controlled using a Campbell
Scientific CR10 datalogger and wiring panel.

When flow levels exceeded a pre-determined threshold level the auto-sampler was triggered through an inline solid state
switch (Campbell Scientific PSW12) and viaan auxiliary signal lead. This control output from the datalogger was simply a
prompt for the autosampler to run its programme to completion for a pre-configured period regardless of the water flow in
relation to the threshold once the initial contact closure had been enabled. Sampling was initiated on atime-wise basis (see
also Roser et al., 2002) and allowed the characterisation of flow hydrograph signatures during storm events.

For the microbiological analysis of soil and water samples, the following procedures were undertaken: Fresh soil samples
were crumbled and 10 g was added to 90 ml of sterile water prior to mixing for 40 minutes on a rotary agitator. The
resulting soil suspensions, and water samples, were serially diluted then spread-plated onto MacConkey agar and
incubated at 37 °C for 24 hours before enumeration of colony forming units (CFU). Colonies of E. coli were enumerated
using particular colony characteristics on MacConkey agar, after confirmation of their identity by partial 16S rRNA gene
sequences. Briefly, aregion of the 16S rRNA gene was amplified by the polymerase chain reaction (PCR) using primers
968f and 1401r (Heuer and Smalla, 1997). All PCR amplifications were carried out in a 40 ni reaction volume containing
20 pmol each of primers 968f and 1401r, 250 nM dNTPs, 3 U Expand High Fidelity polymerase (Roche Diagnostics,
U.K.) and 4 ml 10x reaction buffer. To each reaction mix were added a few cells taken from individual bacterial colonies
representative of seven different colony types on MacConkey agar. PCR was performed using the following cycle, 95 °C
for 5 min followed by 30 cycles of 95 °C for 1 min, 55 °C for 30 s, 72 °C for 1 min. A final extension time of 5 min at 72
°C was included. All PCR samples were amplified using a Primus Thermocycler (MWGBiotech, U.K.), and PCR
products were checked on a 1.2% low melting temperature agarose gel stained with ethidium bromide. Bands of the
expected product size were excised from the gel which was then melted at 65 °C before digestion of the agarose with
agarase (Roche Diagnostics, U.K.) and recovery of the PCR products according to instructions. For sequencing of PCR
products, forward and reverse reactions were undertaken using primers 968f and 1401r using the BigDye(TM) Terminater
v3.0 Cycle Sequencing kit as described by the manufacturers, and the sequencing was performed by capillary
electrophoresis on an ABI Prism 3100 Genetic Analyzer (Applied Biosystems, Warrington, UK).

RESULTS AND DISCUSSION

MacConkey agar is a differential medium often used in the isolation of coliforms. The identity of E. coli coloniesin this
study was confirmed by partially sequencing 16S rRNA genes of isolates representative of seven different colony types.
The data presented provide an account of E. coli contamination of agricultural drainage waters following a typical grazing
season. Cattle were removed from the plots in October 2002 (t = O d; see Table 1) and the emergence of E. coli cellsin
drainage waters was observed in the weeks that followed. Background soil counts of E. coli from an ungrazed plot were
negligiblein comparison with those from grazed plots.

Differencesthrough time

Observations revealed a marked decline of E. coli detected in the upper 7 cm of soil and an increased number of cells
exported from within the soil matrix. Table 1 details average E. coli concentrations and loads exported in the 3
hydrological pathways in relation to daily rainfall and the average flow rate in each transfer route for selected sampling
dates. Higher concentrations of E. coli in drainage waters from both drained and undrained plots coincided with periods of
high rainfall and with times of increased outflow through the draining hydrological pathways. Thiswas possibly due to the
entrainment and subsequent flush of cells from land to water that corresponded with the increased hydrological energy
transferred to the soil habitat. Such an observation parallels work associated with faecal bacteria concentrations in rivers
draining agricultural land, where positive correlations of cells with flow have been recorded (Nagels et al., 2002). Highest
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concentrations were observed in both of the continuously flowing pathways in the first month and a half following the
removal of cattle, after this period there was a noticeable decline in the concentration of the indicator organism in the
drainage waters. The extent to which thisis afunction of organism die-off or cell wash-out now needsto be determined.

Table 1: Average flow, E. coli concentration and E. coli load exported from each hydrological pathway

Load per hour

Days since Daily rainfall Average Sampled Flow (Is'l) Concentration (CFU ml'l) (Flow x Conc)
cattle (mm)

removed
(d) S M ¢ S M c S M c
16 0.4 X 0.117 0.090 X 8 30 X 3.79E+06 9.72E+06
23 4.8 0.062 0.472 0.419 X 50 99 X 8.50E+07 1.51E+08
24 24.4 2.177 2.728 4.267 382 389 286 2.92E+09 4.00E+09 4.47E+09
30 7.2 0.027 0.398 0.342 X 69 88 X 9.89E+07 1.08E+08
37 2.8 X 0.062 0.065 X 7 15 X 1.56E+06 3.51E+06
38 18.8 1.579 2.810 4.211 320 358 219 1.82E+09 3.62E+09 3.32E+09
58 0.0 X 0.132 0.084 X 11 23 X 5.70E+06 7.26E+06
131 8.4 0.554 1.194 1.990 5 9 6 2.59E+07 4.73E+07 1.43E+08

S = Surface pathway, drained plot; M = Mole and pipe drain pathway, drained plot; C = Composite pathway, undrained plot
X = No flow

During the rain event 24 days after the removal of cattle the artificial drain pathway accommodated E. coli at export in the
range (mean + standard error) of 380 + 59 CFU ml™ in comparison with 8 + 3 CFU mi™* only 16 days following removal.
This demonstrates the ability of cells to persist for extended periods in unfavourable environmental conditions until
exported when there is sufficient hydrological energy derived from arainfall event. A similar situation in the composite
undrained pathway was observed with increased hydrological energy providing the vehicle for the export of increased E.
coli concentrations.

Datain table 1 suggest that, although introduced E. coli is able to survive in the soil, thereisadeclinein cell numbers over
time within all 3 hydrological pathways. This is noted in the average concentration and loads of cells exported when
comparing data from the storm events of day 24 and 38. The observed decline is emphasised to a greater extent 131 days
after the removal of livestock. Then daily rainfall levels similar to those noted 30 days post grazing failed to export such
high concentrations of E. coli, with average values of 9 CFU ml™ and 6 CFU ml™ within artificial drain and undrained
composite pathways, respectively. This marked decline is evident in the surface draining pathway on the drained plots
aso, with around a 23 times reduction of cell numbers on day 131 in comparison with day 30, perhaps reflecting a
combined effect of removal of cells from the upper soil profile and micro-organism die-off. The rain event on day 131 was
aso of higher intensity than that of day 30, and generated flows from the plots of a much higher energy thought likely to
mobilise and promote cell transfer, yet the concentrations were much reduced. However, in contrast the total load of E.
coli exported through two of the drainage routes is greater for the later date because of the increased flow generated in the
hydrological pathways. Such an observation demonstrates the role played by water in acting as a carrier and vector
facilitating indicator bacteria and hence potential pathogen transfer to surface waters. Under low rainfall conditions, cells
counts were frequently below detection limits some 3 months after the end of grazing and of little significance to surface
water contamination. This is likely to be a result of the combined effect of both organism die-off and wash-out of cells
from within the matrix as discussed earlier and these criteria are currently being evaluated in follow-up work to that
reported here.

Figure 1 shows the correlation (r = 0.793; p < 0.001) between flow and E. coli concentration for drainflow from the plots
for the period October 2002 to March 2003. The persistence of E. coli, abeit in vastly reduced numbers, complements
previous studies of Buckhouse and Gifford (1976), Fukushima et al. (1999) and Jiang et al. (2002) who have detailed
faecal coliform and E. coli survival within the protective niche of faecal deposits. All were consistent in finding that
microbial tolerance of environmental conditions within these favourable microsites enabled faecal deposits to act as a
long-term potential source of environmental pollution.

Differencesin hydrological pathways

Observations of cell export reveal that thereislittle difference between the concentration of E. coli transferred in drains on
drained plots and those of composite pathways on undrained plots. However, reference to Table 1 suggests a trend in that
under general drainage conditions and low rainfall, more cells are removed in drainage waters from the undrained plots,
but, at higher levels of rainfall, increased concentrations are exported via the mole drains. These lower concentrations
emerging via the mole drains may be associated with an improved filtering efficiency of drained plots hindering the
transfer of cells at depth due to the greater vertical profile negotiated. However, given increased energy these cells may
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bypass the matrix in preferential flow pathways resulting in the increased mole drain concentrations detected during high
flows.
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Figure 1: Relationship between flow from artificial drain pathway and E. coli concentration

During increased rates of rainfall, undrained plots experience extreme waterlogging in contrast to their drained
counterparts. Soil erosion is promoted through rainsplash (Van Dijk et al., 2003) by the impaction of falling raindrops and
this may not have had such an erosive effect in mobilising soil particulates and in releasing cells from the protective niche
of faecal material due to the increased depth of pooled water on undrained plots. The drained plots, in comparison,
accommodate less surface-accumulating water and so the incoming kinetic energy is not dispersed as much in a layer of
water on the soil surface, but is instead dissipated to the soil surface itself. Consequently the transferred momentum of
raindrops may have dislodged soil particles along with sorbed microbes, freed attached micro-organisms into the overlying
water and physically broken down and transferred faecal matter. In any case, the hydrological energy has acted to initiate
the movement and transfer of cells through the upper soil regions and perhaps prompted colloidal movement into soil
pores.

Klein and Casida (1967) have drawn attention to the fact that under conditions of excessive moisture, as experienced in the
undrained plots, there exists the potential for considerable dilution of organic carbon thus perhaps imposing unfavourable
conditions for E. coli survival and promoting a more rapid die-off on these plots. Lower numbers in emerging drainage
waters may then simply relate to conditions unfavourable to these micro-organisms within these plots.

During heavy storms, the surface composite pathway is activated on drained plots and this acts as an overflow pathway
analogous to true overland flow conditions. The concentrations in this pathway were high and perhaps reflect the lateral
splash transportability and surface runoff processes, such as ‘wash in’ of faecal material, acting at the soil surface. The
importance of the overland flow pathway has been acknowledged in the earlier study of Abu-Ashour and Lee (2000).
However, the cell concentrations were not as high on the undrained plot under the same conditions. This perhaps suggests
that the more waterlogged undrained plots, more susceptible to overland flow, have aready experienced a more severe
depletion of their surface supply of faecal material through wash-in processes. On drained plots this is a less frequent
occurrence. Alternatively, as noted by Stephenson and Street (1978), if the source of faecal contamination is depositedin a
location where overland flow is unlikely to capture waste associated cells then the sporadic positioning of faecal waste
may explain the differences in concentrations observed between drained and undrained plots. However, as noted by
Camper et al. (1993), it is not only porous medium hydro-dynamics that govern microbial transport; in addition bacterial
characteristics such as size and motility and properties of the soil itself such as soil hydrophobicity all interact to determine
microbial fluxes.
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CONCLUSIONS

The period immediately following the grazing season has a significant impact on bacteriological quality of drainage waters
when combined with elevated surface and subsurface runoff from experimental plots driven by storm events. These storm
waters mobilise faecal bacteria at a much higher concentration than during base flow conditions. This demonstrates the
importance of the physical driving force of the wetting front moving through the soil as opposed to the diluting effect often
attributed to large volumes of water. Although storm events may be of a relatively short duration, the bacterial loads
exported from agricultural fields are greatest during these events. The study has demonstrated that different hydrological
routes contribute to the loading of surface waters with bacterial contaminants and shown that artificial drainage has the
potential to enhance the export of cellsunder periods of high rainfall. These data provide a basic framework upon which to
develop a bacterial transfer model that can incorporate pathogenic strains of bacteria. The characteristic survival curves of
gut-derived bacteria are currently being determined for a suite of environmental conditions to predict the relative
contributions of precipitation events and organism die-off with respect to the decline of faecally-derived bacteria in
managed grasslands.
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