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ABSTRACT 
This paper reports progress made in elucidating key biological indicators of nutrient enrichment, by phosphorus and 
nitrogen, in riverine systems.  Data from the 1995 survey of river quality in England and Wales, as well as recent data 
from Northern Ireland, have been analysed using information theory and neural networks.  The use of information theory 
is expected to lead to the identification of indicator taxa of good overall effectiveness, and ecological justification is given 
for some of the stronger candidates found.  However the set of indicators obtained in this way is expected to contain some 
replication of function.  On the other hand, the neural network approach is expected to lead to subsets of indicators with 
much less replication.  The results of the two approaches are compared and are more consistent in the case of phosphorus 
than nitrogen. 
 
KEYWORDS:  Eutrophication, diffuse pollution, biological monitoring, artificial intelligence, modelling. 
 
INTRODUCTION 
Eutrophication, the enrichment of waters by nutrients resulting in an array of biological changes, is known to affect many 
industrialised countries. Symptoms include increased production of algae, enhanced growth of higher aquatic plants, and 
the deterioration of oxygen supply, which typically lead to a reduction in biodiversity and adverse effects on water use.  
Recent reports have identified eutrophication as a priority environmental issue for fresh waters in England and Wales 
(Environment Agency, 1998), as well as Northern Ireland, Scotland and the Irish Republic (McGarrigle, 1998). 
 
Effective eutrophication control measures require an understanding of the relationships between nutrient pressures, 
nutrient concentrations in the receiving water, and impacts on the ecology (see Withers & Lord, 2002, for exa mple). 
Implementation of nutrient removal measures at sewage treatment works, to protect sites of high conservation value and 
under the European Commission’s (EC) Urban Waste Water Treatment Directive, are reducing discharges of nutrients 
from point sources of pollution. Consequently, diffuse sources such as agriculture are likely to represent a relatively more 
important source of nutrients in the future.   
 
Biological monitoring of river quality has grown in importance over the past few decades due to the recognition of 
important advantages over chemical monitoring. The recently introduced Water Framework Directive is also founded on a 
biological approach (EC, 2000).  Bio-monitoring requires the development of tools with the capacity to interpret biological 
and environmental variables in terms of chemistry and vice versa.  The response of benthic macroinvertebrate and 
macrophyte communities in rivers to environmental stresses of various types is acknowledged, and scientifically utilised as 
a means of assessing water quality. The specific response of macroinvertebrates to nutrient enrichment in rivers has been 
well studied, although phytoplankton or macrophytes are preferentially used as a means of investigating nutrient-biological 
response relationships. Despite the amount of work undertaken, it is not clear if a given nutrient regime results in a 
particular biological community of macroinvertebrates and macrophytes in rivers. The answer is unlikely to be simple as 
the particular response of the macroinvertebrate and macrophyte community to a particular stressor may be different under 
various conditions such as geographical location, geology, ambient water chemistry, hydrological regime and season.  
 
Artificial intelligence (AI) techniques have been demonstrated to provide powerful methods of modelling complex 
relationships in the field of water quality using supervised pattern recognition (Ruck et al., 1993; Lek et al., 1996; Walley 
& Fontama, 1998; Gabriels et al., 2002), unsupervised pattern recognition (O’Connor & Walley, 2001) and Bayesian 
belief networks (Trigg et al, 2000; Walley et al., 2002a).  The ultimate objective of the work described here is the 
construction of belief networks with the ability to diagnose nutrient levels from the biology and characteristics of the local 
environment, as well as being able to predict changes in the biology from changes in nutrient levels, perhaps as a result of 
modified agricultural practice. 
 
This paper reports progress made in the prerequisite step of elucidating key biological indicators (macroinvertebrates and 
macrophytes) of phosphorus and nitrogen in rivers, and builds on earlier work (Walley et al., 2002b).  
 
METHODOLOGY 
The data used to develop the systems were derived from the Environment Agency’s (EA) 1995 biological, environmental 
and chemical surveys of rivers in England and Wales, as well as recent data from Northern Ireland. The project databases 
derived from the EA survey data had 6695 records, 3255 for spring and 3440 for autumn. The biological data consisted of 
the abundance levels of the 76 BMWP (Biological Monitoring Working Party) families that were recorded in the spring 
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and autumn macroinvertebrate surveys of 1995. There are about 4,000 species of aquatic macroinvertebrates in the British 
Isles, so for simplicity biomonitoring methods use family level identification. The environmental data were the averages of 
spring and autumn values. The chemical data recorded alongside each biological/environmental record consisted of the 
concentrations of up to 34 chemical variables, each averaged over three months preceding the date of the biological 
sample. The two chemical variables of interest in this research were TRP (Total reactive phosphorus) and TON (Total 
organic nitrogen). 
 
It is possible that the variations in nutrient concentration and community composition merely reflect the site and catchment 
characteristics, and that there is little association between nutrients and the macroinvertebrate community. To justify the 
search for macroinvertebrate taxa with strong associations, a preliminary investigation was undertaken in order to quantify 
the amount of extra information provided by including the 76 BMWP taxa in addition to the 11 environmental variables as 
input to the models. Data from the 1995 survey of rivers in England and Wales were used to train and test a neural network 
with phosphorus as the output variable; firstly with all variables included in the input, and secondly with just the eleven 
environmental variables.  The correlation coefficients obtained between the predicted levels of phosphorus and actual 
levels in the two cases were 0.810 and 0.596, which correspond to explaining around 65.6% and 35.5% of the variation 
respectively.  Thus, by including the macroinvertebrate taxa the effectiveness of the network was almost doubled.  This 
provided convincing justification of the underlying approach, and confirmed that the search for key indicator taxa was 
viable. 
 
When characterising indicators it is useful to distinguish between two different types.  Firstly, one can identify a set of 
indicators that all display a strong association with the effect in question.  Using a sporting analogy, this can be termed the 
squad approach.  However, such a set may contain indicators which replicate the role of others, resulting in a certain 
amount of overlap and redundancy.  Since a useful predictive or diagnostic model needs economy as well as accuracy, 
further subsets could be identified containing indicators where each has a different role.  There may be more than one such 
subset, and continuing the sporting analogy this might be termed a team approach.  This paper describes two techniques, 
one based on information theory and the other on neural networks.  These produce indicators belonging to squad and team 
sets  respectively. 
 
The first approach is based on mutual information (MI) and is designed to identify indicators of TRP and TON belonging 
to a squad set. Mutual information is a measure of the amount of information one random variable contains about another, 
and is interpreted as the reduction in uncertainty of one random variable due to knowledge of the other.  This technique has 
been applied to the 1995 GQA data of rivers in England and Wales.  In an attempt to remove the effects of pollution from 
high organic load the data analysed included sites of GQA classes A (very good biological quality) and B only (good 
biological quality).  The data was then categorised according to five phosphorus bands, and five types of site (ranging from 
fast-flowing upland streams to slow-flowing lowland rivers) and each sample allocated to one of these twenty-five classes.  
This then allowed a distribution of the data to be defined according to the 76 BMWP taxa and the twenty-five classes, from 
which the mutual information can be calculated.   
 
The second approach adopted was the use of a neural network.  Commercial software (NeuralWare Professional II) was 
used to implement a multi-layer perceptron – a neural network based on supervised learning.  Each network was trained 
and tested on the same data, and although this means that the performance tests were based on dependent data and 
therefore not true tests of performance, the technique at least allows the more important taxa to be identified.  The data 
analysed was the 1991-2000 survey data of rivers in Northern Ireland.  In all cases the network was a multi-layered 
perceptron with a single output (TRP or TON) and 144 input variables (9 environmental variables and presence/absence 
data for 76 BMWP taxa and 59 macrophyte species).  The networks had one hidden layer of 6 nodes, and the training 
schedule was Save Best (100,000/1,000,10).  This means that during training the network was tested (on the training data) 
every 1,000 cycles and if a test showed improvement the network was saved.  Training continued until 10 successive tests 
showed no improvement in performance, and the total number of cycles reached 100,000. 
 
A procedure known as impact analysis was used to determine the relative contribution of each input variable to the final 
prediction.  Each input variable is temporarily disabled in turn and the performance of the model determined each time.  
The percentage reduction in the correlation coefficient below its baseline value (with no inputs disabled) is recorded each 
time a variable is disabled.  At the end of the process the variables can be ranked according to impact, with the most 
important input variables having the highest percentage impacts.  The input vector can then be pruned of variables with 
negative or very low imp acts and the training procedure entered once more.  Several cycles of the impact analysis 
procedure can be used to optimise the input vector, so that by the end the input vector may contain only 40 or 50 of the 
original 144 variables.  Under this approach, variables which replicate the function of others may become labelled as low 
impact, because the network can function just as well whether they are disabled or not.  Such variables may be expected to 
be pruned from the team regardless of the merit of their  inclusion in the squad. 
 
RESULTS AND DISCUSSION 
The annual and seasonal MI values of invertebrate taxa for TRP and TON for the 1995 data for rivers in England and 
Wales are given in Table 1.  The strongest 38 out of the 76 taxa are ranked in descending order of annual average.  It is 
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clearly not possible to justify the position of every taxon, but an attempt is made to provide ecological justification for 
some of the top-ranked taxa. 
 
Table 1  Annual and Seasonal Mutual Information (MI) Values of BMWP taxa for TRP and TON based on English 

and Welsh river data (1995 survey, GQA class A & B only divided into 5 Site Types and 5 TRP/TON Bands). 
 

 Average TRP       Average TON   

Taxon Spring Autumn 
Ann 
Avg  Rank Taxon Spring Autumn 

Ann 
Avg  

Rhyacophilidae 0.0471 0.0385 0.0428 1 Hydrobiidae 0.0658 0.0335 0.0497 
Elmidae 0.0332 0.0491 0.0412 2 Goeridae 0.0516 0.0438 0.0477 
Heptageniidae 0.0388 0.0321 0.0355 3 Gammaridae 0.0452 0.0383 0.0417 
Asellidae 0.0378 0.0329 0.0353 4 Oligochaeta 0.0564 0.0241 0.0403 
Calopterygidae 0.0265 0.0399 0.0332 5 Heptageniidae 0.0527 0.0223 0.0375 
Ephemerellidae 0.0451 0.0205 0.0328 6 Chironomidae 0.0479 0.0238 0.0359 
Tipulidae 0.0292 0.0361 0.0327 7 Sphaeriidae 0.0444 0.0267 0.0356 
Gammaridae 0.0309 0.0318 0.0313 8 Hydropsychidae 0.0406 0.0287 0.0346 
Erpobdellidae 0.0333 0.0292 0.0313 9 Baetidae 0.0428 0.0262 0.0345 
Caenidae 0.0309 0.0314 0.0311 10 Elmidae 0.0375 0.0304 0.0340 
Hydrobiidae 0.0254 0.0368 0.0311 11 Leptoceridae 0.0325 0.0258 0.0292 
Sericostomatidae 0.0274 0.0346 0.0310 12 Ephemerellidae 0.0418 0.0163 0.0291 
Leuctridae 0.0306 0.0306 0.0306 13 Lymnaeidae 0.0302 0.0254 0.0278 
Coenagriidae 0.0190 0.0392 0.0291 14 Nemouridae 0.0356 0.0195 0.0276 
Nemouridae 0.0199 0.0370 0.0284 15 Sericostomatidae 0.0335 0.0204 0.0270 
Ancylidae 0.0237 0.0321 0.0279 16 Leptophlebiidae 0.0366 0.0156 0.0261 
Limnephilidae 0.0215 0.0333 0.0274 17 Caenidae 0.0264 0.0257 0.0261 
Hydropsychidae 0.0220 0.0325 0.0272 18 Limnephilidae 0.0394 0.0127 0.0261 
Sphaeriidae 0.0255 0.0289 0.0272 19 Ancylidae 0.0290 0.0226 0.0258 
Baetidae 0.0328 0.0215 0.0272 20 Simuliidae 0.0292 0.0207 0.0250 
Planorbidae 0.0207 0.0318 0.0263 21 Erpobdellidae 0.0308 0.0190 0.0249 
Planariidae 0.0292 0.0230 0.0261 22 Hydrometridae 0.0299 0.0190 0.0244 
Leptophlebiidae 0.0236 0.0286 0.0261 23 Asellidae 0.0258 0.0229 0.0244 
Goeridae 0.0237 0.0272 0.0255 24 Ephemeridae 0.0274 0.0214 0.0244 
Lepidostomatidae 0.0246 0.0250 0.0248 25 Tipulidae 0.0284 0.0202 0.0243 
Perlodidae 0.0280 0.0211 0.0245 26 Planariidae 0.0242 0.0233 0.0237 
Leptoceridae 0.0218 0.0270 0.0244 27 Lepidostomatidae 0.0275 0.0194 0.0234 
Simuliidae 0.0223 0.0260 0.0241 28 Hydroptilidae 0.0305 0.0157 0.0231 
Oligochaeta 0.0229 0.0248 0.0239 29 Neritidae 0.0222 0.0240 0.0231 
Chironomidae 0.0245 0.0223 0.0234 30 Glossiphoniidae 0.0317 0.0143 0.0230 
Ephemeridae 0.0196 0.0267 0.0232 31 Rhyacophilidae 0.0224 0.0218 0.0221 
Brachycentridae 0.0169 0.0291 0.0230 32 Physidae 0.0225 0.0214 0.0220 
Gyrinidae 0.0194 0.0259 0.0227 33 Brachycentridae 0.0209 0.0227 0.0218 
Aphelocheiridae 0.0135 0.0303 0.0219 34 Taeniopterygidae 0.0334 0.0101 0.0217 
Psychomyiidae 0.0182 0.0229 0.0205 35 Leuctridae 0.0221 0.0213 0.0217 
Neritidae 0.0170 0.0240 0.0205 36 Perlodidae 0.0305 0.0126 0.0216 
Hydroptilidae 0.0221 0.0188 0.0205 37 Dytiscidae 0.0204 0.0220 0.0212 
Glossiphoniidae 0.0226 0.0171 0.0198 38 Aphelocheiridae 0.0222 0.0189 0.0206 

 
Raised levels of the nutrient phosphorus can lead to enhanced growth of algae, which in turn can cause depleted levels of 
oxygen, especially at night.  The overall expectations might be the absence of invertebrate families intolerant of high 
phosphorus-low oxygen conditions, and the proliferation of species that are tolerant to these conditions.  The relative 
abundance of such families might be a good indicator of overall phosphorus levels. According to Davies (1974), two 
families showing intolerance of oxygen depletion are Rhyacophilidae and Gammaridae.  Comparison with Table 1 shows 
that one of these (Rhyacophilidae) heads the list while the other is placed eighth.  Furthermore, Asellidae is quite tolerant 
of oxygen depletion (Davies) so would potentially benefit from conditions of low oxygen that result in the removal of 
Gammaridae, its principal competitor in oxygenated conditions.  Asellidae is ranked fourth.  Families tolerant of oxygen 
depletion are Erpobdellidae and Chironomidae (Davies), placed ninth and thirtieth respectively. Erpobdellidae would be 
expected to thrive due to the proliferation of macroinvertebrate families on which it preys, such as the highly tolerant 
Oligochaeta, ranked twenty-ninth. 
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The same mechanism for oxygen depletion would be expected to occur with raised nitrate levels, but it is complicated by 
the association of nitrate with ammonia and other nitrogen compounds.  High nitrate levels are often associated with the 
breakdown of organic pollution, represented by ammonia, under conditions of high oxygenation.  Although the data only 
included samples from good quality sites (GQA classes A and B), some of the TON rankings suggest a link with ammonia.   
 
Consider two of the stronger indicators of phosphorus mentioned earlier, Rhyacophilidae and Gammaridae.  Both are 
sensitive to oxygen depletion and Rhyacophilidae is fairly tolerant of ammonia, but Gammaridae is not (Davies).  
Gammaridae remains a strong indicator of TON (third), but Rhyacophilidae is ranked much lower (thirty-first).  
Confirmation of the likely influence of organic pollution is provided by the high ranking of Oligochaeta (fourth) and 
Chironomidae (sixth), both of which would be expected to proliferate in the low oxygen conditions associated with the 
breakdown of organic matter.  Of the two other families mentioned earlier, Erpobdellidae might be expected to thrive with 
the proliferation of Oligochaeta, and Asellidae decline with the proliferation of Gammaridae.  However both of these 
effects may be masked by only moderate ability of each to tolerate ammonia and the families occur lower down the 
ranking than before (twenty-first and twenty-third respectively). 
 
While clearly not exhaustive these observations constitute a certain amount of ecological justification for the relative 
ranking of sensors with regard to TRP and TON obtained by mutual information.  Further observations could be made, 
such as the appearance of four families that are highly ranked for both TRP and TON (Elmidae, Heptagenidae, 
Ephemerelidae and Hydrobiidae).  In addition these rankings can be used as a benchmark to compare with the outcomes 
from the neural network analysis, which are shown in Table 2.  These comparisons must be treated with some caution, 
given that the datasets used in each case are different and might reflect differences in river ecology between England and 
Wales on the one hand, and Northern Ireland on the other. 
 
Taking the phosphorus (TRP) results first, it can be verified that the strongest macroinvertebrate taxa from the neural 
network are skewed towards the stronger end of the MI rankings.  The best three macroinvertebrate taxa from the neural 
network tests appear ninth, third and sixth respectively in the MI rankings.  The only macroinvertebrate taxon in the top 
ten MI ranking not to appear in the best twenty from the neural network tests is Asellidae.  As mentioned earlier, this does 
not imply that Asellidae is not a good sensor, but that it probably replicates the function of other macroinvertebrate taxa.  
Balanced against this good agreement is the occurrence of five of the best twenty macroinvertebrate taxa from the neural 
network (Dendrocoelidae, Sialidae, Lymnaeidae, Haliplidae and Gerridae) in the weaker half of the MI rankings (not 
shown in Table 1).  However this may just be evidence of the optimisation of the input vector to the neural network which 
is designed to purge the input vector of taxa which replicate the function of others.  Once many replicates have been 
pruned it might be argued that some of those which remain might well occur lower down the MI rankings.  None of the 
best 20 macroinvertebrate taxa in the neural network appear in the worst twenty of the MI rankings however.  An 
observation of ecological interest is the reliance of the neural network on Aphelocheiridae which is ranked fifth in 
importance despite being extremely rare.  This may reflect the fact that Apheloceiridae breathes via diffusion of oxygen 
across hairs rather than through gills, implying a very high oxygen saturation requirement and meaning that it would occur 
only at very low phosphorus levels. 
 
When the comparison is repeated for TON the outcome is less conclusive.  Although the highest ranked macroinvertebrate 
for the neural network (Chironomidae) is placed sixth in the MI rankings, the second-ranked (Siphlonuridae) is seventy-
fourth in the MI rankings.  In contrast to the results for phosphorus, the best macroinvertebrates for the neural network do 
not appear skewed towards the stronger end of the MI rankings but rather scattered throughout, with eleven in the stronger 
half and nine in the weaker half.  The same comment applies however, that this may be the natural outcome of the pruning 
replicate taxa.  There may be more fundamental questions however, such as the difficulty of separating out the effects of 
the association with ammonia.  There were also basic differences in the datasets - the Northern Ireland data was based on 
presence/absence and the English and Welsh data used abundance levels.   
 
CONCLUSIONS 
Several conclusions can be drawn from this preliminary study aimed at drawing out biological indicators of TRP and TON 
in rivers.  Firstly, general indicators have been identified using a technique based on mutual information.  These have 
strong association with TRP and TON and in the main are commonly occurring macroinvertebrate taxa.  Secondly very 
specific indicators have been identified using successive impact analyses with neural network models.  These indicators 
are likely to be macroinvertebrate taxa and macrophyte species that are rare and sensitive to very particular conditions, 
such as very low phosphorus levels.  Both kinds of indicators are likely to be useful in the design of diagnostic or 
predictive models applied to diffuse agricultural pollution.   
 
A very significant finding from analysis of the Northern Irish dataset is that macrophytes did not turn out to be better 
indicators of TRP or TON than the invertebrates. This challenges the current biological monitoring approach whereby 
phytoplankton or macrophytes are preferentially used as a means of investigating nutrient-biological response 
relationships.   
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Further work is required to complete the analysis, for example to eliminate potential confounding factors such as the 
association of TON with ammonia, and to fulfil the need for ‘like for like’ tests on both datasets used.  Optimisation of the 
input vector for the neural network models might be made more efficient using genetic algorithms. 
 
 
Table 2  Results of impact analyses (macroinvertebrates shown shaded) showing the top 38 indicator variables for 

TRP and TON based on neural network model of data from Northern Ireland. 
 

TRP  TON 

Variable Impact %  Rank  Variable 
Impact 

%  

Silt 6.629 1 Width 8.187 
Depth 6.602 2 Chironomidae 6.905 

Pebbles 5.434 3 Siphlonuridae 5.851 
Width 5.378 4 Sand 5.326 

Erpobdellidae 4.159 5 Lemanea 5.06 
Heptageniidae 3.612 6 Altitude 4.876 
Ephemerellidae 3.595 7 Leuctridae 4.401 
Dendrocoelidae 3.566 8 Ephemeridae 4.148 

Petasites  3.533 9 Depth 3.835 
Sparganium 3.238 10 Heracleum 3.623 
Sparganium 3.11 11 Solanum 3.121 

Aphelocheiridae 3.062 12 Lythrum 2.989 
Nuphar 2.76 13 Potamogeton 2.935 
Phalaris  2.746 14 Phalaris  2.71 
Elmidae 2.293 15 Hydrobiidae 2.667 

Ranunculus 2.233 16 Haliplidae 2.613 
Sialidae 2.208 17 Oenanthe 2.525 

Sphaeriidae 2.08 18 Elmidae 2.108 
Glossiphoniidae 2.049 19 Astacidae 1.962 

Ancylidae 1.901 20 Polycentropidae 1.83 
Planorbidae 1.843 21 Planariidae 1.79 
Fontinalis  1.742 22 Ranunculus 1.625 
Boulders 1.715 23 Coenagriidae 1.605 

Simuliidae 1.458 24 Sparganium 1.547 
Gyrinidae 1.444 25 Asellidae 1.458 
Caenidae 1.412 26 Juncus 1.103 
Vaucheria  1.344 27 Heptageniidae 1.04 
Tipulidae 1.311 28 Limnephilidae 0.926 

Rhyacophilidae 1.163 29 Cladophora  0.907 
Lymnaeidae 1.013 30 Hildenbrandia 0.886 

Calopterygidae 0.951 31 Amblystegium 0.854 
Diatoms  0.892 32 Gerridae 0.838 

Haliplidae 0.881 33 Pebbles 0.822 
Potamogeton 0.85 34 Fontinalis  0.689 

Gerridae 0.827 35 Dendrocoelidae 0.671 
Callitriche 0.826 36 Glossiphoniidae 0.614 
Astacidae 0.821 37 Veronica 0.495 
Asellidae 0.783 38 Callitriche 0.371 
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