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1.  Introduction 

This paper has three aims: first of all, to provide a decomposition of the change in body mass 

index (BMI) in Ireland for a cohort of children, as they grow from aged 9 to aged 13.  As is 

becoming standard in the literature, we carry out the decomposition across the whole of the 

distribution and not at the mean.  Secondly, we provide a methodological contribution in that 

we examine the sensitivity of the results to the chosen method of decomposition.  Finally, we 

implement a number of counterfactuals to provide some indication of how the distribution of 

BMI may be influenced by non-marginal changes in certain, key, covariates. 

BMI is probably the most frequently used measure of obesity and overweight in both children 

and adults (although it is by no means a perfect measure, see Cawley and Burkhauser, 2008).  

A value of BMI in excess of a key threshold can indicate whether a child is overweight or 

obese (note that for children and adolescents these thresholds vary with respect to age and 

gender, as is discussed in more detail below), and typically these thresholds are located 

somewhere in excess of the 70th percentile.  Hence analysis of the distribution of BMI which 

concentrates on measures of central tendency, such as the mean or median, may not fully 

capture developments in the incidence or severity of obesity or overweight. 

When analysing the change in BMI over time, it can be helpful to adopt a decomposition 

approach.  BMI is modelled as a function of a number of observable characteristics.  The 

change in BMI between two periods can then be decomposed into an “explained” portion, 

arising from changes in these observed characteristics, and an “unexplained” portion which 

arises from changes over time in the effect of these characteristics on BMI and also from 



changes in unobserved characteristics.  The best known of such decompositions is the 

Blinder-Oaxaca (BO) decomposition which is evaluated at the mean of the distribution.  

However, as discussed above, from a policy perspective we may well be interested in 

developments elsewhere in the distribution and hence a decomposition across the whole of 

the distribution may be preferable (for a review of decomposition methods see Fortin et al, 

2011). 

There are a number of alternative methods of carrying out decompositions across the 

distribution and we apply three of these approaches in our analysis: the re-weighting method 

of Dinardo, Fortin and Lemieux (henceforth DFL, 1996), the distribution regression method 

of Chernozhukov et al (henceforth CVM, 2013) and the re-centered influence function 

(henceforth RIF) approach of Firpo et al (2007).  All of these methods have their advantages 

and disadvantages (which we briefly review below and which are discussed in Fortin et al) 

and it is worthwhile to see how the results from the models differ in practice (thus this 

portion of our paper is in the spirit of Jones et al, 2015). 

Finally, the CVM and RIF approaches also permit more detailed analysis of decompositions 

whereby the influence of individual characteristics can be isolated.  In addition, the CVM 

approach can be used to examine other counterfactuals, in particular counterfactuals 

involving non-marginal changes.  For example, assuming maternal education is identified as 

a factor affecting child BMI, then what would be the effect on the BMI distribution of 

imposing the highest level of education on all mothers?  Later in the paper we analyse the 

effect of a number of such counterfactuals. 

The remainder of the paper proceeds as follows: In section 2 we briefly review the 

decomposition methods we apply.  In section 3 we discuss our data and present results for the 



different decompositions and for a number of counterfactuals.  Section 4 provides concluding 

comments. 

 

2.  Decompositions Across the Distribution 

In this section we briefly review the decomposition methods.  We commence with the simple 

BO decomposition and then proceed to decompositions of the whole distribution.  

Suppose we have an outcome, yt (e.g. BMI in period t) and yt is a linear function of K 

variables (characteristics).  We wish to obtain a decomposition of the difference in outcomes 

between the two periods. Thus we have  

.   

where X represents a vector of characteristics and β is a vector of returns to characteristics (or 

slope parameters of the relationship, including the intercept).  Since , then 

following the well-known result of Blinder (1973) and Oaxaca (1973) the difference in 

average outcomes  can be decomposed as follows: 

. 

. 

 

where  is the unconditional counterfactual mean outcome i.e. the outcome if the 

pattern of returns in period 1 were applied to the characteristics of period 2. The second term 

on the right hand side above, , shows that part of the gap which arises 
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owing to differences in the characteristics over the two periods and is sometimes referred to 

as the “explained” portion of the gap. The first term on the right hand side,  , 

is that part of the gap which arises owing to differences in the returns to characteristics and 

differences in unobservables, and is sometimes referred to as the “unexplained” portion of the 

gap.  It is also possible to further decompose both the explained and unexplained portions of 

the gap to obtain the contribution of each covariate.  This is sometimes called the “detailed 

decomposition”.12 

Note that in the decomposition above, in the explained portion of the gap, the differences in 

characteristics are weighted by the returns from period 1.  An alternative decomposition, 

essentially the mirror image of the decomposition above, is also possible where the difference 

in characteristics are this time weighted by the returns from period 2.  The key issue here is 

essentially the choice of a reference vector of returns coefficients between the two periods.  

In general, when looking at a change over time the convention appears to be to isolate the 

change in outcomes arising from changes in characteristics.  Thus the counterfactual which is 

examined is the outcome which would have arisen with period 2 characteristics and period 1 

returns, and this is the counterfactual which is the basis of our analysis below. 

In the case of BMI we may also be interested in gaps and decompositions at parts of the 

distribution other than the mean, given that key BMI thresholds for overweight and obesity 

are typically at percentiles well above 50.  One possible approach might be to carry out 

quantile regressions at the desired quantiles and then apply the BO decomposition. 

                                                
1 Detailed decompositions of the unexplained portion can also be sensitive to the choice of omitted category for 
categorical variables.  See Fortin et al (2011). 

2 It is also possible to have a three-way decomposition.  This recognises the fact that typically both 
characteristics and returns will differ between the two periods simultaneously, and so a third interaction term 
takes account of this.   
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In that case, given our outcome, y, the conditional quantile function is assumed to be linear of 

the form  

 for each  

where Xi represents the set of covariates for individual i and  βθ is the coefficient vector for 

the θth quantile.  The quantile coefficients can be seen as capturing the return of each 

covariate across the distribution of y.  Given the assumption of linearity, it is possible to 

estimate the conditional quantile of y by linear quantile regression for each .  The 

conditional quantiles for periods 1 and 2 are then  and 

 respectively. 

Can we reconstruct the counterfactual unconditional distribution of outcomes  

using estimates from the conditional quantile regressions, and hence carry out a BO type 

decomposition of the gap evaluated at each quantile?  This is straightforward when dealing 

with the mean, since the law of iterated expectations tells us that .  Thus 

the OLS estimate for covariate Xi provides the effect of the covariate on either the conditional 

or unconditional mean of y.  However, the law of iterated expectations does not hold in the 

case of quantiles and so   where  is the θth quantile of the 

unconditional distribution and   is the corresponding conditional quantile.  

Thus, in terms of a decomposition, the differences in unconditional quantiles will not be the 

same as the difference in conditional quantiles and hence it is not straightforward to recover 

(and decompose) the gap between unconditional quantiles. 
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A number of different approaches have been put forward to overcome this problem or else to 

provide alternative decompositions (focusing on the conditional distribution), and we discuss 

three of them here.  First we have the DFL “re-weighting” method:   

let  and  represent the conditional, cumulative density functions for 

periods 1 and 2 respectively.  The counterfactual we wish to obtain is the conditional density 

function for period 1 but with the distribution of covariates for period 2.  DFL showed that 

this could be achieved via the computing of a reweighting factor.  Thus the counterfactual we 

obtain is 

𝐹"#|%#(𝑦|𝑋) = +𝐹"#|%#(𝑦|𝑋)Ψ(𝑥) 𝑑𝐹%#(𝑋) 

where the re-weighting factor Ψ(𝑋) = /012(%)
/01#(%)

.  This weighting factor can be calculated 

relatively simply since it is possible to show that  

Ψ(𝑋) =
Pr	(𝑋|𝑡 = 2)
Pr	(𝑋|𝑡 = 1) =

Pr(𝑡 = 2|𝑋) /Pr	(𝑡 = 2)
Pr(𝑡 = 1|𝑋) /Pr	(𝑡 = 1) 

where, for example, Pr	(𝑡 = 2|𝑋) is the probability that from a pooled sample and given the 

observed set of covariates, an observation comes from period 2 (as opposed to period 1).  

Pr	(𝑡 = 2) is simply the unconditional probability that any observation from the pooled 

sample comes from period 2.  As outlined below, since we are dealing with a balanced panel 

here, Pr(𝑡 = 1) = Pr	(𝑡 = 2).  The conditional probabilities can be estimated from a simple 

logit model and then, given the calculation of the weighting factor, the counterfactual 

distribution can be obtained using period 1 observations, but reweighted by the weighting 

factor.  Using terminology from the BO approach, this gives the explained part of the 

decomposition and given this, it is then straightforward to obtain the unexplained part.  A 
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detailed decomposition can obtained by carrying out the process one covariate at a time.  

However, results are path dependent. 

An alternative approach to estimating the conditional distribution is provided by CVM 

(2013).  They term their approach “distributional regression” and again it is based upon 

estimating the conditional distribution of the outcome in question (BMI), 𝐹"#|%#(𝑦|𝑋), and 

then integrating this conditional distribution over the distribution of X in period 2 to obtain 

the counterfactual. 

They suggest a distribution regression approach to estimate the conditional distribution, with 

a separate regression model estimated for each value of y in period 1.  The precise regression 

model depends upon a link function, Λ, whereby 𝐹(𝑦|𝑋) = Λ(𝑋𝛽(𝑦)).  Possible 

specifications for Λ include the logit, probit, or linear probability models.  Estimating the 

model for period 1 provides a set of parameter estimates 𝛽<(𝑦)= , from which predicted 

probabilities Λ(𝑋>𝛽<(𝑦)= ) are obtained.  Averaging over these predicted probabilities over the 

period 2 sample gives the counterfactual: 

𝐹"#|%2(𝑦) =
1
𝑁@
A Λ(𝑋>𝛽<B

>∈@
(𝑦)) 

Thus the parameters from the estimated model for period 1 are applied to the period 2 

sample, thus providing the counterfactual whereby the conditional distribution for period 1 

applies to the sample with period 2 characteristics.  As with the DFL approach, this provides 

the explained part of the decomposition and the function can be inverted to obtain conditional 

quantiles.   

CVM also suggest an alternative whereby if conditional quantiles are obtained from quantile 

regression and then inverted to obtain the conditional distribution function, we obtain: 



𝐹"#|%2(𝑦) = + 1 D𝑋𝛽<B(𝑢) ≤ 𝑦G H 𝑑𝑢
<

I
 

where 𝛽J(𝑢) is the quantile regression estimator.  CVM (2013) discuss the factors which 

should influence the choice between these two approaches.  They suggest a pragmatic, case-

by-case approach but recommend that the quantile approach should only be used if the 

dependent variable is smooth and continuous (thus it would not be suitable for estimating a 

counterfactual wage distribution where there is a minimum wage with a lot of mass 

concentrated at that point).  

The final approach we consider is the RIF approach of Firpo et al (2009). They suggest an 

OLS-based regression method which estimates the impact of changes in an explanatory 

variable on the unconditional quantile of the outcome variable, via the regression of a 

transformation of the outcome variable on the set of explanatory variables.  The 

transformation in question is based on the influence function (IF), which provides the 

influence of an individual observation on the distributional statistic of interest (such as the 

variance, or a particular quantile).  In the case of the mean, for example, the influence 

function is the demeaned value of the outcome variable i.e. y-µ.   What is known as the re-

centered influence function (RIF) is obtained if the original distributional statistic of interest 

is added back to the IF.  Thus in the case of the mean, the RIF=y-µ+µ=y.   

More generally (and dropping type subscripts for convenience), if F(y) is the cumulative 

distribution of the outcome variable and if T(.) is the distributional statistic in question, e.g., a 

quantile, then the influence function is the directional derivative of T(F) at F (Essama-Nssah 

and Lambert, 2011).  By adding the IF to the original distributional statistic, we obtain the 

RIF.  By construction, the RIF obeys the law of iterated expectations and thus 



 and it is this which is regressed against the covariates in the X 

vector. 

For the case where the distributional statistic is a specific quantile, Qθ, the IF is defined as  

 

where θ is the quantile in question, I(.) is an indicator function taking on the value of 1 if the 

expression in parentheses is satisfied,   is the  θth quantile  of the unconditional 

distribution of the outcome variable and  is the density of the marginal distribution 

of y evaluated at  (see Essama-Nssah and Lambert, 2011).  The RIF is then 

 

Having calculated the value of RIF for all observations in this way, the RIF regression model 

is then defined as , and can be estimated by OLS.  The estimated 

coefficients of the vector β then give the effect of each covariate on the unconditional θth 

quantile of y.  The regression can be estimated for different values of θ and for different 

types, and counterfactuals can be constructed as with the standard BO decomposition, 

including a detailed decomposition. 

We thus have four approaches to constructing a decomposition of the change in the 

distribution of BMI over time, the DFL re-weighting approach, the CVM approaches using 

either quantile regression or distributional regression and finally the RIF approach of Firpo et 

al.  In the next section we discuss our data and also carry out the decompositions in question. 

3.  Data and Results 
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Our data comes from the first two waves of the Growing Up in Ireland child cohort.  This 

tracks the development of a cohort of children born in Ireland in the period November 1997-

October 1998 (see Williams et al, 2009 and Quail et al, 2014).  The sampling frame of the 

data was the national primary school system, with 910 randomly selected schools 

participating in the study.  Weight was measured to the nearest 0.5 kg using a medically 

approved flat mechanical scales and children were advised to wear light clothing.  Height was 

measured to the nearest mm using a height measuring stick. 

In all, the original sample in wave 1 consisted of 8568 children.  When we drop observations 

where either (a) height or weight were not measured appropriately (b) where observations on 

other relevant characteristics were missing or (c) where observations dropped out between 

waves 1 and 2, we are left with a balanced panel of 6936. 

The most common measure of overweight/obesity used for adults is derived from BMI 

(weight in kilos divided by height in metres squared).  The World Health Organisation 

suggests a threshold BMI of 25 for “overweight”, a threshold of 30 for “obesity” and a 

threshold of 40 for “severely obese”.  

While the BMI thresholds for adults have general acceptance and do not differ by age or 

gender, the same is not true for children, where BMI can change systematically with age and 

gender.  For example, at birth median BMI is around 13, this increases to 17 at age 1, 

decreases to 15.5 at age 6 and increases to 21 at age 20 (Cole et al, 2000).  Cole et al (2000) 

provide a set of cutoff points for BMI for childhood based upon international data and which 

they suggest should be used for international comparisons.  They obtain these by drawing 

centile curves which pass through the adult cut-off points at age 18 and which then can be 

traced back to provide “equivalent” cut-off points for different ages and genders.  The cutoffs 

are obtained by averaging data from large nationally representative surveys from Brazil, 



Great Britain, Hong Kong, the Netherlands, Singapore and the US, with in total nearly 

200,000 observations aged from birth to 25. 

The cutoffs are provided at half-yearly intervals.  Thus for the first wave of our data, the vast 

majority of children are aged 9.  Assuming that age is distributed uniformly within the cohort 

of nine year olds, it seems appropriate to take the cut-off for age 9.5.  Similarly for the second 

wave of our data (who are mostly 13 year olds) we use the cut-off for age 13.5.  For the very 

small number of children aged 8 and 10 we use the 8.5 and 10.5 cutoffs respectively  and 

similarly for the second wave we use the 12.5 and 14.5 cut-offs for those aged 12 and 14.  

The age and gender specific cutoffs are provided in table 1.  These cutoffs have also been 

used in previous studies which have analysed child obesity using GUI e.g. Layte and 

McCrory (2011). 

There is one final adjustment we make to the data which facilitates our analysis.  As the 

obesity and overweight thresholds for BMI change (since the sample is now four years older) 

a simple comparison of BMI can be misleading.  Consequently we compare normalized BMI 

figures, where BMI is divided by the appropriate overweight threshold.3  Thus for example, if 

a child has a normalized BMI of 1., then this indicates that the child had a BMI which was 

1.1 times the relevant threshold for their age and gender.  This facilitates comparisons across 

time and gender where these thresholds differ. 

As we propose to decompose the change in BMI into that part arising from characteristics, we 

need to define what we view as the relevant characteristics.  We employ a relatively 

parsimonious set of characteristics: maternal age (quadratic), maternal education, number of 

siblings, if mother was smoker or drinker at time of pregnancy, maternal economic status, 

                                                
3 We use the overweight threshold as evidence suggests that health problems associated with high BMI tend to 
start at the overweight threshold.  See Aume et al (2016) and Global BMI Mortality (2016). 



health of study child, an index of study child’s exercise and (log of) equivalized family 

income.  We assume a linear relationship between normalized BMI and these variables.  

Table 2 provides summary statistics for these variables for periods 1 and 2. 

Comparing waves 1 and 2, we see that the sample is obviously older, the mothers are better 

educated, rates of maternal smoking and drinking have both dropped, a higher fraction of 

mothers are working, child illness is virtually unchanged and income has fallen.  Probably the 

biggest change is observed in the index of child exercise which has fallen from around 6.4 to 

5 (we discuss the change in exercise in more detail below when exploring counterfactuals).  

We also note that normalized BMI is unchanged while there is a marginal rise in the fraction 

overweight but a marginal fall in the fraction who are obese. 

We are primarily interested in that part of the sample who are either overweight or at least 

close to overweight.  This is effectively applying what in the poverty literature is known as 

the principle of “focus”, whereby we are only concerned with developments in that range of 

the BMI distribution where health problems from being overweight can arise.  Given that 

about 25% of the sample is overweight, we choose to focus our analysis on those at the 70th 

percentile of the BMI distribution and above.  This captures those who are overweight and 

also the next 5% below the threshold.4 

Figure 1 shows the quantile functions for the counterfactuals based upon the 

decompositions.5  The vertical axis shows the value of normalized BMI corresponding to the 

quantile (on the horizontal axis).  Wave 1 and wave 2 refer to periods 1 and 2 (when children 

were aged around 9 and 13 respectively).  It can be seen that between the 70th and 80th 

percentile the quantile functions are virtually identical (hence the very similar rates of 
                                                
4 In this paper we are concerned with health problems arising from too high a BMI.  We fully acknowledge, but 
choose not to address, health problems arising from having too low a value of BMI. 

5 The tables underlying these figures are in the appendix. 



overweight, which is at around the 75th percentile).  After about the 80th percentile however, 

the wave 2 quantile function lies above that of wave 1 indicating that BMI values in the upper 

parts of the distribution are higher in wave 2 than in wave 1.  This would typically not be 

detected by simple prevalence measures of overweight or obesity which tell us the fraction of 

the sample above key thresholds but tell us nothing about how far above the thresholds are 

those observations which are overweight/obese.  Above the 80th percentile the gap between 

the two waves averages at around 0.012 units of normalized BMI.  This corresponds to less 

than 0.25 actual units of BMI (though the precise number of units will depend upon the age 

and gender of the individual involved). 

The remaining quantile functions in figure 1 show the different counterfactuals on the basis 

of the conditional distribution of period 1 applied to period 2 characteristics.  Thus the gap 

between the period 1 quantile function and the relevant counterfactual shows the impact of 

the change in characteristics between periods 1 and 2, while the gap between the 

counterfactual and the period 2 quantile function shows the impact of the change in the 

conditional distribution function.  It is noticeable that in all cases the counterfactual lies 

above wave 1 for all quantiles under consideration.  Thus the impact of characteristics alone 

is to increase BMI at each quantile, with an effect in the region of 0.04-0.05 units of 

normalized BMI at higher quantiles.  This corresponds to around one unit of actual BMI 

(again depending upon age and gender of individual involved). 

In turn, the gap between the counterfactual and the period 2 quantile function is about -0.02 

units of normalized BMI, indicating the change in the conditional distribution, or in the 

“return” to characteristics, acts to lower BMI at each quantile in the range of interest.  This 

lowering however is not sufficient to offset the effect of characteristics, hence the overall 

effect is that BMI in the upper regions of the distribution has increased over the period. 



A further notable feature of figure 1 concerns the sensitivity of results (or lack of) to the 

choice of decomposition method.  Simple eye-balling reveals that the quantile functions for 

the four different methods (DFL, RIF and the two versions of CVM) are virtually 

superimposed upon each other, suggesting that for this particular decomposition exercise at 

least, results are not sensitive to choice of method. 

Figure 2 explores the effect of characteristics in more detail, by presenting the 95% 

confidence intervals for the characteristics effects for the different decompositions.  It is 

noticeable that these intervals overlap each other, reinforcing the point made above, that 

decomposition results are not sensitive to choice of method.  Furthermore, we can see that as 

“zero” lies outside of the bands of the confidence intervals that the effect of characteristics is 

statistically significant, though it is debatable as to whether it could be regarded as significant 

in an economic or health-related sense, since the effects are quite small. 

We now apply the CVM method to estimate the effect of different counterfactual 

experiments.  We examine three experiments, involving changes in maternal education, 

income and exercise respectively.  We first describe the counterfactual for maternal 

education.  We partition maternal education into three categories: category 1 includes those 

mothers who do not complete the full secondary school cycle (in Ireland secondary school 

completion occurs when someone takes what is known as the Leaving Certificate exam, 

which usually happens at the age of eighteen).  Category 2 is mothers who do complete the 

secondary school cycle, while category 3 is those mothers who complete third level 

education.  In previous work where we have specifically investigated the gradient of 

overweight with respect to maternal education we also included a category for mothers who 

obtain a degree or certificate intermediate between the Leaving Certificate and third level 

education (Madden, 2017).  However, outcomes for this group proved to be almost identical 

to those from category 2, so we choose to include that group in category 2 and proceed with 



just three categories.  As we see, by the time children have reached aged 13, about 20% of 

mothers are in category 1, nearly 60% in category 2 and just over 20% in category 3.  There 

is a general trend upwards in educational achievement between the two periods, particularly 

reflecting younger mothers managing to complete secondary school education.  The 

counterfactual we apply is to examine the impact of all mothers having third level education. 

The first income counterfactual we analyse is a mean preserving compression.  The measure 

of income available in GUI is equivalised after-tax disposable family income.  We apply a 

mean preserving compression to this income such that  𝑦>,LM = 𝑦N + 0.5 ∗ (𝑦> − 𝑦N)   where 

𝑦>,LM  is counterfactual income for individual i and 𝑦N is average income.  This compression 

reduces the Gini coefficient of equivalised income from about 0.27 to 0.13, thus considerably 

reducing income inequality. 

We also apply a second income counterfactual.  This time, we raise everyone’s income to the 

highest observed level.  Thus not only is the income distribution equalized, but average 

income is also increased (by about 240%). 

These counterfactuals are motivated by the frequently observed socioeconomic gradient of 

obesity, whether measured with respect to income or maternal education.  In all cases the 

distribution of resources (income or education) is equalized.  In the case of the education 

counterfactual it is equalized “upwards” in the sense that all mothers are raised to the highest 

level of education, thus the average level of education is raised and the distribution is 

equalized.  In the case of the income counterfactuals, average income is unchanged in 

counterfactual 1 while it increases in counterfactual 2. 

The final counterfactual we apply is with respect to exercise.  We construct an index of 

exercise in the following way: principal carers are asked how many times in the previous 

fourteen days the study child had undertaken (a) strenuous exercise for at least 20 minutes 



and (b) light exercise for at least 20 minutes.  Each incidence of strenuous exercise is given a 

score of “1” while an incidence of light exercise is given a score of “0.5”.  The sum of these 

then gives the total exercise score for the study child.  Figure 3 shows the histogram for 

exercise by period.  In period 1 there is considerable mass around a value of 7.5, indicating 

that a high fraction of individuals had at least seven instances of heavy exercise or equivalent 

in the previous fourteen days.  By period 2, this had fallen to around 12% and around half of 

the sample had five or less instances of heavy exercise or equivalent.  The counterfactual we 

apply is that every individual has an exercise index of 7.5 (the highest observed).  Thus, 

similar to the education counterfactual, the average level is raised and the distribution is 

equalized. 

Before discussing the results from the different counterfactuals, it must be pointed out that 

these are strictly partial equilibrium, first round effects and it is quite possible that additional 

second round effects might be observed.  Thus for example, were the counterfactual of every 

mother having the highest level of education applied, then it is likely that income too would 

be raised.  However, the counterfactuals examined here merely change one factor in isolation. 

All counterfactuals are applied to period 2 and the effect on each quantile of BMI is shown in 

figure 4.  Thus we are estimating what the effect of each counterfactual would be on the 

distribution of BMI in period 2.  We can see straightaway that income counterfactual 1 has 

virtually no impact for most of the distribution and then leads to a marginal fall for quantiles 

above the 80th.  Even then the impact is tiny, about 0.002 units of normalized BMI, which 

corresponds to about 0.04 units of actual BMI. 

Income counterfactual 2 has a greater impact but even then it could hardly be described as 

dramatic.  It first increases and then reduces normalized BMI across the distribution with the 

greatest reduction of about 0.025 units of normalized BMI.  This corresponds to a reduction 



of around 0.5 of a unit of regular BMI.  Note however, that the confidence intervals are quite 

wide for this counterfactual. 

The education counterfactual has a similar impact to income counterfactual 2.  Here the 

maximum impact is slightly greater with a fall in normalized BMI of about 0.029, but this 

corresponds to only just over 0.5 units of regular BMI and confidence intervals are not as 

wide as for the Income 2 counterfactual. 

Finally, the exercise counterfactual has the biggest impact.  Once again, the effect increases 

with higher quantiles and is greatest at the 95th quantile where it implies a reduction of  0.05 

units of normalized BMI, which corresponds to about just under one unit of regular BMI.  

The effect also appears to be statistically significant. 

Overall, it seems fair to say that the effect of all three counterfactuals on the BMI distribution 

is relatively marginal. 

4.  Conclusions 

In this paper we have applied a number of decomposition techniques to examine the change 

in BMI for a sample of Irish children/adolescents as they aged from nine to thirteen.  By 

applying the decomposition across all of the distribution (as opposed to evaluating it just at 

the mean) we were able to focus in on the top 30% of the distribution, that part where 

evidence suggests that health problems can arise (the threshold for “overweight” corresponds 

to approximately the 75th percentile).  Overall we find that there is relatively little change in 

the fraction of the population with BMI above the overweight threshold.  However, 

conditional upon being overweight, BMI appears to rise slightly.  The traditional 

decomposition of this change into that attributable to changes in observed characteristics and 

that attributable to changes in the returns to characteristics or changes in unobserved 



characteristics suggests that changes in characteristics over-explain the rise in BMI above the 

70th percentile.  Changes in unobservables and the returns to observables tend to bring down 

BMI.  But overall, the change in BMI and in the constituent parts of the decomposition are 

relatively small. 

In the final parts of the results section we also apply some simple non-marginal 

counterfactuals in the areas of income, exercise and maternal education.  Bearing in mind that 

these are partial equilibrium effects, it is still noticeable that the impacts upon the distribution 

of BMI are relatively modest.  In turn, this raises issues as to the efficacy of policy initiatives 

in these areas.  For example, it might be thought that if all 13 year olds were to be brought up 

to the maximum observed level of exercise, then this would have a significant impact upon 

BMI.  The counterfactual here however suggests that the impact would be comparatively 

limited.  The effects of other counterfactuals such as higher maternal education or changes in 

the level and distribution of income are even more limited.  It should be stressed however, 

that these are results for a specific age cohort in a specific country and it is quite possible that 

such policies applied to a different group might produce different outcomes. 

 

 

 

  



Table 1: Age and Gender Specific Cutoffs for Overweight and Obesity from Cole et al 

 Male Female 

Age Overweight Obese Overweight Obese 

8.5 18.76 22.17 18.69 22.18 

9.5 19.46 23.39 19.45 23.46 

10.5 20.20 24.57 20.29 24.77 

12.5 21.56 26.43 22.14 27.24 

13.5 22.27 27.25 22.98 28.20 

14.5 22.96 27.98 23.66 28.87 

 

Table 2: Summary Statistics 

Variable Wave 1 Wave 2 

Normalised BMI 0.919 0.919 

Fraction Overweight 0.253 0.257 

Maternal Age 39.405 41.157 

Fraction Obese 0.059 0.057 

Lower Secondary Education 0.295 0.199 

Complete Secondary Education 0.535 0.588 

Third Level Education 0.170 0.213 

Smoker 0.249 0.237 

Drinker 0.458 0.409 

Working 0.533 0.580 

Child Ill 0.107 0.110 

Exercise 6.426 5.002 

Log Income 9.731 9.556 

 



Figure 1: Quantile Functions for periods 1, 2 and impact of changes in characteristics 
 

 

Figure 2: Characteristics Effects – Confidence Intervals 
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Figure 3: Histogram of exercise index by period 

 

 

 

Figures 4a-4d:  Effect of Counterfactuals on period 2 BMI by quantile 
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Appendix Table 1 
 
Q’tile Wave 

1 BMI 
Wave 
2 BMI 

Total 
Effect 

Characteristics Effect and 95% Confidence Interval 

    CVM QR CVM Logit RIF DFL 

70 
0.9587 0.9599 0.0012 

0.0197 
0.0117-0.0277 

0.0230 
0.0124-0.0336 

0.0178 
0.0113-0.0244 

0.0203 
0.0135-0.0271 

75 
0.9881 0.9901 0.0019 

0.0229 
0.0144-0.0314 

0.0217 
0.0099-0.0335 

0.0018 
0.0129-0.0275 

0.0274 
0.0194-0.0354 

80 
1.0253 1.0275 0.0021 

0.0262 
0.0172-0.0352 

0.0231 
0.0115-0.0347 

0.0236 
0.0154-0.0319 

0.0275 
0.0207-0.0343 

85 
1.0656 1.0748 0.0091 

0.0305 
0.0209-0.0401 

0.0300 
0.0138-0.0463 

0.0282 
0.0189-0.0375 

0.0254 
0.0175-0.0333 

90 
1.1170 1.1360 0.0189 

0.0362 
0.0253-0.0471 

0.0530 
0.0308-0.0751 

0.0331 
0.0223-0.0438 

0.0440 
0.0330-0.0549 

95 
1.2080 1.2255 0.0174 

0.0400 
0.0269-0.0531 

0.0642 
0.0321-0.0962 

0.0534 
0.0393-0.0674 

0.0587 
0.0482-0.0692 

99 
1.3554 1.3876 0.0321 

0.0417 
0.0228-0.0605 0.5020 

0.0420 
0.0228-0.0612 

0.0483 
0.0383-0.0584 

 
All measures here are in normalised  BMI i.e. BMI divided by relevant age and gender 
thresholds  
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