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The use of absolute return volatility has many modelling benefits says John 
Cotter.  This is particularly so in the context of minimum capital requirement 
calculations to meet the first pillar of Basel II. 
 
Basel II emerged in June 2004 to much critical debate.  The main talking point before 

and since its release is the first pillar on minimum capital requirements.  Here the 

Basel II discussion has concentrated on how different risks are to be incorporated into 

minimum capital requirements, and with very little on calculation of volatility that 

underpins any capital requirement measures.1  Minimum capital requirements 

represent reserves that are used to protect financial firms against losses arising from 

the volatility of their holdings (see Cotter, 2004; for a discussion).  Thus adequate 

modeling of volatility is paramount to accurate minimum capital requirement 

measures.   

 

This paper addresses this issue of volatility modelling by estimating minimum capital 

requirements based on absolute return volatility.  The Basel II comments on volatility 

modelling suggest banks can use their own internal models of volatility subject to 

certain criteria and most notably using an independent review of the risk management 

process that takes place regularly dealing with accuracy and appropriateness of 

volatility assumptions (Basel Committee on Banking Supervision, 2004).  There are 

some references to how the volatility assumptions would meet this issue, most notably 

the assumption of the normal distribution through using the variance and the use of 

the gaussian square root of time scaling law.   

 

A number of papers have offered alternative approaches to modelling volatility in 

calculating minimum capital requirements.  The motivations behind the studies are 

two-fold: first to obtain capital measures that neither overestimate nor underestimate 

the risk facing financial firms and second, and the key focus of this paper, is to apply 

the most appropriate statistical modelling procedure.  Most of the studies having 

documented a lack of normality in daily returns do not try and rehabilitate this 

                                                
1 There are however both some explicit and implicit references in Basel II to incorporating credit, 
operational and market risk measures focusing on qualitative and quantitative criteria that should be 
met.  These criteria include dealing with 99th percentiles, having a holding period of 10 business days 
for market products, updating data on a three monthly basis and adjusting for illiquidity effects 
amongst others (Basel Committee on Banking Supervision, 2004).  
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outcome and instead offer alternative modelling procedures.2  For instance, a number 

of conditional based approaches using Generalised Autoregressive Conditional 

Heteroskedastic (GARCH) and related univariate or multivariate process have been 

advocated (Brooks et al, 2002).  In addition, unconditional approaches that rely on 

separate risk measures for the upside and downside of a distribution have been 

supported.  Longin (1996, 2000) estimates minimum capital requirements for daily 

series using Extreme Value Theory (EVT) methods allowing for asymmetric 

distributions.  A number of these alternative methods have been compared for their 

performance in modelling risk appropriately, and they all perform optimally with long 

data series (Brooks and Persand, 2000; Brooks et al, 2002).  This paper provides a 

further alternative that incorporate the rehabilitation of the assumption of normality 

by using gaussian standardised returns incorporating absolute return volatility 

underpinned by the theory of realized power variation matching the procedures 

suggested in Basle II.  Importantly, it utilises a short time frame in line with Basle II 

that suggests using time periods of approximately one year to calculate capital risk 

measures.   

 

Much of the comment about Basel II has suggested that the risk management 

practices advocated are those that have been in operation in the well-managed 

financial institution. (Basel II Alert, 2004).3  In terms of modelling volatility the usual 

postulate applied that fits Basel II is that asset returns belong to a gaussian 

distribution.  Any bias with respect to normality must be compensated for or else face 

the consequences of inadequate measurement of risk.  In reality a commonly cited 

deviation from normality is the time-varying characteristic.  If however, volatility can 

be adequately modelled, the risk manager can filter out the time-varying dynamics 

from returns leading to a gaussian series.  These rescaled gaussian returns allow the 

risk manager to provide accurate and appropriate risk measures that can be extended 

by the square root of time scaling law. 

 

                                                
2 Two studies that informally advocate assuming a gaussian distribution are the use of the lognormal 
distribution in Hsieh (1993), and the development of portfolio based measures that allow for 
diversification effects (Dimson and Marsh, 1995). 
3 “The new framework, which has been well flagged up and discussed with industry for five years now, 
represents an expression of what most well managed internationally active banks are already doing”  

Simon Hills from the British Bankers Association (Basel II Alert, p1, 2004).  
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This paper generates rescaled gaussian returns incorporating a recent major 

innovation in the volatility literature, namely, quadratic variation where realised 

volatility converges in probability to integrated volatility.  Accurate model free 

volatility estimates are thus obtained building on the quadratic variation of a diffusion 

process.  This theory relied on in the continuous time literature results in gaussian 

return innovations being a standard assumption of the pricing models presented.  The 

theoretical developments have evolved in conjunction with vast improvements in high 

frequency data allowing the continuous time framework to be realistically examined 

in a discrete context.    

 

This paper advocates the use of aggregated absolute returns and variations thereof as 

simple and efficient estimates of relatively low frequency, for example daily, 

volatility.  Building on the theoretical framework of realised power variation that 

incorporates quadratic variation, this study demonstrates the relative advantages of 

absolute return volatility compared to alternative modeling with squared returns.4     

 

Using the returns series of the FTSE100 futures rescaled by absolute return volatility 

the paper calculates minimum capital requirements for long and short trading 

positions protecting against market risk.  These capital deposits along with margin 

requirements are part of an arsenal that helps investors avoid default at different 

confidence levels.5  

 

Absolute returns have many advantages in modelling volatility.  First, absolute returns 

are more robust than squared returns in the presence of large movements (Davidian 

and Carroll, 1987).  This fat-tailed characteristic always cited for the unconditional 

distribution of financial return data is fundamental in the analysis of many economic 

phenomena such as market booms and crashes, and risk management procedures that 

incorporate quantile measurement such as Value at Risk.  The characteristic implies 

the underestimation of large price movements from assuming normality.   

 

                                                
4 The more common use of squared returns whether it is in form of variance or standard deviation has 
dwarfed volatility modelling for finance industry participants.   
5 See Cotter (2001) for methods to model margin requirements. 
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Furthermore absolute return modelling is more reliable than squared returns for the 

non-existence of a fourth moment commonly associated with financial returns.  For 

instance, Mikosch and Starcia (2000) show that whilst the autocorrelation function of 

absolute returns exhibit very large confidence bands and slow convergence vis-à-vis a 

gaussian limit distribution, the autocorrelation function of squared returns are 

undefined due to convergence with non-degenerate limit laws and infinite variance. 

 

Realised power variation: 

The recent developments in modeling volatility using aggregated high frequency 

realizations are underpinned by a continuous time process of asset prices.  The price 

process is assumed to follow Brownian motion and allows for accurate estimates of 

unobservable volatility at the limit.  Discrete approximations of the price process 

using high frequency data have rm, t = pt - pt-1/m as the continuously compounded 

returns with m evenly spaced observations per day.  Brownian motion is generalized 

to allow the volatility to be random but serially dependent exhibiting the stylized 

finding for financial return data of volatility clustering with fat-tailed unconditional 

distributions.6   

 

Volatility of this price process as measured by integrated volatility is unobservable.  

However, realised power variation that incorporates realised absolute variation, 

namely the sum of absolute realisations, �|rm|, of a process captured at very fine 

intervals equate with integrated volatility.   This theory of realised power variation 

given in Barndorff-Nielsen and Shephard (2003) and Barndorff-Nielsen et al (2003) 

extends the framework of quadratic variation presented for different square powers.7  

Thus for returns that are white noise and σ2
t with continuous sample paths, the 

limiting difference between the unobserved volatility estimate and the realised 

observed absolute variation is zero.   

 

                                                
6 A number of semi-martingales can be utilised, and volatility modelling in this way allow for any 
number of characteristics documented for financial time series such as long memory and non-
stationarity.   
7 The use of squared returns relying on quadratic variation has become a tour de force in the recent 
volatility literature with many studies completed.  A flavour of the use of these related measures and a 
synopsis of the prevailing literature is in Andersen et al (2003). 
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Barndorff-Nielsen and Shephard (2003) and Barndorff-Nielsen et al (2003) show that 

when the framework is for limiting intervals with m → ∞, and with power variations, 

0.5 > n < 3, realised power variation converges in probability to integrated volatility.          

p d rm t H

t

m t j m
j m

lim , /
,...,

→ ∞ − +
=

� �−
�
��

�
�� =σ ττ

2

1

0| |     (1) 

Implying for m sampling frequency, the realized absolute variation is consistent with 

integrated volatility.  Asymptotically the returns process scaled by realised power 

variation is normally distributed, N (0, 1).     

 

Realised power variation incorporates and strengthens the reliance on the more 

commonly used theory of quadratic variation for realised volatility relying on squared 

returns.  Similar to realised power variation the theory of quadratic variation implies 

that after assuming sample returns are white noise and σ2
t has continuous sample 

paths, the limiting difference between the unobserved volatility estimate and the 

observed realizations of the squared returns process is zero (Karatzas and Shreve 

(1991)).   

 

Notwithstanding the derivation of the limiting distribution economic agents are 

interested in the modelling processes ability to capture financial return finite-sample 

properties.  Thus, the finite-sample properties and their consequences especially for 

relatively small samples that match the investment horizon of risk managers need 

exploration. 

 

The practical implementation of the theory simplifies into developing volatility 

estimators using aggregated absolute returns, �|rm| and its’ variants for any day t with 

m intraday intervals:   

| | | |, /r rt m t j m
j

m

= +
=
�

1

      (2) 

For n = 2, this represents the quadratic variation result where squared returns are 

equated to integrated volatility.    

 

The number of intervals chosen is asset dependent impacted on by such factors as 

levels of trading activity and of inherent volatility.  However, there is a trade-off as m 
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increases the precision of realized power variation increases but microstructure effects 

such as bid-ask bounce increasing at finer intervals can impair the modelling process.  

This study follows the standard interval choice of 5-minute intervals throughout the 

trading day.   

 

As well as directly comparing different volatility series using absolute and squared 

reaslisations the study examines the ability of the respective measures to filter out the 

time-varying dynamics associated with asset prices.  Daily Returns, rt, obtained by 

aggregating the high frequency intraday returns, rm, t, are rescaled by the respective 

daily volatility series: 

 zt = rt/σt 

 

where the standardised returns series, zt, are obtained from scaling returns, rt, with 

each of the volatility proxies, σt. 

 

Characteristics of volatility series: 

Turning to the application of this method we take high frequency prices for the 

FTSE100 futures contract traded on LIFFE, for a relatively short time frame similar to 

advocated by Basle II, between January 1, 1999 through June 30, 2000 using the most 

actively traded delivery month data from a volume crossover procedure.  For each 5-

minute interval log closing prices are first differenced to obtain each period’s return.  

The full trading day is between 08.35 and 17.35 entailing 107 5-minute intervals.  All 

non-trading periods and holidays are removed giving the relatively small finite-

sample of 375 full trading days for analysis (in contrast to much larger samples for 

other studies). 

 

Daily returns and daily volatility series are generated from aggregating intraday 

values such as absolute returns and power variations across the trading day.  In order 

to examine the unconditional distributional properties of the daily return and risk 

measures summary statistics are estimated detailing four distributional moments 

presented in table 1.  A subset of findings for power coefficients between 0.5 and 1.5 
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are given.8    Also, some distributional plots for the returns series, and the volatility 

and standardised returns series with the most attractive distributional characteristics 

are given in figure 1. 

INSERT TABLE 1 HERE  

INSERT FIGURE 1 HERE 

 

The usual finding for the unconditional distribution of financial returns is evident, 

namely they are leptokurtotic implying too many realisations bunching around the 

peak and tails of the distribution relative to gaussianity.  In particular the 

distributional plots indicate the fat-tailed characteristic of financial returns with too 

many outliers relative to a normal distribution.     

 

In table 1 panel B absolute return volatility and squared return volatility are analysed.  

Again non-normality is exhibited that becomes more pronounced for larger and 

smaller power transformations where excess kurtosis is prevalent.  Whilst the 

coefficients for third and fourth moments of the volatility series with the most 

attractive distributional characteristics appear similar, squared returns volatility is 

more prone to outliers exhibiting a very long right tail in figure 1.  In general absolute 

return volatility is more closely associated to a normal distribution than squared return 

volatility at all power transformations.9   

 

The standardised returns series, rescaling daily returns by the different volatility is 

presented in panel C.  Unconditionally, returns rescaled by absolute return volatility 

clearly dominate their squared return counterparts in closely approximating gaussian 

features.  A number of the standardised returns series rescaled by absolute returns 

exhibit no excess skewness and kurtosis and other show a vast improvement in their 

characteristics.  In fact, the fat-tailed property disappears to the extent that 

platykurtotic features exist.  These rescaled series can now give appropriate scaled 

risk measures that incorporate the gaussian square root of time multiplier.      

 

                                                
8 The main distributional inferences are contained within the results in table 1 and figures 1 and 2.  
Further results for different power coefficients are available on request. 
9 Logarithmic transformations are also analysed but generally do not improve the distributional 
characteristics of the volatility measures.  Results available on request 
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In contrast, the standardised returns rescaled by squared return volatility, with the 

exception of [zt] = [rt]/[rt
2] 0.50 representing realised standard deviation, still exhibit 

strong excess skewness and kurtosis.  Interestingly this squared return measure, 

realised standard deviation, is equivalent to absolute return volatility, |rt|, and is 

equated to unobservable integrated volatility from the theory of realised power 

variation.   

 

Other squared return volatility series are unable to capture the dynamics of the returns 

series adequately.  For instance, the much-used realised variance is unable to remove 

the excess kurtosis of the FTSE100 returns series.  Thus for relatively small finite 

samples it is clear that whilst a spectrum of standardised returns using variants of 

absolute returns allow the risk manager to present conservative and accurate risk 

measures that adequately model the time-varying dynamics of asset returns this is not 

the case for their squared return counterparts. 

 

The theory of realised power variation asymptotically allows the conditional 

distribution of volatility to be random but serially dependent and to exhibit the 

stylized finding for financial data of volatility clustering.  Furthermore, the rescaling 

of the returns series by the different volatility proxies should produce a white noise 

series devoid of temporal dependence. 

 

To investigate the finite-sample properties of the use of absolute and squared return 

volatility and their power variations to match the conditional distribution 

characteristics of financial time series, figure 2 presents time series plots and sample 

autocorrelation plots for the returns series, volatility and standardised returns series 

again with the most attractive distributional characteristics.  The overall finite-sample 

results suggest that whilst the use of squared realisations meets only some of the 

criteria to adequately model financial returns, aggregated absolute realisations meet 

all criteria. 

 

INSERT FIGURE 2 HERE 

 

The returns series exhibit time-varying dynamics along with a very large negative 

return for August 9, 1999 but is essentially white noise with no significant 
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dependence for 20 lags.  Also in figure 2 there is no serial correlation for the squared 

standardised returns series indicating an independently distributed time series 

   

As seen in table 1 both volatility series have unconditional distributions that are fat-

tailed and in figure 2 both conditional volatility series vary across time and volatility 

clusters are clearly evident for the absolute returns series.  Volatility clustering is less 

evident in the squared returns volatility series as a large outlier dominates it on 

August 9 resulting in a single day’s volatility that is more than six times the size of 

the next largest realisation.  Furthermore, the memory of the volatility series using 

absolute realisations indicates strong serial correlation although no such dependence 

is evident from using squared realisations, as these are also white noise.   

 

Minimum capital requirements: 

The methods outlined for obtaining volatility and standardised returns are now used in 

a risk management application to calculate minimum capital requirements.  Minimum 

capital requirements are calculated here in the context of market risk for financial 

firms.  These capital reserves protect investors against losses arising from the 

volatility of their holdings and thus adequate modeling of volatility is paramount to 

accurate measurement.   

 

Rather than using returns series that would entail an underestimation of risk measures 

assuming normality, the gaussian standardized returns are analysed.  This allows for 

conservative and consistent risk management estimates.  These are presented so as to 

cover price movements at various probability levels.  To illustrate, taking a long 

position and expressing the minimum capital requirement Lrmincap as a percentage of 

total investment that covers losses Lrloss at a certain probability:   

P L Lrloss cap[ ] .min< = 0 95      (3) 

In this case the capital deposit covers 95% of price movements and losses in excess of 

this should occur with a 5% frequency.  A one-day forecast of the capital required as a 

percentage of total investment uses chosen quantiles of the standardized returns 

updated with realized volatility measured by 

λ t qz= −1 exp(| )r |t          (4) 
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An illustration of minimum capital requirements for long and short trading positions 

at common confidence levels is in table 2.  For instance, to cover 95% of all price 

fluctuations in the FTSE100 contract requires a capital deposit of 2.81% of the total 

investment for a long position.  Thus this capital outlay would be insufficient for 1% 

of the outcomes facing the investor and risk management strategies would be 

implemented with these capital costs in mind.  

 

INSERT TABLE 2 

 

In conclusion, this paper advocates alternative measures of volatility using aggregated 

absolute returns and their variations.  The measures are underpinned by the theory of 

realised power variation that asymptotically has absolute variation converging in 

probability to the unobservable integrated volatility.  The practical use of these 

measures is illustrated in the context of minimum capital requirement estimates, the 

main pillar of Basel II.  Whilst volatility modelling is not referenced to extensively in 

the new banking guidelines, there is reference to ensuring procedures are in place to 

use appropriate and accurate capital measures.  In particular, the use of the gaussian 

distribution is utilised through the use of the variance and the normal square root of 

time scaling law.  This paper generates normal rescaled returns standardised by the 

absolute volatility series.       

 

The paper shows that the finite-sample properties of absolute return volatility 

generally dominate squared return volatility.  In particular, rescaling by absolute 

return volatility results in gaussian standardised returns for a spectrum of power 

variations.  Also, volatility clustering and strong serial correlation are evident for 

absolute return volatility series matching the properties of financial data.  Moreover, 

absolute returns are more robust in the presence of outliers giving rise to fat-tails.   

 

The key to imposing appropriate risk management measures requires accurate 

modelling of volatility for different assets.  These accurate absolute return volatility 

measures are used to give conservative daily minimum capital requirements for the 

FTSE100 futures contract over a small trading period. 
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Table 1: Summary statistics for daily FTSE100 series 
  Panel A: Raw Returns 
Mean -0.08 
Standard Deviation 1.34 
Skewness 0.58* 
Kurtosis 2.64* 

  Panel B: Volatility 
  0.50 0.75 1.00 1.25 1.50 
 Absolute Returns 
Mean 24.97 13.29 7.43 4.37 2.71 
Standard Deviation 3.43 2.65 2.01 1.63 1.62 
Skewness 0.11 0.63* 1.12* 2.23* 6.52* 
Kurtosis 3.72* 2.42* 3.12* 10.55* 74.08* 
 Squared Returns 
Mean 7.43 2.71 1.33 1.12 1.76 
Standard Deviation 2.01 1.62 3.23 8.69 24.06 
Skewness 1.12* 6.52* 16.75* 18.85* 19.23* 
Kurtosis 3.12* 74.08* 306.01* 361.21* 371.40* 

  Panel C: Standardised Returns 
 Absolute Returns 
Mean 0.00 0.00 0.00 0.00 0.00 
Standard Deviation 0.05 0.10 0.17 0.29 0.49 
Skewness 0.44* 0.22 0.04 0.17 0.24 
Kurtosis 2.22* 1.01* -0.12 -0.28 -0.07 
 Squared Returns 
Mean 0.00 0.00 0.02 0.07 0.21 
Standard Deviation 0.17 0.49 1.34 3.58 9.58 
Skewness 0.04 0.24 0.46* 0.86* 1.30* 
Kurtosis -0.12 -0.07 1.35* 4.63* 9.25* 
Notes: The daily series are outlined in the text.  Normal iid skewness and kurtosis 
values should have means equal to 0, and variances equal to 6/T and 24/T 
respectively.  Standard errors for the skewness and kurtosis parameters are 0.253 and 
0.506 respectively.  Significant kurtosis and skewness coefficients are given by *.   
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Table 2: Minimum capital requirement estimates for daily FTSE100 series 
Probability 95% 96% 97% 98% 99% 
Long  2.81 2.96 3.01 3.40 3.95 
 [2.53 3.09] [2.67 3.26] [2.69 3.33] [3.74 3.05] [3.55 4.34] 
            
Short 2.87 3.06 3.42 3.66 4.09 
  [2.59 3.15] [2.77 3.36] [3.10 3.74] [3.31 4.01] [3.69 4.49] 
Notes: The minimum capital requirements are expressed as a percentage of the total 
investment.  Results are presented individually for the long and short positions using 
the methodology outlined in the text.  Confidence intervals are given in [].  
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 Figure 1: Distributional plots for daily FTSE100 series 
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Notes: Density plots followed by q-q plots for the returns, volatility and standardised 
returns series are presented.  The volatility and standardised returns series chosen 
relying on absolute and squared returns are based on those with the optimal skewness 
and kurtosis coefficients vis-à-vis normality.  Specifically, the volatility series are 
|rt|0.75 and [rt

2] and the standardised returns series are [zt] = [rt]/|rt| and [zt] = 
[rt]/[rt

2]0.75. 
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Figure 2: Time series and Autocorrelation plots for daily FTSE100 series 
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Notes: Time series plots followed by ACF plots for the returns, volatility and 
standardised returns series are presented.  The sample autocorrelations are for a 
displacement of 20 days from a full sample of 375 days with confidence bands of 
0.10.  The volatility and standardised returns series chosen relying on absolute and 
squared returns are based on those with the optimal skewness and kurtosis coefficients 
vis-à-vis normality.  Specifically, the volatility series are |rt|0.75 and [rt

2] and the 
standardised returns series are [zt] = [rt]/|rt| and [zt] = [rt]/[rt

2]0.75.  The ACF plots for 
the standardised returns series examine squared variations. 
 
 


