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Abstract

We provide new evidence on the effects of competition on incumbents’ innovative be-

havior by examining the rise of FinTech start-ups over the period 2000-2016. We employ

machine learning techniques to classify a large global sample of patent applications into five

FinTech categories. We exploit the variation in the share of FinTech patent applications

by non-financial startups to incumbent financial firms to measure competitive pressures

from outside the financial industry. We show that higher competitive pressures from non-

financial start-ups increases the probability that financial incumbents innovate. Moreover,

competition from start-ups results in a higher number of FinTech patent applications by

financial incumbents as compared to non-financial firms, especially when the innovations

of FinTech start-ups are more important, as proxied by future patent citations count.
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1 Introduction

The use of technology to provide new and improved financial services, or FinTech, has long

been a central characteristic of the finance industry. From the introduction of wire transfers

and ATM machines, technology has had a large impact on how the financial sector operates.

Yet, in recent years, a new FinTech revolution of unprecedented speed and magnitude has

brought major innovations that have the potential to disrupt the financial intermediation

sector (Philippon 2016, Thakor 2020).1 A key characteristic of this last wave of FinTech

innovations is the fact that it is happening outside the financial sector, as young start-ups and

technology companies attempt to disrupt incumbent financial institutions.

In this paper, we study whether this increased competition from FinTech start-ups affects the

innovative behavior of incumbent financial firms. The link between competition and innovation

is complex. On the one hand, an increase in competition can discourage innovation by reducing

the rents for innovators and therefore lowering incentives to innovate (Romer 1990, Aghion &

Howitt 1992). On the other hand, when competitive pressure is low and pre-innovation rents

are high, firms may have less incentives to innovate (Arrow 1962, Gilbert & Newbery 1982).

These two competing views are rationalized in Aghion et al.’s (2005) Schumpeterian growth

model in which competition and innovation display an inverted U-shaped relationship: at low

levels of competition, the entry of new competitors stimulates innovation, while in markets

where competition is already high, a further increase in competition has a less positive or even

a negative effect on innovation as firms with lower market power can extract fewer rents from

new ideas and patents. The former effect, known as the “escape competition effect” suggests

that, in industries where competition is low, incumbents will try to innovate in order to escape

from a situation in which competition constrains profits.

Given that the lack of entry of competition have been an endemic problem in the financial

sector, the recent FinTech revolution offer a unique experiment to test these theories (Philip-

pon 2016). As such, our main testable hypothesis is that the threat of competition from

non-financial innovators leads to an increase in innovation by incumbent financial institutions.

To test this hypothesis, we focus on patent filling as a way of measuring the threat of entry

by firms outside the finance industry.

One empirical challenge in studying the impact of FinTech innovation on the finance industry

is the lack of an established taxonomy to define a FinTech innovation. As such, we first provide

an objective, data-based classification of FinTech innovations by exploiting patent documents.

1These recent FinTech innovations range from mobile payments, money transfers, peer-to-peer lending, and
crowdfunding, to more radical innovations such as blockchain, cryptocurrencies, and robo-investing.
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We construct a novel dataset of FinTech patent applications based on patents published in the

PATSTAT Global dataset over the period 2000-2016. We apply machine learning algorithms

to the textual data of patent abstracts to classify patents into five categories reflecting key

technological characteristics of FinTech innovations: (1) software and techniques for data an-

alytics, (2) fraud detection and cyber security infrastructure, (3) insurance software analytics,

(4) investments, lending and portfolio management tools and (5) mobile transfers and digital

wallets.

We identify a sample of around 19,000 patents corresponding to these categories and match

them with company information from various sources. We find that non-financial, private firms

are responsible for the large majority of FinTech patents, while start-ups account for 13% of

patent applications. US-based firms account for most of the FinTech patents, while payment

and data analytics represent the largest categories of FinTech technologies (accounting for

62% of patent applications).

Employing this sample of FinTech innovators, we examine whether the rise of non-financial

FinTech start-up spurs innovation in the financial sector. A key identification challenge in

testing the role of competition in innovation is the fact that innovation by both incumbents and

potential entrants can respond to the same unobservable technological shocks. We mitigate

this concern by exploiting the variation in the ratio of patent applications by startups to

incumbents financial firms over the past three to five years. We interpret a change in this

ratio as a variation in outside competitive pressures that is unexplained by technology shocks

(which would increase innovation by both incumbents and outsiders to relatively the same

extent keeping the ratio stable over time).

We find that competitive pressures by non-financial startups, measured as a relative larger

number of patent applications as compared to incumbent firms, increases the probability that

financial incumbents innovate. These results are stronger when we weight the number of

patent applications by their relative importance, measured by the forward citations count.

Specifically, we find that a one standard deviation increase in our measure of competitive

pressure increases the probability that a financial incumbent applies for a FinTech patent by

0.6%. The results are robust to controlling for time-varying firms characteristics such as past

patenting activity, size and profitability. We also control for financial incumbents’ propensity

to acquire FinTech innovators, as opposed to innovating themselves. Not surprisingly, we find

that financial firms who have acquired FinTech innovators in the past are less likely to apply

for FinTech patents.
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We also show that the total number of FinTech patent applications is higher among financial

firms relative to non-financial firms when competitive pressures by start-ups is higher. This

suggests that the rise of FinTech startups has disproportionally driven financial incumbents

to innovate. Moreover, we show that competitive pressures from incumbent technology firms

do not have the same effect and are not followed by an increase in FinTech innovation by

financial incumbents. This might be due to the fact that the majority of FinTech patent

applications by mature technology firms are in the category of payments applications, while

financial incumbents mainly innovate in areas such as investments and lending or insurance

analytics.

Our estimations are robust to a wide array of model specification and alternative definitions

of our main explanatory variable. We also include, across all specifications, time fixed effects

to account for technology waves that spur FinTech innovations across all firms, as well as, firm

fixed effects that allow us to obtain identification from within-firm variation over time.

Our work is related to several branches of literature. First, we contribute to a growing lit-

erature that employs taxonomies to automatically classify patents across different categories

of innovations (see, among, others Fall et al. 2003, Benzineb & Guyot 2011, Gomez & Moens

2014, Grawe et al. 2017, Li et al. 2018, Shalaby et al. 2018, Hu et al. 2018, Abdelgawad et al.

2019, Lee & Hsiang 2019, Mann & Püttmann 2021). Chen et al. (2019) were the first to

propose a typology to classify a sample of 2 million patents filled with the U.S. Patent and

Trademark Office (USPTO) into seven categories of FinTech innovations: cybersecurity, mo-

bile transactions, data analytics, blockchain, peer-to-peer (P2P), robo-advising, and Internet

of Things. They train and employ several families of machine learning algorithms such as

support vector machines (SVM) and neural networks to identify a sample of FinTech innova-

tions by U.S.-based firms or individuals. Chen et al. (2019) then investigate the value of these

FinTech innovations by studying the stock market responses around the news of patent filings.

They find that the FinTech patents that are most valuable to innovators are blockchain, cy-

bersecurity, and robo-advising. Xu et al. (2020) also train machine learning classifiers such as

random forest (RF) classifiers to identify FinTech patents in a sample of patent applications

to the USPTO over 2014-2018.

We extend these efforts to automatically classify FinTech innovations in several directions.

For example, we provide an enhanced FinTech patent classification by training and evaluating

different types of deep learning classifiers, with a focus on BERT (Bidirectional Encoder

Representations from Transformers) models (Devlin et al. 2018). Specifically, while previous

work studying patent text has employed traditional machine learning approaches such as linear
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support vector machines or neural network models, recent research in computer science has

shown that deep learning approaches outperform such methods (Abdelgawad et al. 2019).

We thus aim to provide a new and improved taxonomy of FinTech innovations by employing

state-of-the art deep learning methodology.

Second, we employ our newly build classification of FinTech patents to investigate how com-

petition drives innovating behavior in the financial industry. The relationship between inno-

vation and competition is of long-standing theoretical and empirical interest (Aghion et al.

2001, 2005, Aghion & Griffith 2008). A large Schumpeterian growth literature models two

effects of entry on incumbent innovation. In industries with high levels of competition, entry

reduces incumbents’ incentives to innovate as it decreases innovation rents and reduce the

probability of surviving entry (Schumpeterian effect). In industries with low levels of com-

petition, where leaders compete neck-to-neck, a increase in competition has a positive effect

and encourages incumbents to innovate in order to acquire a lead over their rival in the sector

(escape competition effect) (Aghion et al. 2014).

Empirical work has documented these two effects across different countries, time periods or

industries. Studies on the effects of competition-enhancing reforms or foreign competition find

an overall positive effect (see, for example Aghion et al. 2005, Ayyagari et al. 2011, Bloom et al.

2016), but negative effects are also found (Liu et al. 2014, Dorn et al. 2020). Moreover, the

effect depends on the level of technological advancement in the industry (Aghion et al. 2009,

Liu et al. 2014) or type of innovation activity (Tang 2006). A key empirical challenge in this

literature is that entry is endogenous to the innovative activity of incumbents. The FinTech

revolution offers an interesting setting to testing this relationship, as the entry of start-ups

was not likely driven by innovations of large financial incumbents. For example, Cojoianu

et al. (2020) study the determinants of FinTech start-up emergence across 21 OECD countries

and find that FinTech venture creation is positively related to the regional productivity and

new knowledge created in the IT sector, but not that in the financial sector.

Finally, our work relates to a growing literature that looks at how the dramatic growth of

FinTech start-ups has shaped the financial landscape (see Allen et al. 2020, and references

within). For example, Hornuf et al. (2021) study how banks interact with FinTech start-ups

using detailed information on strategic alliance made by the 100 largest banks in Canada,

France, Germany, and the UK. They show that banks are more likely to form alliances when

they have a well-defined digital strategy or employ a chief digital officer.

The remainder of the paper is organized as follows. Section 2 presents the patent data and
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describes the machine learning techniques employed to classify FinTech patents, while section

3 discusses the identification strategy and methodology. Section 4 presents the results and

section 5 concludes.

2 Patent data and classification of FinTech innovations

In this section, we describe the process followed to create a FinTech taxonomy, as well as to

train the machine learning and deep learning models employed to classify FinTech patents.

We also provide some descriptive statistics of the resulting FinTech patents dataset.

2.1 Patent data

Patent data is obtained from the BvD Orbis intellectual property database, which sources

information from PATSTAT Global2. We retrieve all patents applications filled between 2000

and 2016 belonging to the International Patent Classification (IPC) Classes G and H, which

cover areas related to digital computing that underline the FinTech technologies classified in

this paper. This results in a sample to 6.8 million patents. To narrow down the search, we

employ a text-based filtering to identify patents that are plausibly related to financial services.

We obtain from Chen et al. (2019) a list of 516 financial terms based on Campbell R. Harvey’s

Hypertextual Finance Glossary and the online Oxford Dictionary of Finance and Banking.

We select patents that contain at least one keyword from this list in their abstract. After

this filtering, we identify a potential number of 38,299 patents that are related to financial

services.3

The distribution of the 100 most frequent financial terms in our dataset is illustrated in Fig.

1, where the size of each term is proportional to the number of patent documents in which

that term appears. The most frequent terms include payment, compliance, trading, banking,

insurance, investment, money, among others.

2.2 FinTech Innovation Taxonomy

There is a wide range of financial products and services that fall under the FinTech umbrella.

Currently, there is no comprehensive, well-accepted taxonomy to analyse this sector. Hence,

we build a FinTech taxonomy by corroborating taxonomies from several academic works,

industry reports and market maps (such as Mellon 2015, Levy 2015, Amalia 2016, Young &

2PATSTAT is maintained by the European Patent Office (EPO) and comprises patent applications with the
EPO, as well as national patent offices of large advanced and developing countries.

3Appendix Table 12 shows how our FinTech patents dataset compares to previous classifications in Chen
et al. (2019) and Xu et al. (2020).
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Figure 1: WordCloud of the 100 most frequent financial terms

The figure shows the 100 most frequent financial terms in the set of 38,228 patents. The size of a term is
proportional to the number of patents in which the term appears.

Treasury n.d., CBInsights 2017, Eckenrode & Friedman 2017, Chen et al. 2019, Haddad &

Hornuf 2019).

Our taxonomy aims to capture innovations that pursue the integration of more sophisticated

IT tools and data science solutions in financial products. We include five broad FinTech

categories: Data Analytics, Fraud, Insurance, Investments and Payments. Applications cor-

responding to these categories, together with an example of a patent filling abstract in each

category are shown in Table 1. Our FinTech taxonomy is aligned with that of Chen et al.

(2019) although we include a broader range of financial services, such as insurance. We also

exclude some applications which are not necessarily specific to the financial sector such as

Blockchain or the Internet-of-Things, as our main goal is to study the innovative behavior of

financial incumbents.

2.3 Machine learning algorithms to classify FinTech patents

To be able to train machine learning and deep learning models for FinTech patent identifica-

tion, we manually annotated/labeled a subset of our patent dataset. Specifically, we manually

labeled 2,350 FinTech patents (500 patents in each of the following categories: Insurance,

Fraud, Investments and Payments, and 350 patents in the Data Analytics category). Further-

more, we manually labeled a subset of 1,500 Non-FinTech patents. We use the 3,850 manually

labeled patents to train and test different types of text classifiers.

We focus on classifying FinTech patents using BERT-type models, which stands for Bidirec-
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Table 1: FinTech Taxonomy

Fintech category Applications Examples of patent filing abstracts

Data Analytics Software, data infras-
tructure and analytics
for financial services

“computer programs product are provided for automated
generic and parallel aggregation of characteristics and
key figures of unsorted mass data being of specific eco-
nomic interest, particularly associated with financial in-
stitutions, and with financial affairs in banking practice.”

Fraud Fraud detection, se-
curity infrastructure,
identity verification &
compliance

“This invention provides a system and method for reduc-
ing the fraud related to remittance transactions initiated
at web portals. [..] For example, a funding agency com-
puter that enables a remittance transaction can request
that a mobile platform computer verify a customer with
a mobile personal identifier. The mobile platform com-
puter can request the mobile personal identifier from a
customer via the customer’s mobile handset device.”

Insurance Life, general &
(re)insurance software
analytics

“An automated assignment system may operate with a
computer to automatically assign insurable events to one
or more organizational entities associated with an insur-
ance organization. The automated assignment system
may categorize the insurable event.”

Investments Portfolio management,
lending and investing
platforms, portfolio an-
alytics

“A visual interactive multi-criteria decision-making
method and computer-based apparatus for portfolio man-
agement. The method/apparatus supports partitioning
of a portfolio of physical or other assets into two mutu-
ally exclusive categories, such as assets recommended for
sale and assets recommended for retention.”

Payments Mobile payments &
transfer

“A mobile payment platform and service provides a fast,
easy way to make payments by users of mobile devices.
The platform also interfaces with nonmobile channels and
devices such as e-mail, instant messenger, and Web. In
an implementation, funds are accessed from an account
holder’s mobile device such as a mobile phone or a per-
sonal digital assistant to make or receive payments.”

Digital wallets “A system and a method are provided for generating
a digital receipt for purchases made utilizing a digital
wallet or with other payment procedures. The digi-
tal receipt is stored in the cloud in a digital receipts
repository for later retrieval. The digital receipt can
be standardized to facilitate data processing of the
data contained in data fields of the digital receipt.”

tional Encoder Representations from Transformers (Devlin et al. 2018). BERT is a language

model that uses a deep bidirectional transformer encoder architecture to encode sentences

and their tokens into dense vector representations (Vaswani et al. 2017). We focus on BERT

models as our main text classifier, given the success of the deep learning approaches on general

patent classification tasks (Li et al. 2018, Shalaby et al. 2018, Sun et al. 2019, Lee & Hsiang

2019).

BERT is a transformer-based machine learning technique for natural language processing pre-

trained on a large corpus of un-annotated text (e.g., Wikipedia) using two self-supervised

learning tasks: masked word prediction and next sentence prediction. A generic BERT model
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Table 2: Performance results of traditional and deep learning models

Traditional machine learning models Deep learning models

Category Metric L-SVM G-SVM NB kNN RF GB MLP ML-V CNN RNN BERT

Insurance Pr 0.779 0.857 0.878 0.689 0.824 0.864 0.848 0.854 0.904 0.922* 0.891
Re 0.844 0.812 0.750 0.875 0.635 0.792 0.927 0.792 0.979 0.990* 0.990*
F1 0.810 0.834 0.809 0.771 0.718 0.826 0.886 0.822 0.940 0.955* 0.938

Payments Pr 0.827 0.852 0.645 0.636 0.802 0.800 0.835 0.851 0.884 0.884 0.906*
Re 0.910 0.920 0.800 0.840 0.650 0.840 0.960 0.860 0.990* 0.990* 0.970
F1 0.867 0.885 0.714 0.724 0.718 0.820 0.893 0.856 0.934 0.934 0.937*

Investment Pr 0.837 0.850 0.765 0.725 0.778 0.796 0.870 0.861 0.943* 0.934 0.924
Re 0.870 0.960 0.910 0.870 0.770 0.860 0.940 0.930 0.990* 0.990 0.980
F1 0.853 0.901 0.831 0.791 0.774 0.827 0.904 0.894 0.966* 0.961 0.918

Fraud Pr 0.788 0.790 0.676 0.617 0.813 0.815 0.849 0.884 0.951 0.961* 0.960
Re 0.780 0.830 0.750 0.740 0.610 0.750 0.790 0.760 0.980* 0.980* 0.980*
F1 0.784 0.810 0.711 0.673 0.697 0.781 0.819 0.817 0.966 0.970* 0.970*

Data Analytics Pr 0.530 0.581 0.351 0.420 0.700* 0.565 0.581 0.513 0.635 0.635 0.652
Re 0.700 0.720 0.660 0.420 0.280 0.700 0.720 0.800 0.800 0.800 0.900*
F1 0.603 0.643 0.458 0.420 0.400 0.625 0.643 0.625 0.708 0.708 0.753*

Non-FinTech Pr 0.939 0.955 0.968 0.980 0.700 0.880 0.962 0.923 0.992 0.996 1.000*
Re 0.823 0.850 0.697 0.660 0.927* 0.853 0.843 0.873 0.857 0.863 0.850
F1 0.877 0.899 0.810 0.789 0.798 0.866 0.899 0.897 0.919 0.925* 0.918

Average Pr 0.783 0.814 0.714 0.678 0.770 0.787 0.824 0.814 0.885 0.889* 0.889*
Re 0.821 0.849 0.761 0.734 0.645 0.799 0.863 0.836 0.933 0.935 0.945*
F1 0.799 0.829 0.722 0.695 0.684 0.791 0.840 0.819 0.905 0.909 0.912*
Acc 0.830 0.858 0.751 0.735 0.745 0.820 0.867 0.849 0.921 0.924* 0.923

Table shows the precision (Pr), recall (Re), F1-score (F1) and overall accuracy (Acc) for the machine learning models
employed. The traditional machine learning models are: Linear Support Vector Machines (LSVM), Gaussian Support
Vector Machines (G-SVM), Näıve Bayes (NB), k-nearest neighbour (kNN), random forest (RF), gradient boosting (GB),
Multilayer Perceptron (MLP). We also show the results of a voting classifier (ML-V), which consists of L-SVM, G-SVM
and MLP, similar to the voting classifier in Chen et al. (2019), and uses the prediction made by the MLP, in case of
ties. The deep learning methods employed are: Convolutional Neural Networks (CNN), recurrent neural networks (RNN)
and Bidirectional Encoder Representations from Transformers (BERT). The best result for each criteria and category is
marked in bold. * marks the best result in a row.

can then be further pre-trained and/or fine-tuned for specific natural language processing

tasks. Particularly, the BERT model for the FinTech patent classification task is initialized

with the parameters of a generic pre-trained BERT model, further pre-trained using the man-

ually classified FinTech patents, and subsequently fine-tuned for patent classification. We also

compare the results obtained from BERT models with text classifiers such as CNN (Convolu-

tional Neural Networks) and RNN (Recurrent Neural Networks), which take BERT embedding

as input. Finally, to allow comparison with previous FinTech patent classifications in Chen

et al. (2019) and Xu et al. (2020), we also contrast the results of the deep learning models

with traditional machine learning approaches such as: support vector machines (SVM), neu-

ral networks, as well as Näıve Bayes (NB), k-nearest neighbour (kNN), random forest, and

gradient boosting. Appendix 6.2 details the machine learning methodology employed.

To evaluate the performance of the various models that we train, we use several standard

metrics, including the overall accuracy (Acc), precision (Pr), recall (Re) and F1-score (F1).

We also report the precision, recall, and F1 scores for each of our five FinTech categories to

determine what categories might be easier or harder to identify.
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Table 3: Filtering steps in the construction of the patent applications dataset

(1) Source of patents PATSTAT
(2) Years covered 2000-2016
(3) Legal jurisdiction of patents US + Europe
(4) IPC classes used G&H
(5) Initial number of patents based on criteria (1)-(4) above 6.8M
(6) Financial terms for filtering financial patents 516
(7) Number of patent applications after filtering with financial terms (6) 38,228
(8) Number of FinTech categories considered 5
(9) Number of manually annotated patents used for training 3,850
Total number of FinTech patents identified out of (7) 19,055

Performance results on the test data are presented in Table 2. The first eight columns contain

traditional machine learning models, while the last three correspond to deep learning models.

The best result for each method and evaluation criteria is highlighted in bold, while the best

overall result in a row is marked with a star. Based on the average score for all performance

criteria, we find that the best machine learning model is the MLP model, while the best deep

learning model is the BERT model.

We thus employ the BERT model to classify our sample of patents. Table 3 summarizes

the number of patent fillings removed at each step of our methodology. The deep learning

algorithms employed identify sample of 19,055 unique FinTech patent applications.

2.4 Descriptive statistics

Table 4 shows the frequencies of FinTech patent applications filed by various groups of in-

novators. From the sample of 19,055 patents identified by our machine learning algorithm

described in the previous section, 3,166 (20%) were filled by individuals. This leaves a sample

of 15,889 patent applications by companies that will be the focus of our analysis. Among

these, private firms are the most important group of FinTech innovators accounting for 68%

of the applications. Non-financial firms are also responsible for the largest share of innovations

in financial technologies, while startups account for 13% of the applications.

Furthermore, while the 15,889 patents are filled at the European and US Patent offices by

companies across 58 countries, the large majority of fillings (77.5%) belong to US-based firms.

The geographical split is similar if we organize the data based on the priority country of

the patent (first country in which the patent application has been filled), as opposed to the

headquarters of the inventor company, with 82.1% (13,050) of applications having the US as

priority country, 8.5% (1,351) Europe and 9.4% (1,488) in the rest of the world.
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Table 4: FinTech innovation activity by innovator type

Number of FinTech patent fillings

Innovator type
Individual 3,166
Public company 5,028
Private company 10,861
Financial services firms 3,236
Non-financial firms 12,653
Startups 2,012

Geographical location of company
US 12,322
Europe 1,636
Rest of the world 1,931

Table shows the frequencies of FinTech patent fillings by various types of
innovators and across regions. Financial firms represent those firms belong-
ing to the NACE Rev2 two-digit industry codes 64, 65 and 66, respectively.
Start-ups are defined as firms with a founding date of no more than 8 years
prior to the patent filling date.

Table 5 shows the distribution of innovators across the different types of technologies classified

as FinTech innovations. Data analytics and Payments represent the largest share of FinTech

innovations (62%). Table 5 also shows that private and non-financial firms dominate all types

of FinTech technologies. Similarly, startups innovate evenly across the 5 types of technologies

considered.

Table 5: FinTech innovation activity by technology category and innovator type

Innovator type

FinTech
Classifica-
tion

Number
of appli-
cations

Private
firms
(%)

Public
firms
(%)

Financial
firms
(%)

Non
financial
firms
(%)

Startups (%)

Data analytics 4790 0.64 0.36 0.18 0.82 0.11
Fraud 1075 0.65 0.35 0.09 0.91 0.13
Insurance 1343 0.81 0.19 0.35 0.65 0.11
Investment 3657 0.76 0.24 0.30 0.70 0.15
Payments 5024 0.64 0.36 0.14 0.86 0.13

The table shows the frequencies of FinTech patent fillings by various types of innovators for
each technology category. Financial firms represent those firms belonging to the NACE Rev2
two-digit industry codes 64, 65 and 66, respectively. Start-ups are defined as firms with a
founding date of no more than 8 years prior to the patent filling date.

Next, we show some trends in the evolution of FinTech innovation across time. Figures 2-3

display 6-months moving averages of patent filling counts from 2000 to 2016. Figures 2 shows

the evolution for financial versus non-financial firms. Non-financial firms dominate the patent

filling numbers in all periods, but the pace at which applications are filled by these two groups

of firms exhibits considerable variation across time.
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Figure 2: FinTech innovation over time by financial versus non-financial firms
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The figure shows the 6 months moving average of patent applications from June 2000 to April 2016 by financial
firms (corresponding to NACE 2 digits codes 64, 65 and 66) versus non-financial firms.

Figure 3 plots the evolution by company age and sector. It shows that while non-financial

start-ups and financial incumbents have similar patent filling rates prior to 2007, incumbents

dominate filling in the second half of the sample. Our empirical strategy will exploits this

time variation in patent filling across these two sectors.

Finally, Figure 4 shows the evolution of patent applications by type of FinTech technology. It

is apparent that the increase in FinTech innovations occurred across all types of technologies.

3 Identification strategy

Our empirical approach aims to identify how competition from FinTech startups affects innova-

tion efforts by incumbent financial firms. This strategy face two main identification challenges.

The first is the fact that entry can be endogenous to innovation. In order words, innovations

in financial technologies by entrants are driven by the innovations and potential productiv-

ity gains in the finance industry. Several arguments suggests that this is not a very likely

concern. First, there is ample anecdotal evidence that the most recent FinTech innovations,

such as digital advisory and trading systems, artificial intelligence, machine learning, peer-to-

peer lending, equity crowdfunding and mobile payment systems, have originated outside the

incumbent financial industry (Philippon 2016, Vives 2019).

Second, the financial industry is rather inefficient. Philippon (2015) estimates that the unit
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Figure 3: FinTech innovation over time by start-ups versus incumbent financial firms
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The figure shows the 6 months moving average of patent applications from June 2000 to April 2016 by incumbent
financial firms (corresponding to NACE 2 digits codes 64, 65 and 66) versus start-ups outside the finance
industry. Start-ups are defined as companies less that 8 years old at the time of patent application.

cost of financial intermediation in the U.S. has remained around 2% for the past 130 years.

As such, innovations by financial incumbents have done little to increase productivity and

translate into lower costs for the end users. It is thus plausible to argue that the most recent

FinTech revolution is not driven by innovations already happening in the financial sector.

The second threat to identification is that innovations by both start-ups and financial in-

cumbents are driven by the same unobservable technology shocks. This is a more plausible

concern and ideally one would employ an instrument or exogenous shock to identify entry

by non-financial firms in the finance industry. However, since such instruments are not eas-

ily available, we address this concern by controlling for the amount of patent applications

by incumbent competitors in the financial industry. The argument is that, if unobservable

technology shocks are driving innovation in both incumbent and outsiders, then the rate of

innovations between the two groups would be relatively stable over time. This, however, does

not seem to be the case. Figure 5 shows the evolution of the share of patent applications by

(non-financial) start-ups as a fraction of applications by financial incumbents. We observe

a higher share of FinTech patents by start-up firms in the beginning of the sample (2000-

2008), which reverses in the second part of the sample. Moreover, there is significant variation

in these ratio across time, which is key to our identification strategy. We exploit this time

variation as a source of competitive pressure from outside the financial sector. As such, if

financial incumbents are more likely to innovate when the innovation by outsiders is higher
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Figure 4: FinTech innovation over time by region
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The figure shows the total number of applications by year and type of FinTech innovation.

than insiders (a high ratio of patent applications by startups vs incumbents) then it is less

plausible that the higher patent output by financial incumbents is driven by technology shocks

alone. We can thus argue that incumbents respond to the competitive pressure by innovating

themselves (escape competition effect).

We further deal with omitted variable bias by considering not only the number of patent

applications, but also their importance captured by citations count (Akcigit & Kerr 2018).

This is done by scaling our measure of competitive pressure by the forward citations count of

the start-up patents at the end of the sample. Competitive pressures should be larger when

the innovation by outsiders is more important, as proxied by forward citations count.

Our baseline strategy is as follows:

FinTech Innovationi,t = αi + γt + βCompetition Startupsc,t−4→t−1 + θ′Xi,t + εi,t, (1)

where FinTech Innovationi,t is an indicator variable equal to 1 if company i is an incumbent

financial institution and has applied for at least one FinTech patent in year t. We define

incumbent financial firms as those operating in the 2-digit NACE Rev 2 codes: 64, 65 and

66 and are not start-ups, i.e., were founded more than 8 years prior to the patent application

date.

Our main independent variable is the ratio of FinTech applications by startups relative to
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Figure 5: Evolution of patent applications (6 months moving average)
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financial incumbents, computed as:

Competition Startups c,t−4→t−1 =

∑t−1
τ=t−4 Startup Patentsc∑t−1

τ=t−4 Financial incumbents−i,c
. (2)

In the baseline model, we consider the sum of patents in the previous 4 years (excluding

the current year) by firms in the same country as financial incumbent i. The sum in the

denominator in (2) excludes the patent applications by incumbent i, which we include as a

separate explanatory variable.4

The model in Eq. (1) also controls for time varying and invariant covariates at the firm and

country level. The vector Xi,t includes measures of past innovation and financial performance

of the firm. We control for the lagged sum of patent applications by firm i over [t− 5, t− 1] to

account for the propensity of a firm to produce FinTech innovations. We also include measures

of firms size, such as log of Total Assets and Operating revenue, as well as profitability,

captured by net profits. We also control for the propensity of a firm to acquire FinTech

innovators as opposed to innovating itself. This is captured by the sum of acquisitions, mergers,

follow-on funding, management buyout (MBO), or joint ventures by financial incubator i of

a FinTech innovator over the period [t − 4, t − 1]. Finally, we control for time-invariant firm

characteristics through firm fixed effects (αi), as well as year fixed effects that capture waves

of innovation across all countries in a given year.

4One concern with the specification in (2) is that the amount of innovations of incumbent i is positively
correlated with the sum of innovations of other financial incumbents. This, however, puts a downward bias on
our estimations lessening the effect of competition by startups.
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Table 6: Descriptive statistics

Full Sample Financial incumbents No financial startups
Mean St dev Mean St dev Mean St dev

ln(Total Assets) 7.767 4.631 11.282 5.198 4.855 4.134
Net profit/Total assets 0.053 0.183 0.083 0.173 -0.013 0.242
ln(Operating Revenue) 7.141 3.885 9.17 4.353 4.707 3.858
Past Patents 1.245 8.9 2.871 16.107 0.612 2.301
FinTech Acquisitions 0.001 0.028 0.006 0.075 0 0

3.1 Financial data

We match our new database of FinTech patent applications by public and private firms with

several datasets containing financial data. The primary source of company data is Orbis

(Bureau van Dijk) which we complement with data from Capital IQ to obtain a longer time

series for a subset of listed firms. We keep in our sample countries that have at least one patent

filling from a financial incumbent, which yields a final dataset of 15,879 patent applications

from 3,446 unique firms over the period 2000-2016.

To control for the propensity to acquire FinTech innovators, we also collect data on the universe

of acquisitions, mergers, follow-on funding, MBO, or joint ventures, where at least of one the

members of the deal is a FinTech innovator as identified by our machine learning algorithm.

We obtained this data from Zephyr for the period 2000-2016.

A summary of the financial information by types of FinTech innovators is presented in Table 6.

Financial incumbents tend to be larger and more profitable than the average firm in the overall

sample. They also have, on average, more patents and acquire more FinTech innovators.

4 Results

The results from our baseline model in Eq. (1) are presented in Table 7, columns (1)-(3),

where the dependent variable is an indicator equal to one if a financial firm applied for a

FinTech patent in year t.

Our main explanatory variable is competition by startups (Column 1) measured by the ratio

of the sum of patent applications by startups to financial incumbents over the period [t−4, t−

1]. We find evidence that following periods with relatively higher FinTech innovations by

non-financial startups, financial incumbents are more likely to innovate themselves. To ease

interpretation of the point estimates, we have standardised the main independent variable.

As such, the point estimate in Columns (1) suggests that a one standard deviation increase

in the Competition Startups ratio increases financial incumbents’ probability of innovating by
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Table 7: FinTech patent applications and competition from startups

Dependent variable: FinTech patent application Total number of patents

(1) (2) (3) (4) (5) (6)

Competition Startups 0.001** -0.004*
(0.001) (0.002)

Competition Startups (Citations) 0.006** -0.007
(0.002) (0.008)

Number Startups 0.001** -0.002
(0.001) (0.002)

Competition Startups × Finance 0.030**
(0.014)

Competition Startups (Citations) × Finance 0.071***
(0.004)

Number Startups × Finance 0.025*
(0.013)

Past Patents 0.000*** 0.000*** 0.000*** 0.006*** 0.007*** 0.006***
(0.000) (0.000) (0.000) (0.001) (0.001) (0.001)

FinTech Acquisitions -0.069** -0.069** -0.069** -0.170*** -0.146*** -0.170***
(0.026) (0.026) (0.026) (0.013) (0.016) (0.014)

Total Assets -0.002** -0.002** -0.002** -0.000 0.001 -0.000
(0.001) (0.001) (0.001) (0.003) (0.003) (0.003)

Net Profit -0.000 -0.000 -0.000 -0.000* -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Operating Revenue 0.001* 0.002* 0.001* 0.013*** 0.013*** 0.013***
(0.001) (0.001) (0.001) (0.004) (0.004) (0.004)

Observations 16,997 16,997 16,997 16,997 16,997 16,997
R-squared 0.392 0.392 0.392 0.473 0.475 0.473
Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

The dependent variable in columns (1)-(3) is an indicator variable equal to 1 if a financial firm applied for a
FinTech patent in year t, while is columns (4)-(6) it is the total number of FinTech patent applications by a firm
in year t. Financial firms correspond to the 2-digit NACE Rev 2 codes: 64, 65 and 66. Competition Startups is the
ratio of the sum of FinTech patent applications by non-financial start-ups to that of financial incumbents over the
period [t− 4, t− 1]. Competition Startups (Citations) is the Competition Startups ratio scaled by the number of
forward citations of non-financial startups. Number startups is the ratio of the total number of startups applying
for a FinTech patent over the total number of incumbents during the previous 4 years. Finance is a dummy
variable for financial firms. Past Patents is the sum of FinTech patent applications by firm i over [t − 4, t − 1].
FinTech Acquisitions is the sum of acquisitions, mergers, follow-on funding, MBO, or joint ventures by a firm i
of a FinTech innovator over the period [t− 4, t− 1]. Standard errors are clustered at the country level. */**/***
represent significance at 10, 5 and 1% level, respectively.
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0.1%.

We consider next the importance of FinTech innovations by startups by weighting the number

of patent application by their forward citations count (Column 2). Again, we find that financial

incumbents are more likely to apply for FinTech patents particularly when the quality of

patent applications by outsiders is higher. The point estimate in Column (2) suggests a 0.6%

higher likelihood of financial incumbent innovation for a one standard deviation increase in

the Competition Startups (Citations) variable.

Our proxy for outside competitive pressures counts the number of patent applications. This

approach, however, does not take into account the fact that these applications might come

from a small number of very successful innovators. Consequently, in column (3), we count

the number of FinTech startup firms as opposed to their total number of applications. The

results are very similar, suggesting that the applications counted in the measure “Competition

Startups” come from different firms, making the two alternative proxies of competition almost

identical in size.

In columns (4)-(6) of Table 7, we extend our baseline model by considering the total number

of FinTech patent applications by a firm in year t. Since our sample is comprised of both

financial and non-financial firms that are FinTech innovators, we modify the model in Eq.

(1) by considering the effect of competition from startups on financial firms relative to non-

financial firms. Specifically, the model tested is as follows:

FinTech Innovationi,t = αi + γt + β1Competition Startupsc,t−4→t−1

β2Competition Startupsc,t−4→t−1 × Finance + θ′Xi,t + εi,t, (3)

where FinTech Innovationi,t is now the total number of patents applications by firm i in year t,

measured as log(1+Total Patentsi,t).
5 The coefficient of interest, β2, is that of the interaction

between the Competition Startupsc,t−4→t−1 ratio and a dummy equal to one for financial firms

(Finance). This interaction term captures the increase in the number of patents applications

by financial incumbents relative to that of non-financial firms. We control separately for

Competition Startupsc,t−4→t−1, while the Finance dummy is absorbed by firm fixed effects.

The results in column (4) of Table 7 show that this interaction term is positive and statistically

significant, suggesting that competition from startups results in a relatively higher increase

in the number of FinTech patent applications by financial firms as compared to non-financial

5In robustness tests, we show that our results hold when consider models that take into account the count
nature of the patent data.
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ones. We repeat next the same exercise as in columns (2)-(3) and replace the number of patents

by startups as the main explanatory variable with (i) its value weighted by citations (column

(5)) and (ii) the number of firms as opposed to the number of patent applications (column

(6)). The results are robust across all specifications and suggest that competitive pressures

from startups push financial incumbents to innovate relatively more than non-financial firms.

All estimations in Table 7 control for an array of firm characteristics and fixed effects. We

include a measure of Past Patents as the sum of patent applications by firm i over [t−4, t−1].

As expected, firms who produce FinTech innovations in the past are more likely to continue

innovating. We also control for whether a financial firm has acquired, merged, or bought

a FinTech innovator over the past 4 years. Again, as expected, firms that purchase FinTech

innovators are less likely to apply for new patent themselves. Firm size is also negatively related

to the probability of innovating, in line with a large literature that suggests that smaller firms

are responsible for more radical innovations (see Akcigit & Kerr 2018, and references within).

At the same time, a higher operating revenue is positively correlated with higher FinTech

innovation, while the effect of net profit is negligible. Finally, all estimations include firm

fixed effects, which means that we obtain identification from changes within a firm over time.

We also include year fixed effects throughout to capture innovation waves that can occur in

all countries in a given year.6

Overall, the results in Table 7, point to evidence of an escape competition effect, whereby

financial incumbents innovate when the competitive pressure from non-financial startups rel-

ative to other financial incumbents is higher. In Appendix Figure 8, we show that this result

is even stronger when we consider a longer time horizon for measuring the relative number

of total patent applications by start-ups to financial incumbents. Figure 8 presents the coef-

ficient estimates for our measures of competitive pressures in (2) over different time frames:

[t−2, t−1], [t−3, t−1] and [t−5, t−1], respectively. We find the strongest effect for the last

interval, suggesting a relatively large time lag between the patent applications by competitors

and financial incumbents’ FinTech innovation.

The results in Table 7 are also robust to alternative model specifications. Specifically, the

model in Eq (1) was estimated using a fixed effects linear probability model that includes

both financial and non-financial firms applying for FinTech patents. As such, the average

marginal effect of a covariate is a linear combination of (i) the estimated coefficient of the

group of financial incumbents (which innovate at different points in time) (ii) zero, which

6In unreported regressions, we also control for country-decade fixed effects to capture innovation waves in
the same country in a given decade. The results are qualitatively similar.
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Table 8: FinTech patents and competition: alternative model specifications

Logistic model Poisson model

(1) (2) (3) (4) (5) (6)
Competition Startups 0.209** -0.049*

(0.098) (0.028)
Competition Startups (Citations) 0.801*** -0.034

(0.014) (0.087)
Number Startups 0.178** -0.030*

(0.089) (0.016)
Competition Startups × Finance 0.292***

(0.087)
Competition Startups (Citations) × Finance 0.031**

(0.013)
Number Startups × Finance 0.267***

(0.089)

Observations 2,240 2,240 2,240 9,428 9,428 9,428
Firm Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Columns (1)-(3) estimate a logit model where the dependent variable is an indicator variable whether a financial
firm applied for a FinTech patent in year t. Columns (4)-(6) show Poisson estimates where the dependent variable
is the total number of FinTech patent applications a firm in year t. Financial firms correspond to the 2-digit NACE
Rev 2 codes: 64-66. Competition Startups is the ratio of the sum of FinTech patent applications by non-financial
start-ups to that of financial incumbents during the previous 4 years. Competition Startups (Citations) is the
Competition Startups ratio scaled by the number of forward citations of non-financial startups. Number startups
is the ratio of the total number of startups applying for a FinTech patent over the total number of incumbent
the previous 4 years. Finance is a dummy variable for financial firms. Firm controls include: the sum of patents
acquisitions of FinTech innovators over the last 5 years, as well as the log of Total Assets, Net profit and Operating
revenue. Standard errors are clustered at the country level. */**/*** represent significance at 10, 5 and 1% level,
respectively.

is the corresponding coefficient of the group of non-financial companies (Beck 2020). An

alternative specification is to estimate a fixed effects logistic model, which would only employ

the subset of data that has variation in the dependent variable, i.e., the group of financial

incumbents that apply for FinTech patents at different points in time.

Furthermore, the dependent variable in model (3) is the log-transformation of patent count.

However, while widely used, this linear transformation can produce biased results (see Cohn

et al. 2021, Wooldridge 2010, page 726). We thus re-estimate Eq.(3) using a Poisson model,

which admits separable fixed effects, as in our baseline linear model.7

The results using these alternative models are presented in Table 8. In all specifications, we

control for time-varying firm characteristics, as well as time and firm fixed effects. We obtain

consistent estimations both employing the logistic model, as well as the Poisson model.

Overall, the results in Tables 7 and 8 point to a strong effect of entry by non-financial start-

ups on the propensity to innovate of financial firms. We investigate next whether this effect

corresponds to a particular type of FinTech technology.

7Poisson estimates lose efficiency if the model exhibits overdispersion, however they remain unbiased and
consistent as long as the standard conditional mean independence assumption holds (Cohn et al. 2021).
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Figure 6: Competition and type of FinTech technologies
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4.1 Type of FinTech innovation

To investigate whether the effects of start-up competition on innovation are driven by a par-

ticular FinTech technology, we re-estimate the models in (1) and (3) for each of the five

FinTech technologies classified by the machine learning algorithms in Section 2. As such, we

also recompute the measures of competition to count the number of patent applications for a

particular technology.

The results are presented in Figure 6, where figure (a) corresponds to the point estimates

of β1 in Eq. (1) , while figure (b) to those of coefficient β2 in Eq. (3). When considering

the effect of the Competition Startups ratio, we only find a statistically significant effect for

the Investment technology, which corresponds to innovations related to portfolio management,

lending and investing platforms. This is confirmed when considering the importance of patents

applications measured by their forwards citations (lower part of figure (a)). Applications

related to insurance are also driven by the competition pressure from startups in this case.

Figure 6(b) shows the impact of competition on the total number of applications of financial

incumbents as compared to other FinTech innovators. Here we find stronger evidence across

other categories of FinTech Applications, such as Fraud, Insurance and Investments, with

all the coefficients being statistically significant when we weight the interaction term by the

citation count. The bulk of this evidence confirms that competitive threats from FinTech

startups push financial incumbents to innovate to escape competition.

4.2 Alternative measures of competition

We check the robustness of our main results when employing alternative definitions of our

measures of competitive pressures. First, we consider competition not just from non-financial
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Table 9: Alternative measures of competition (based on Priority Country)

Dependent variable: FinTech patent application Total number of patents

(1) (2) (3) (4) (5) (6)

Competition Startups 0.027* 0.143***
(0.013) (0.028)

Competition Startups (Citations) 0.038*** 0.145***
(0.002) (0.006)

Competition Number Startups 0.028** 0.145***
(0.013) (0.029)

Competition Startups × Finance 0.193***
(0.028)

Competition Startups (Citations) × Finance 0.140***
(0.006)

Number Startups × Finance 0.188***
(0.027)

Observations 16,997 16,997 16,997 16,997 16,997 16,997
R-squared 0.428 0.452 0.431 0.631 0.606 0.630
Firm controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

The dependent variable in columns (1)-(3) is a indicator variable whether a financial firm applied for a FinTech
patent in year t, while is columns (4)-(6) it is the total number of FinTech patent applications a firm in year t.
Financial firms correspond to the 2-digit NACE Rev 2 codes: 64-66. Competition Startups is the ratio of the
sum of FinTech patent applications by non-financial start-ups to that of financial incumbents during the previous
4 years. Competition Startups (Citations) is the Competition Startups ratio scaled by the number of forward
citations of non-financial startups. Number startups is the ratio of the total number of startups applying for a
FinTech patent over the total number of incumbent the previous 4 years. Finance is a dummy variable for financial
firms. Firm controls include: the sum of patents acquisitions of FinTech innovators over the last 5 years, as well
as the log of Total Assets, Net profit and Operating revenue. Standard errors are clustered at the country level.
*/**/*** represent significance at 10, 5 and 1% level, respectively.

startups headquartered in the same country as the financial incumbent, but also those that list

as priority country the domicile of the financial incumbent. The priority country is the country

where the patent is first filed worldwide before being extended to other countries. If FinTech

start-ups register patents in the country where the financial incumbent is headquartered then

they are considered to compete with the incumbent. As such, the ratio in Eq.(2) now includes

the sum of patent applications that list as priority country the domicile of a financial incumbent

i. In many cases this corresponds to the applicant’s domestic patent office, and, as such, the

number of patents counted would be the same as in our baseline measure. However, this

extended definition can also capture competition from startups domiciled abroad, but whose

FinTech innovation is patented in the financial incumbent’s domicile country.

The results using this alternative measure are presented in Table 9 and are robustly estimated

across all specifications. The magnitude of the effect is larger as compared to the estimates

in Table 7, which is to be expected as the number of FinTech start-up innovators using this

alternative definition is likely to be larger.

We consider next an alternative proxy for the importance of FinTech innovations. In our

baseline specification we count the number of FinTech patent applications as a measure of
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Table 10: Alternative measures of competition (based on patents granted)

(1) (2) (3) (4)

Competition Startups -0.000 -0.000
(0.002) (0.006)

Competition Startups (Citations) 0.006** -0.006
(0.002) (0.009)

Competition Startups × Finance 0.022
(0.042)

Competition Startups (Citations) × Finance 0.070***
(0.004)

Observations 16,997 16,997 16,997 16,997
R-squared 0.392 0.392 0.473 0.475
Firm controls Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Yes
Year FE Yes Yes Yes Yes
Yes

The dependent variable in columns (1)-(3) is a indicator variable whether a financial firm applied
for a FinTech patent in year t, while is columns (4)-(6) it is the total number of FinTech patent
applications a firm in year t. Financial firms correspond to the 2-digit NACE Rev 2 codes: 64-66.
Competition Startups is the ratio of the sum of FinTech patent applications by non-financial
start-ups to that of financial incumbents during the previous 4 years. Competition Startups
(Citations) is the Competition Startups ratio scaled by the number of forward citations of non-
financial startups. Number startups is the ratio of the total number of startups applying for a
FinTech patent over the total number of incumbent the previous 4 years. Finance is a dummy
variable for financial firms. Firm controls include: the sum of patents acquisitions of FinTech
innovators over the last 5 years, as well as the log of Total Assets, Net profit and Operating
revenue. Standard errors are clustered at the country level. */**/*** represent significance at
10, 5 and 1% level, respectively.

competitive pressures. We then weight these patents by importance using a measure of forward

citations count. An alternative measure of importance is to consider only the number of patent

applications that are eventually granted. As such, in ratio (2) we only include the applications

whose final status is “patented”. The results are presented in Table 10 and support our main

hypothesis although are robustly estimated only when we consider the measure weighted by

citations count. This suggests that the importance of the applications, measured by the

citation count, matters more than whether the applications are merely granted.

4.3 Competition from technology incumbents

The descriptive statistics in Table 4 showed that a large fraction of FinTech patent applications

are owned by non-financial firms. Technology firms corresponding to the 2-digit NACE Rev

2 codes: 26, 47, 49, 58, 61, 62 and 63, represent a large fraction of that. 21% of the FinTech

patent application come from technology firms that are not start-ups (older than 8 years at

the moment of application). In this section we check whether the effect of competition on

financial incumbents’ innovation is present when competition is coming from these incumbent

technology firms and not start-ups.
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As such, we re-construct the measures of competition, but considering incumbent technology

companies in the numerator of the ratio in Eq. (2).

The results are presented in Table 11. Overall, we find little evidence that competition from

technology incumbents spurs innovation in the financial sector. The results are overall less

precise and not always positive. We only find a statistically significant effect when we consider

the interaction Competition Tech (Citations) × Finance in column (5). In the Appendix

we estimate the alternative specifications using this definition of competition by technology

incumbents. Specifically, Figure 9 considers alternative time frames, Figure 10 looks at the

type of FinTech technology, while Appendix Table 13 measures competition based on priority

country. Overall, these results show weak evidence that the competitive pressures from mature

technology firms are important in driving innovation in the financial industry.

5 Conclusion

Technological innovations have long shaped the financial sector and have had large effects on

long-term profitability (Fuentelsaz et al. 2009, Haynes & Thompson 2000, Scott et al. 2017).

Yet, the rise of FinTech innovators over the past decades has the potential to represent the

largest disruption in the financial sector so far (Gomber et al. 2017).

In this paper, we provide the first test of how financial incumbents responded to the compe-

tition from non-financial startups. To this end, we classify a large sample of patents into 5

FinTech categories using novel machine learning techniques. We then exploit the fluctuations

in the ratio of FinTech patent applications by non-financial start-ups versus incumbents to

capture competitive pressures coming from outside the financial sector.

We show that financial incumbents are more likely to innovate when they face greater com-

petitive pressure from non-financial start-ups. This competitive pressure is even greater if the

patent applications turn out to be radical innovations, as captured by their forward citation

count.

These results provide support to an escape competition effect, whereby in markets with a low

level of competition, the threat of entry pushes incumbents to innovate.
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Table 11: FinTech patent application and competition from tech incumbents

Dependent variable: FinTech patent application Total number of patents

(1) (2) (3) (4) (5) (6)
Competition Tech 0.000 -0.009*

(0.001) (0.005)
Competition Tech (Citations) 0.004 0.012

(0.003) (0.010)
Competition Number Tech -0.001 -0.011**

(0.001) (0.005)
Competition Tech × Finance -0.000

(0.022)
Competition Tech (Citations) × Finance 0.098***

(0.002)
Competition Number Tech × Finance -0.010

(0.017)
Past Patents 0.000*** 0.000*** 0.000*** 0.006*** 0.006*** 0.006***

(0.000) (0.000) (0.000) (0.001) (0.001) (0.001)
FinTech Acquisitions -0.069** -0.069** -0.069** -0.177*** -0.153*** -0.180***

(0.026) (0.026) (0.026) (0.018) (0.016) (0.016)
Total Assets -0.002** -0.002** -0.002** -0.000 0.001 -0.000

(0.001) (0.001) (0.001) (0.003) (0.003) (0.003)
Net Profit -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Operating Revenue 0.001* 0.001* 0.001* 0.013*** 0.013*** 0.013***

(0.001) (0.001) (0.001) (0.004) (0.004) (0.004)

Observations 16,997 16,997 16,997 16,997 16,997 16,997
R-squared 0.392 0.392 0.392 0.473 0.477 0.473
Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

The dependent variable in columns (1)-(3) is a indicator variable whether a financial firm applied for a FinTech
patent in year t, while is columns (4)-(6) it is the total number of FinTech patent applications a firm in year
t. Financial firms correspond to the 2-digit NACE Rev 2 codes: 64-66. Competition Tech is the ratio of the
sum of FinTech patent applications by Technology firms to that of financial incumbents during the previous 4
years. Technology firms correspond to the 2-digit NACE Rev 2 codes: 26, 47, 58, 61, 62, are 63, respectively.
Competition Tech (Citations) is the Competition Startups ratio scaled by the number of forward citations of
Technology firms. Number Tech is the ratio of the total number of technology firms applying for a FinTech patent
over the total number of incumbent the previous 4 years. Finance is a dummy variable for financial firms. Past
Patents is the sum of FinTech patent applications by firm i over [t−5, t−1]. FinTech Acquisitions is the sum sum
of acquisitions, mergers, follow-on funding, MBO, or joint ventures by financial incubator i of a FinTech innovator
over the period [t − 4, t − 1]. Standard errors are clustered at the country level. */**/*** represent significance
at 10, 5 and 1% level, respectively.
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6 Appendix

6.1 Database construction

This section provides further details on the construction of our FinTech patent dataset. It also

compares our dataset with that of Chen et al. (2019) and Xu et al. (2020), which are, to the

best of our knowledge, the closest related studies that employ machine learning approaches to

classifying FinTech innovations.

Table 12: Comparison with FinTech datasets in Chen et al. (2019) and Xu et al. (2020)

Dataset Characteristics Chen et al. Chen et al. (2019) Xu et al. (2020) Our dataset

(1) Source of patents BDSS Lens Orbis/Patsat

(2) Years covered 2003-2016 2014-2018 2000-2016

(3) Legal jurisdiction of patents US US US + Europe

(4) IPC classes used G&H G&H G&H

(5) Initial number of patents based on criteria (1)-(4) above 1,181,162 1,328,623 6.8M

(6) Financial terms for filtering financial patents 487 478 516

(7) Number of patents after filtering with financial terms (6) 67,948 37,156 38,228

(8) Number of FinTech categories considered 7 7 5

(9) Number of manually annotated patents used for training 1,800 1,800 2350+1500

(10) Total number of FinTech patents identified out of (7) 6,511 3,602 19,055

A summary of the dataset characteristics and filtering steps employed is presented in Table

12. Several key differences between our approach and that in previous work should be noted.

First, while the datasets in Chen et al. (2019) and Xu et al. (2020) employ the universe of

patents submitted to the USPTO, our initial dataset covers also patents submitted to the

EPO, as well as an extended sample of countries covered by the PATSTAT Global database.

Similar to Chen et al. (2019) and Xu et al. (2020), we filter patents belonging to International

Patent Classification classes G and H, which yields a significantly larger sample of potential

FinTech patents.

Next, both Chen et al. (2019) and Xu et al. (2020) used a similar lists of financial terms

consisting of 487 and 478 terms, respectively, to filter patents potentially related to financial

services. We complement the list of financial terms from Chen et al. (2019) with additional

FinTech identification terms which takes the total number of initial filtering keywords to 516

in our study.

Chen et al. (2019) identified the seven FinTech categories based on insights from a general

reading of FinTech reports and articles. Xu et al. (2020) selected their seven FinTech categories

based on a Financial Stability Board (FSB) report from 2017. We employ a more stringent

taxonomy of 5 broad finTech-related categories to avoid overlapping our patents to what are

traditionally software innovations applicable across industries.

Finally, we manually labeled a much larger subset of patents as compared to previous work.
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6.2 Machine-learning classifiers

We detail in this section the main classification algorithms employed.

Prior work on FinTech patents has employed traditional machine learning approaches such

as ensemble classifiers Chen et al. (2019) and random forests Xu et al. (2020), and has found

that ensemble-type approaches show promising results. However, in the light of the growing

success that deep learning approaches have seen in recent years, several works have used

such approaches to automatically classify general patents according to standard categories in

the International Patent Classification (IPC) or the Cooperative Patent Classification (CPC)

taxonomies (Li et al. 2018, Hu et al. 2018, Shalaby et al. 2018, Abdelgawad et al. 2019, Lee

& Hsiang 2019).8

The main classification method we employ in this paper is BERT, which stands for Bidirec-

tional Encoder Representations from Transformers (Devlin et al. 2018). BERT is a language

model that uses a deep bidirectional transformer encoder architecture Vaswani et al. (2017)

to encode sentences and their tokens into dense vector representations. A generic model is

pre-trained on a large corpus of un-annotated text (e.g., Wikipedia) using two self-supervised

learning tasks: masked word prediction (a.k.a., masked language modeling, or MLM) and next

sentence prediction (NSP). BERT takes as input a sequence of word tokens, where the first

token is a special token denoted by [CLS] (the output representation of the [CLS] token can

be seen as a semantic representation for the whole input sequence). A BERT input sequence

consists of one or two sentences. For an input sequence consisting of two sentences, the two

sentences are separated by another special token, denoted by [SEP]. Embeddings of the input

tokens are provided to a multi-layer bidirectional transformer encoder, which transforms the

original input embeddings into contextual output embeddings.

A generic BERT model, pre-trained on a large corpus, can be further pre-trained and/or fine-

tuned for specific NLP tasks (Devlin et al. 2018). Particularly, a BERT model for the FinTech

patent classification task can be initialized with the parameters of a generic pre-trained BERT

8For example, Grawe et al. (2017), Shalaby et al. (2018) used recurrent neural networks, specifically, long
short-term neural networks (LSTM) Hochreiter & Schmidhuber (1997), together with word2vec embeddings
Mikolov et al. (2013), to classify patents into IPC categories, while Risch & Krestel (2019) used gated recurrent
unit (GRU) networks, together with fastText embeddings Bojanowski et al. (2017) for the same task. Similarly,
Abdelgawad et al. (2019), Li et al. (2018) used word embeddings, including Word2vec Mikolov et al. (2013) and
GloVe Pennington et al. (2014), together with convolutional neural networks (CNN) for text classification Kim
(2014). Hu et al. (2018) build a hierarchical feature model that combined CNN and bidirectional LSTM (bi-
LSTM) networks to capture both local lexical-level features and global sequential dependencies. The authors
showed that the combined model achieved better performance than the independent CNN and LSTM/Bi-LSTM
models on mechanical patent documents. Finally, Lee & Hsiang (2019) obtained state-of-the-art results with
BERT models Devlin et al. (2018) on the task of classifying patent documents according to the IPC or CPC
taxonomies. Specifically, Lee & Hsiang (2019) used large datasets of patent documents to fine-tune a pre-trained
BERT-base model on the general patent classification task.
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model, further pre-trained using FinTech patent data, and subsequently fine-tuned for patent

classification.

6.2.1 BERT Variants

The success of the initial BERT-based models has resulted in an unparalleled suite of variants

that can be used with the pre-training/fine-tuning framework proposed in Devlin et al. (2018).

We used three variants in our analysis, specifically, RoBERTa (Liu et al. 2019), ALBERT (Lan

et al. 2020) and XLNet (Yang et al. 2019). RoBERTa (Robustly Optimized BERT Approach)

uses a larger dataset and an improved procedure to pre-train the BERT architecture. Among

others, the next sentence prediction is removed and the masking applied to the training data is

changed dynamically. ALBERT (A Lite BERT) is focused on decreasing BERT’s size (i.e., the

number of parameters that need to be learned), while not hurting its performance. It achieves

a reduction in the number of parameters by factorizing the embedding parameterization and

sharing parameters across all layers. To improve the training, it replaces the next sentence

prediction task with a sentence order prediction task that better captures the inter-sentence

cohesion. XLNet is a large bidirectional transformer, whose authors argue against the masked

language modeling task and introduce an autoregressive permutation language modeling task

for training (specifically, prediction of the next token in a sequence using some random order

of the sequence). This improvement in the training procedure enables XLNet to capture

better bidirectional dependencies among tokens in a sequence. In total, we experiment with

22 pre-trained BERT models and variants, by fine-tuning the models using labeled data for

our specific FinTech classification task. We train each model for 6 epochs, using the AdamW

optimizer with a learning rate of 2e−5. We use default values for other hyper-parameters.

6.2.2 CNN and RNN Models

We compare the best BERT model for the FinTech patent classification task with models that

train a CNN (Convolutional Neural Networks) or an RNN (recurrent neural networks) on top

of the patent pre-trained BERT model.

Convolutional Neural Networks (CNNs), originally proposed in computer vision, have been

successfully adapted to text classification (LeCun et al. 2015, Kim 2014). In general, a CNN

consists of convolutional layers followed by non-linear activations, pooling layers and fully

connected layers. A convolutional layer employs a sliding window approach to apply a set

of filters (low-dimensional tensors) to its input. The convolution operation captures local

dependencies in the original input, and it produces feature maps. The pooling operation
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is used to reduce the dimensionality of the feature maps. Following convolutional layers

(used together with non-linear activations), and pooling layers, a CNN has one or more fully

connected layers, that capture non-linear dependencies among features (LeCun et al. 2015).

The last fully connected layer uses a softmax activation function, and has as many output

neurons as the number of targeted classes. In this work, we adopt the simple CNN architecture

for text classification proposed in Kim (2014), which consists of one convolution layer with

multiple filter widths and feature maps (and non-linear activations), followed by a max-pooling

layer, and finally a fully connected layer with softmax output. The input to our CNN models

consists of vector embeddings of patent word tokens. We use a BERT model pre-trained on

FinTech patent documents to represent input tokens.

Among RNN models, we employ LSTM (Long Short-Term Memory) networks, which are a

type of recurrent neural networks (RNN) that can be used to capture dependencies in sequence

data, including long term dependencies (Hochreiter & Schmidhuber 1997). At the core of an

RNN network, including LSTM networks, there is a recurrent cell represented as a hidden

state, which enables the network to pass information from one time step to the next one.

When unfolded, an RNN networks looks like a chain of repeated cells, which share the hidden

state. General RNNs suffer from the gradient vanishing and exploding problem, when used

with long sequences (Hochreiter & Schmidhuber 1997). LSTM networks avoid this problem

by introducing a cell state, in addition to the internal hidden state, which carries information

across the sequence. The information passed through the cell state is controlled by three gates,

an input gate, a forget gate and an output gate. The gates help identify which information

from the previous cell state needs to be forgotten, which information needs to be updated, and

which information needs to be used as the output of the current cell state. A standard LSTM

has one layer corresponding to one cell, and processes the sequence in the forward direction. A

bidirectional LSTM (Bi-LSTM) includes a second layer/cell, which processes the sequence in

reverse direction. In this paper, we use a Bi-LSTM network to capture sequence dependencies

in both forward and reverse directions. As input to the Bi-LSTM, we use BERT embeddings

pre-trained on FinTech data.

6.2.3 Traditional ML baselines

To compare our the performance of our deep learning classifiers with previous work, we also

employ several traditional machine learning techniques. Specifically, we used Linear Support

Vector Machines (L-SVM), Gaussian Support Vector Machines (G-SVM), Multilayer Percep-

tron (MLP), Naive Bayes (NB), Random Forest (RF), Gradient Boosting (GB), and also a
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voting classifier (ML-V). The voting classifier consists of L-SVM, G-SVM and MLP, similar to

the voting classifier in Chen et al. (2019), and uses the prediction made by the MLP, in case

of ties. All the classifiers, except for MLP, were implemented with scikit-learn library and

used the default hyper-parameter values provided by the library (except for L-SVM, where

C = 0.0, and G-SVM, where C = 1). The MLP network was implemented with PyTorch, and

featured 4 layers. The first, second, and third layers had 256, 200, and 100 hidden neurons,

respectively. During training, we used the standard cross-entropy as our optimization crite-

rion and Adam as the optimizer. Further, we used a learning rate of 6e−4 for 30 epochs. One

difference between our ML classifiers and the classifiers used in Chen et al. (2019) is that we

used patent pre-trained BERT embeddings for the features as opposed to the bag-of-words

representation.

6.2.4 Classifier Performance

In this section, we present the results of our performance benchmarking exercise that we

conducted between the different state-of-the-art machine learning classifiers that we employed.

To train and evaluate our models, we split the dataset into training and test subsets, where

the training subset contains 80% of the labeled data and the test dataset contains 20% of the

data910

BERT models. We fine-tune 22 pre-trained BERT-based models on our labeled training

dataset, and estimate their performance in terms of F1-scores on the test dataset. The F1-

scores range from 89.39% (for “roberta-based”) to 91.21% (for “bert-based-cased”), showing

that the BERT-like models are generally good candidates for our FinTech patent classification

problem. The best performing model, “bert-based-cased”, has 12-layers, 768-hidden units,

12-heads and 110M parameters, and is pre-trained on cased English text. The next three

best models (having similar scores to each other) are “roberta-large”, “bert-large-cased” and

“bert-large-cased-whole-word-masking”, which all share the same architecture, specifically,

9The annotated dataset (in the form of patent identification number and label) is available from the authors
upon request.

10To ensure that our deep learning models are capable of modeling more than one dataset split, we created
five random splits that were used whenever we ran training experiments. Using these 5 random splits we are
able to get a better idea of not only the raw performance of the model, but also its consistency when faced
with different training data.

On top of these 5 random splits, we also manually curated a test set of ’hard’ patent abstracts that we
considered would be challenging even for a human to classify, informed by our own experience acquired through
manually classifying well over 5000 patents throughout the development of the paper. This more challenging
split has been constructed by recording the abstracts that the two researchers on the team manually classifying
FinTech patents could not decide which FinTech subclass they belonged to, and needed to further discuss it
with the wider team to ensure consistency. Finally, we run the classifiers on the 25580 patent dataset and
obtain our shortlist of FinTech innovations. Throughout this process, we use the abstract text of each patent
in this subset as the feature to be fed to the neural network.
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Figure 7: Normalized confusion matrix corresponding to the best BERT model. The diagonal
entries show the percentage of correctly classified instances in each category. Non-diagonal
entries on a row show how the misclassified instances of a category are distributed among the
other categories.

24-layers, 1024-hidden units, 16-heads, and 355M parameter, and are also trained on cased

English text. As expected for patent documents, the uncased models have worse performance

than the cased models overall.

Fig. 7 shows the confusion matrix corresponding to the best BERT model, which is later used

for the large-scale classification of FinTech patents. The diagonal entries show the percentage

of correctly classified instances in each category, while the non-diagonal entries show how the

misclassified instances for a particular category are distributed among the other categories.

As can be seen, the Insurance, Investment, Fraud and Payments have a high percentage of

instances correctly classified (0.99%, 0.98%, 0.98% and 0.97%, respectively). For Data Ana-

lytics, 90% of instances are classified correctly, while 10% are misclassified as Payments (4%)

or Investment (6%). Finally, the Non-FinTech category has 85% correctly classified instances,

and the misclassified instances are spread across all the FinTech categories. Together, these

results show that our models are effective at identifying true positives for the FinTech cate-

gories, although some false positives (Non-FinTech patents classified as FinTech) will also be

expected.

Convolutional and Recurrent Neural Networks. The result of the deep learning models, CNN

and RNN, which take the patent pre-trained BERT embeddings as input, are shown on the

right side of vertical double-line in Table 2, by comparison with the results of the best BERT

model fine-tuned on the patent training data. The table shows the results for each category

separately, and also the average over the 6 categories captured by our labeled data (including
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5 FinTech categories and 1 Non-FinTech category), and the accuracy of the models. The three

models have similar results, although BERT is the best model overall, with an accuracy of

92.30% and an average F1-score of 91.20% over the six categories. BERT is closely followed

by the RNN model, while the CNN model has the worse performance among the three deep

learning models. In terms of individual categories, the results show that the Fraud category

has the best performance, with an F1-score of 97.00%, while the Data Analytics category has

the worst performance, with an F1-score of 75.30%.

The results of the traditional machine learning models, which also take the patent pre-trained

BERT embeddings as input are shown on the left side of the vertical double-line in Table 2.

As can be seen, the best model in this category is the MLP model. However, except for two

cases when the RF model gives the best result in terms of precision for the Data Analytics

category and the best result in terms of recall for the Non-FinTech category, respectively, the

deep learning models are superior to the traditional machine learning models.
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Figure 8: Alternative time frames for measuring startup competition
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Figure 9: Alternative time frames for measuring Tech competition

Competition Tech

Competition Tech (Citations)

Competition Nb Tech

-.01 -.005 0 .005 .01

[-1, -2] [-1, -3]
[-1, -5]

(a) FinTech Application indicator

Competition Tech X Finance

Tech (Citations) X Finance

Nb Tech X Finance

-.05 0 .05 .1 .15

[-1, -2] [-1, -3]
[-1, -5]

(b) Total number of patents

6.3 Other robustness tests
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Figure 10: Competition Tech and type of FinTech technologies
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Table 13: Alternative measures of competition (based on Priority Country)

Dependent variable: FinTech patent application Total number of patents

(1) (2) (3) (4) (5) (6)
Competition Tech 0.016 0.107***

(0.011) (0.028)
Competition Tech (Citations) 0.018 0.077**

(0.010) (0.033)
Competition Number Tech 0.015 0.104***

(0.010) (0.026)
Competition Tech × Finance 0.140

(0.096)
Competition Tech (Citations) × Finance 0.121

(0.080)
Competition Number Tech × Finance 0.150

(0.101)
Observations 16,997 16,997 16,997 16,997 16,997 16,997
R-squared 0.408 0.410 0.406 0.570 0.531 0.565
Firm controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

The dependent variable in columns (1)-(3) is a indicator variable whether a financial firm applied for a
FinTech patent in year t, while is columns (4)-(6) it is the total number of FinTech patent applications
a firm in year t. Financial firms correspond to the 2-digit NACE Rev 2 codes: 64-66. Competition
Startups is the ratio of the sum of FinTech patent applications by non-financial start-ups to that of
financial incumbents during the previous 4 years. Competition Startups (Citations) is the Competition
Startups ratio scaled by the number of forward citations of non-financial startups. Number startups
is the ratio of the total number of startups applying for a FinTech patent over the total number of
incumbent the previous 4 years. Finance is a dummy variable for financial firms. Past Patents is the
sum of FinTech patent applications by firm i over [t−5, t−1]. FinTech Acquisitions is the sum sum of
acquisitions, mergers, follow-on funding, MBO, or joint ventures by financial incubator i of a FinTech
innovator over the period [t− 4, t− 1].
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