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Estimating financial risk measures for futures positions: a non-parametric approach 

By 
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Abstract 

This paper presents non-parametric estimates of spectral risk measures applied to long 

and short positions in 5 prominent equity futures contracts. It also compares these to 

estimates of two popular alternative measures, the Value-at-Risk (VaR) and Expected 

Shortfall (ES). The spectral risk measures are conditioned on the coefficient of 

absolute risk aversion, and the latter two are conditioned on the confidence level.  Our 

findings indicate that all risk measures increase dramatically and their estimators 

deteriorate in precision when their respective conditioning parameter increases. 

Results also suggest that estimates of spectral risk measures and their precision levels 

are of comparable orders of magnitude as those of more conventional risk measures.  
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1. INTRODUCTION 

 

One of the more interesting developments in financial risk management in the 

last few years is the theory of spectral risk measures (see Acerbi (2002, 2004)). 

Spectral risk measures (SRMs) satisfy the properties of coherence, and therefore have 

all the attractions of the coherent risk measures that appeared a little while earlier (see 

Artzner et alia (1999)). However, unlike more conventional risk measures such as the 

VaR or the Expected Shortfall (ES), spectral measures also take account of the user’s 

risk aversion. Indeed, SRMs are the only risk measures that are both coherent and take 

explicit account of the degree of user risk-aversion. They are also an important class 

of risk measures that have many possible applications, not least in situations where 

risk factors are very non-normal and conventional portfolio theory leads to unreliable 

measures of financial risk. However, to date there are very few estimates of SRMs 

available, and their empirical properties are not well understood.
1
  

 Each of these three risk measures depends on a key conditioning parameter. In 

the case of the VaR and the ES, the conditioning parameter is the confidence level; 

and in the case of the spectral risk measures considered here, the conditioning 

parameter is the coefficient of absolute risk aversion (ARA).
2
 The fact that the VaR 

and the ES have the same conditioning parameter makes it very easy to compare 

them; however, it is also possible to make some comparisons between these two risk 

measures and spectral ones and, in particular, to compare how these measures change 

in the face of varying conditioning parameters.  

 These risk measures also have promising potential applications to futures 

markets. The most obvious is that they can be used to determine the margin 
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requirements on futures positions.
3
 For example, estimates of these risk measures 

applied to unconditional price (or return) distributions provide a natural basis on 

which futures clearinghouses might determine the initial margins on futures positions, 

and one can argue that these risk measures would provide a superior basis for setting 

initial margins than the SPAN systems that are currently used for this purpose.
4
 

Similarly, estimates of these risk measures applied to conditional price distributions 

(e.g., using GARCH modelling approaches) would provide a natural basis on which 

clearinghouses might determine the corresponding maintenance margins. However, in 

this paper we restrict ourselves to the simpler unconditional problem, and leave the 

more difficult conditional modelling problem to a later paper. 

 More specifically, this paper presents non-parametric estimates of these 

various risk measures applied to long and short positions in 5 of the most prominent 

equity index futures contracts – the S&P500, the FTSE100, the DAX, the Hang Seng, 

and the Nikkei225. As these risk measures each have a conditioning parameter, it is 

more important to examine how they behave over a range of possible values that these 

parameters might take.  Moreover, since the usefulness of any risk measure estimate 

also depends on its precision, the paper also reports results for the precision of these 

estimators. We note here that non-parametric estimation methods have the advantages 

that they do not require us to make potentially questionable assumptions about the 

distributions governing futures returns, and they are more straightforward to apply.  

Our empirical findings suggest four main conclusions. First, over the ranges 

of conditioning parameters considered here, estimates of ES tend to be a little larger 

than those of the VaR, and estimates of SRMs are not massively different from 

estimates of either. Second, estimated risk measures rise quite sharply as the 
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conditioning parameter rises. The fact that the risk measure rises with its conditioning 

parameter is to be expected, but the sensitivity of the risk measure to its parameter is 

an empirical issue, and this sensitivity is quite pronounced. Thirdly, we find that there 

are no great differences in estimates of the precision of different risk measure 

estimators: ES estimators are perhaps a little less precise than comparable VaR 

estimators, and SRM  estimators have much the same precision as VaR ones. Finally, 

we also find that the precision of these estimators falls as the conditioning parameter 

gets larger: estimators of VaR or ES become less precise as the confidence level rises, 

and estimators of SRMs become less precise as the risk aversion increases. As we 

shall see, these results can be explained in terms of decreasing effective sample size.   

The remainder of the paper is organized as follows. Section 2 examines the 

risk measures estimated in this paper. Section 3 provides a description of the data and 

of the main empirical features of the five futures contracts chosen for analysis, and 

section 4 discusses estimation methods. Sections 5, 6 and 7 present results for the 

VaR, the ES and the spectral measures in turn. Conclusions are offered in section 8.  

 

2. MEASURES OF RISK  

 

Consider the realized loss on a futures position (which is positive for an actual 

loss, and negative for a profit). If the confidence level is α , the VaR at this 

confidence level is: 

 

αα qVaR =                                                        (1) 
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where αq  is the α -quantile of the loss distribution. The VaR is the most widely 

known financial risk measure, but has been widely criticized in recent years. The most 

serious criticisms are that it does not satisfy the property of subadditivity and 

therefore lacks coherence (Artzner et al., 1999), and that it can give unreliable 

assessment of risk exposure because it takes no account of losses beyond the tail or 

VaR threshold. 

 The ES risk measure avoids both these problems: the ES is both subadditive 

and coherent, and it takes account of the sizes of losses in the tail beyond the VaR 

itself. The ES measure is defined as the average of the worst α−1  of losses. In the 

case of a continuous loss distribution, the ES is given by: 

 

                                             ∫−
=

1

1

1

α

α
α

dpqES p                                               (2) 

 

The ES gives equal weight to each of the worst α−1  of losses, and gives no weight 

to any other observations. However, like the VaR, the ES is dependent on an 

arbitrarily chosen confidence level and there is little a priori to tell us what value this 

should take. 

In addition, neither of these risk measures takes any explicit account of a 

user’s degree of risk aversion.
5
 In fact, it turns out that the choice of the VaR implies 

that the user has negative risk aversion, and the choice of the ES implies that the user 

is risk-neutral (see, e.g., Grootveld and Hallerbach (2004)). The negative risk 

aversion of the VaR is illustrated by the fact that the user places no weight on losses 

exceeding VaR, and the risk-neutrality of the ES is illustrated by the fact that the user 
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places equal weight on losses exceeding the VaR. Thus, neither of these risk measures 

is consistent with the user being risk-averse.   

 To find a risk measure that is consistent with the user’s risk aversion, we now 

examine the spectral risk measures proposed by Acerbi (2002). Consider a risk 

measure φM  defined by: 

 

                                              ∫=
1

0

)( dppqM pφφ                     (3) 

 

where pq  is the p loss quantile, )( pφ  is a weighting function defined over p, and p is 

a range of cumulative probabilities ]1,0[∈p . Following Acerbi (2004), the risk 

measure φM  is coherent if and only if )( pφ  satisfies the following properties: 

• 0)( ≥pφ : weights are always non-negative. 

•   ∫ =
1

0

1)( dppφ :  weights sum to one.  

• 0)( ≥′ pφ : higher losses have weights that are higher than or equal to those of 

smaller losses.  

We now need to specify a suitable weighting (or risk-aversion) function, and one 

plausible choice is an exponential risk-aversion function: 
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where k>0 is the coefficient of absolute risk aversion. This weighting/risk-aversion 

attaches higher weights for larger losses at higher cumulative probability levels; 

moreover, the weights rise more rapidly as the user becomes more risk-averse, and 

both these features are exhibited in Figure 1 for a spectrum of absolute risk aversion 

coefficients.  

 

Insert Figure 1 here 

 

3. PRELIMINARY DATA ANALYSIS 

 

Our data consist of daily log difference returns for five of the most liquid 

futures: S&P500, FTSE100, DAX, Hang Seng and Nikkei225 indexes. The data cover 

the period between January 1 1991 and December 31 2003. The data were obtained 

from Datastream with the contracts trading on the CME (in the cases of the S&P500 

and Nikkei 225), LIFFE (in the case of the FTSE100), EUREX (in the case of the 

DAX) and HKSE (in the case of the Hang Seng). These data refer to futures contracts 

with a rollover from an expiring contract to the next one occuring at the start of each 

new contract cycle. As Datastream deals with bank holidays by padding the dataset 

and taking the bank holiday’s end-of-day price to be the previous trading day’s end-

of-day price, this means that we have the same number of daily returns (i.e., 3392) for 

all contracts. 

 Summary statistics for these are given in Table 1, which gives the first four 

moments and max/min statistics for each of these return series. Average returns are 

generally positive except for the Nikkei 225 futures, and daily volatility ranges 



 

 

 

 

 

 8 

between approximately 1% (for the S&P500) and 2% (for the Hang Seng). Excess 

skewness are of differing signs (negative for the American and European, positive for 

the Asian) which suggests that there may be differences between the risks of long 

positions and corresponding short positions in these contracts. All the contracts also 

exhibit excess kurtosis, but the amount of excess kurtosis varies considerably (from 

1.78 for the Nikkei to nearly 11 for the HangSeng). There are also large differences in 

the range between sample minimum and maximum values. Overall, these summary 

results suggest that the distributions of equity futures returns are non-normal, and vary 

somewhat from one contract to another. 

 

 Insert Table 1 here 

 

4. NON-PARAMETRIC ESTIMATION 

 

We estimate our risk measures using a vanilla non-parametric bootstrap.
6
 A 

non-parametric bootstrap is more robust and more flexible than a parametric one, 

because it does not depend on questionable parametric assumptions that we are not in 

a strong position to make.
7
 A non-parametric bootstrap also has the advantage of 

making it easy for us to estimate the precision metrics (e.g., standard errors or 

confidence intervals) for each of our three risk measures. As explained in standard 

references, the bootstrap enables us to estimate standard errors or confidence intervals 

for any parameter that we can estimate from sample data (e.g., Efron and Tibshirani, 

1993; or Davison and Hinckley, 1997). Such precision indicators are more difficult to 

estimate when using parametric estimation approaches.
8
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For the purposes of our empirical analysis, we estimate VaR and ES using 

confidence levels spanning the range 90% to 99%, and we estimate SRMs using 

coefficients of absolute risk aversion spanning the range from 5 to 80 as the 

associated risk measures exhibit similar magnitudes for these values. 

 

5. RESULTS FOR VAR 

 

Table 2 presents some bootstrap-average results for estimated VaRs in long 

and short positions over various common confidence levels. Section (a) of the Table 

shows sample estimates of VaR. For instance, the first item on the left shows that the 

daily VaRs on a long position in the S&P500 futures at a 90% confidence level is 

1.19%.  The results in this section also show that the VaRs increases considerably as 

the confidence level gets bigger. This is illustrated by the fact that the average VaR 

(in the rightmost column) increases from 1.61% for the 90% confidence level to 

3.82% for the 99% confidence level. The VaRs also vary considerably with the 

contract: for example, the VaRs are lowest for the S&P and FTSE contracts indicating 

lower inherent risk in US and UK markets, and highest for the Hang Seng indicating 

higher risk for the Hong Kong market.   

 

Insert Table 2 here 

 

As well as being concerned with the point estimates of our risk measures, we 

also need to examine their precision. We use three metrics to assess the precision of 
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each estimated risk measure, namely, the standard error, the coefficient of variation, 

and the 90% confidence interval.  

The standard errors for futures VaRs are given in section (b) of Table 2.  

Similar to the VaRs, the standard errors are highest for the Hang Seng futures, 

regardless of trading position and confidence level. The magnitudes of standard errors 

follow the same pattern as the VaRs, and increase markedly with the confidence level.  

On average, the standard error for a long position increases from 0.05% for VaR at 

the 90% confidence level to 0.17% for VaR at the 99% confidence level – an increase 

of over 200%. These results indicate that the precision of our VaR estimates falls 

markedly as the confidence level rises.  

A drawback with the standard error is that it is an absolute measure of 

precision and makes no allowance for the size of the standard error relative to the size 

of the estimated risk measure. Since VaR rises with the confidence level, it is 

therefore arguable that a mere comparison of standard errors can give a misleading 

impression of the precision of our VaR estimates. If we wish to assess the relative 

precision of our estimates, a better indicator is the coefficient of variation, which is 

the ratio of a point estimate to the corresponding standard error. The coefficient of 

variation therefore gives us an estimate of the precision of our estimates that takes 

account of the size of the point estimate itself. Some estimates of the coefficient of 

variation of the VaR are given in section (c) of Table 2. The coefficients of variation 

falls for increasing confidence levels, which again suggests that precision falls as the 

confidence level rises; however, the decline in precision is now much less: for 

example, the average coefficient of variation for a long position falls by under 30% as 

the confidence level rises from 90% to 99%. This is consistent with what we would 
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expect, bearing in mind that the coefficient of variation reflects two offsetting factors 

– an increased point estimate of VaR in the numerator and an increased standard error 

in the denominator – as the confidence level rises. 

A natural alternative to the coefficient of variation is a confidence interval. We 

can make the confidence interval into an indicator of relative precision if we work 

with standardised confidence intervals by dividing the bounds of the confidence 

interval by the point estimate (given in (a)). The confidence interval provides a readily 

understood indicator of precision and it would highlight possible asymmetry between 

upside and downside precision in the form of an asymmetric confidence interval. 

Estimates of standardized 90% confidence intervals are given in section (d) of Table 

2. This shows that the bounds of the confidence intervals are within +/- 5% for VaR at 

the 90% confidence level, within +/- 6 or 7% for VaR at the 95% confidence level, 

and somewhat wider (and more variable both across contracts and across trading 

positions) for the 99% confidence level. Thus, the broad picture (although there are 

exceptions) is that we get modest increases in confidence intervals as the confidence 

level rises, but there is also considerable variation across contracts and a certain 

amount of variation across positions.   

 

6. RESULTS FOR EXPECTED SHORTFALL 

 

Table 3 presents corresponding non-parametric results for the ES as a risk 

measure. The point ES estimates are shown in section (a). These are higher than the 

earlier VaRs, as we would expect: the average ES across all contracts is 3.62%, which 

compares to an average VaR of 2.57%. However, the ES estimates otherwise show 
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much the same pattern as the VaR estimates: they vary across contract, increase with 

confidence level and, like the VaR, approximately double from the 90% to 99% 

confidence levels. In addition, we again find that the Hang Seng is the most risky 

contract, and the S&P and FTSE are the safest.  

 

Insert Table 3 here 

 

Table 3 also presents results for our three precision metrics as they relate to 

the ES. The standard errors in section (b) are on average about 70% higher than those 

for the VaR, but otherwise show much the same behavior (they increase markedly 

with the confidence level, etc.). The coefficients of variation in section (c) are a little 

lower than the VaR ones, and the 90% confidence intervals in section (d) are on 

average much the same as the VaR ones. There is some variation across the ES 

results, and also between the VaR and ES ones, but the patterns of variation are 

otherwise quite similar. If we use the standard error, we would conclude that the ES 

estimates are about 70% less precise than the VaR ones, but if we use the other 

(arguably more reliable) precision metrics, we would conclude that there is little or no 

difference in the precision of ES estimators compared to VaR ones.
9
  

 

7. RESULTS FOR SPECTRAL RISK MEASURES 

 

Table 4 shows non-parametric results for the spectral risk measure. Perhaps 

the result that stands out most from this Table is that estimates of the spectral risk 

measure rise quite strongly with the degree of absolute risk aversion (ARA). As a 
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broad order of magnitude, increasing the degree of ARA from 5 to 80 leads estimates 

of the spectral risk measure to increase by about 300%. At one extreme, the spectral 

risk estimates with ARA=5 are about the same order of magnitude as the VaR at the 

90% confidence level; and, at the other, the spectral risk estimates with ARA=80 are 

much the same as the ES at the 99% confidence level. In other words, the spectral risk 

estimates tend to fall in the range encompassed by the estimates of our earlier risk 

measures. Our results also show that, whilst there is variation across contracts, there is 

virtually no difference between estimates for long and short positions. 

 The precision estimates in sections (b)-(d) indicate that precision tends to fall 

as ARA gets larger. This would make sense as an increasing ARA would suggest that 

we are placing more and more weight on a smaller number of extreme observations, 

indicating that the effective sample size is falling. This suggests that the ARA plays 

much the same role in spectral risk measures as the confidence level does for the VaR 

and ES. In addition, estimates of spectral risk measures with ARA in the (quite wide) 

range [5, 80] are of comparable precision to estimates of VaR based on confidence 

levels in the (quite wide) range [90%, 99%]: crudely put, estimates of spectral risk 

measures are of much the same precision as estimates of VaR.  

 

Insert Table 4 here 

 

8. CONCLUSIONS 

 

This paper presents some non-parametric estimates of three alternative risk 

measures applied to various equity futures market positions. The paper compares the 
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VaR, the ES, and spectral risk measures based on an exponential risk-aversion 

function. Our empirical findings suggest that there is considerable similarity across 

the three different risk measures. In all three cases, the most important factor 

determining the magnitude of the risk measures is the conditioning parameter – the 

confidence level for the VaR and ES, and the coefficient of absolute risk aversion for 

the spectral risk measures. The orders of magnitude of the risk measures are also quite 

close – in fact, over the range of parameters considered, we find that the estimated 

spectral risk measures are somewhere between the lowest estimated VaR and the 

highest estimated ES. We also estimated various precision indicators for our risk 

measures, and these also paint a fairly consistent story – that estimates of ES 

measures are perhaps a little less precise than estimates of VaR ones, and that 

estimates of spectral risk measures are of much the same precision as VaR estimates. 

How far these results might apply in other contexts is an open empirical question, but 

at least the results presented here give us a solid empirical example of how estimators 

of these measures and of their precision indicators compare with each other in the 

important case of positions in equity futures contracts.
10
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NOTES 

 

1 Some estimates of extreme-value spectral risk measures are presented in 

Cotter and Dowd (2006), but these estimates must be interpreted in their EV context. 

In contrast the analysis of empirical properties of VaR and ES is more developed (for 

example, see Pritsker (1997), Butler and Schachter (1998), Yamai and Yoshiba 

(2002), Giannopoulos and Tunaru (2004), Chen and Tang (2005), and Gourieroux and 

Liu (2006)).   

2 There is of course a second conditioning parameter, namely the holding or 

horizon period. However, this plays a passive role in our analysis as we restrict 

ourselves to a given daily horizon.  

3 There are many more applications that rely on quantile based market risk 

measures such as VaR including price limits and minimum capital requirements.  

Given the potential risk associated with futures trading it is not surprising that there is 

an extensive literature looking at these applications and/or the use of these risk 

measures for futures including (and by no means exhaustive): Hsieh (1993), 

Broussard (2001), Longin (2001), Cotter, 2004, Werner and Upper (2004) and Brooks 

et al (2005).  

4 Commercial adjustments such as incorporating levels of liquidity could lead to 

adjustments to any initial margins.  SPAN systems associate the margin to cover a 

large proportion of price movements, for example 99%, on a family of contracts with 

the same underlying. For further details see Artzner et al., 1999; and London Clearing 

House, 2002.  
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5 We note here that the user in a futures market context might be individual 

investor or the clearinghouse itself. In the former case, the risk measures are those 

faced by the investors, and in the latter case they are those faced by the clearinghouse. 

This latter case is where we might use the risk measures to set margin requirements.   

6 The vanilla bootstrap used is as explained in the early chapters of Efron and 

Tibshirani (1993): each resample observation is drawn with equal probability from the 

sample and then placed back in the sample, and there are no adjustments of 

confidence bound estimates for possible bias. Such refinements are not necessary in 

the present context because bias is essentially a small sample problem that does not 

arise with the large samples available to us here. Estimates reported in the paper are 

based on bootstrap trials with 5000 sets of resamples.  

7 In addition, as noted earlier in the introduction, a non-parametric approach has 

the nice feature that it allows us to interpret the resulting risk measure estimates as 

potential estimates of initial margin requirements.  

8 Precision metrics are sometimes much more difficult to obtain using 

parametric approaches. For example, there are few simple expressions for the 

confidence intervals of any of the risk measures considered here, and the only 

practical alternative is to rely on the theory of order statistics (e.g., as in Dowd 

(2001)). However, order-statistics approaches are more difficult to implement than the 

non-parametric bootstrap used here, and can only be applied to risk measures based 

on probabilistic conditioning parameters. This means that they can be used to estimate 

the confidence intervals of VaR or ES, but not the confidence intervals associated 

with SRMs.  



 

 

 

 

 

 17 

9 This finding is consistent with earlier literature but also goes beyond it. For 

example, Acerbi (2004, pp. 200-205) finds that the ES typically has a standard error 

larger but not too much larger than that of the VaR, and our findings are consistent 

with his. However, he only compared standard errors, and our findings suggest that 

the other precision metrics (i.e., the coefficient of variation and the confidence 

intervals) give results that are more favorable to the ES relative to the VaR. 

10 There are many possible extensions to this paper. Within the confines of a 

non-parametric approach, it would be very interesting to extend the analysis to 

encompass other forms of spectral risk measure based on alternative risk-aversion 

functions (e.g., power and HARA functions). Going outside the non-parametric 

paradigm, there are also natural extensions to parametric (e.g., GARCH) and semi-

parametric (e.g., filtered historical simulation) modelling. Such approaches are more 

difficult to handle, but correctly applied, may also be more powerful than the non-

parametric methods used here.  
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FIGURES 

 

 

 

Figure 1: Exponential Risk Aversion Functions 

 

Notes: Based on equation (4) in the text, for stated values of the degree of absolute risk aversion (k).  

This Figure shows how the weights rise with the cumulative probability p where ]1,8.0[∈p , and the 

rate of increase depends on k: the more risk-averse the user, the more rapidly the weights rise.  
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TABLES 

 

 

Table One: Summary Statistics for Return Data 
  S&P FTSE  DAX HANGSENG NIKKEI 

Mean 0.0004 0.0002 0.0003 0.0004 -0.0002 

Std Dev 0.0109 0.0115 0.0150 0.0191 0.0148 

Skewness -0.1044 -0.0520 -0.2616 0.3307 0.0561 

Kurtosis 7.4198 5.3209 7.4114 13.8301 4.7839 

n 3392 3392 3392 3392 3392 

Minimum -0.0776 -0.0606 -0.1285 -0.1609 -0.0760 

Maximum 0.0575 0.0595 0.0838 0.2298 0.0800 

Notes: Based on the 3392 close of day returns for each of the stated indexes over the period 

January 1 1991 to December 31 2003. 
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Table 2: Estimates of VaRs and Precision of VaRs of Futures Positions 
  S&P FTSE  DAX HANGSENG NIKKEI Mean  

(a) VaR estimates 

Long position 

90% VaR 0.0119 0.0135 0.0169 0.0208 0.0173 0.0161 

95% VaR 0.0175 0.0185 0.0236 0.0294 0.0239 0.0226 

99% VaR 0.0319 0.0304 0.0404 0.0512 0.0371 0.0382 

Short position 

90% VaR 0.0117 0.0131 0.0160 0.0203 0.0177 0.0158 

95% VaR 0.0181 0.0175 0.0243 0.0294 0.0247 0.0228 

99% VaR 0.0291 0.0329 0.0425 0.0520 0.0368 0.0387 

         Overall mean 0.0257 

(b) Standard errors of VaR 

Long position 

90% VaR 0.0004 0.0004 0.0005 0.0006 0.0005 0.0005 

95% VaR 0.0006 0.0006 0.0008 0.0010 0.0008 0.0008 

99% VaR 0.0018 0.0015 0.0020 0.0020 0.0012 0.0017 

Short position 

90% VaR 0.0004 0.0003 0.0006 0.0005 0.0005 0.0004 

95% VaR 0.0006 0.0005 0.0008 0.0008 0.0006 0.0007 

99% VaR 0.0013 0.0014 0.0022 0.0026 0.0015 0.0018 

         Overall mean 0.0010 

(c) Coefficients of variation of VaR 

Long position 

90% VaR 26.86 32.47 37.29 25.60 35.68 31.58 

95% VaR 29.40 31.75 30.70 29.40 28.80 30.01 

99% VaR 17.72 20.27 20.20 25.60 30.92 22.94 

Short position 

90% VaR 32.48 43.07 29.03 40.33 37.12 36.41 

95% VaR 29.57 34.17 29.70 35.87 40.35 33.93 

99% VaR 22.38 23.50 19.32 20.00 24.53 21.95 

     Overall mean 29.47 

(d) 90% confidence intervals for VaR 

Long position 

90% VaR [0.9518 1.0649] [0.9547  1.0492] [0.9594  1.0467] [0.9542  1.0483] [0.9501  1.0444]   

95% VaR [0.9381 1.0508] [0.9493  1.0533] [0.9521  1.0551] [0.9474  1.0561] [0.9556  1.0642]   

99% VaR [0.8792 1.0971] [0.9196  1.0783] [0.9064  1.0844] [0.9309  1.0672] [0.9619  1.0872]  

Short position 

90% VaR [0.9422  1.0479] [0.9660  1.0437] [0.9556  1.0633] [0.9590  1.0356] [0.9524  1.0458]   

95% VaR [0.9343  1.0482] [0.9465  1.0420] [0.9496  1.0528] [0.9544  1.0447] [0.9579  1.0487]   

99% VaR [0.9298  1.0731] [0.8980  1.0579] [0.9242  1.0927] [0.9113  1.0693] [0.9342  1.0578]   

Notes: VaR estimates in daily return terms are based on the average of 5000 bootstrap resamples.  The 

precision estimates, standard error of VaR, coefficients of variation of VaR and standardised 90% 

confidence intervals of VaR are also based on 5000 bootstrap resamples. The holding period is 1 day. 

Bounds of confidence intervals are standardised (i.e., divided) by the means of the estimates.  
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Table 3: Estimates of ESs and Precision of ESs of Futures Positions 

  S&P FTSE  DAX 
HANGSEN

G 
NIKKEI Mean  

(a) ES estimates 

Long position 

90% ES 0.0200 0.0209 0.0269 0.0345 0.0270 0.0259 

95% ES 0.0256 0.0261 0.0340 0.0445 0.0336 0.0328 

99% ES 0.0408 0.0387 0.0527 0.0699 0.0472 0.0499 

Short position 

90% ES 0.0200 0.0205 0.0278 0.0341 0.0270 0.0259 

95% ES 0.0254 0.0260 0.0358 0.0440 0.0329 0.0328 

99% ES 0.0385 0.0398 0.0544 0.0699 0.0476 0.0500 

         Overall mean 0.0362 

(b) Standard errors of ES 

Long position 

90% ES 0.00061 0.00055 0.00077 0.00120 0.00072 0.0008 

95% ES 0.00090 0.00081 0.00120 0.00200 0.00098 0.0012 

99% ES 0.00200 0.00180 0.00280 0.00650 0.00240 0.0031 

Short position 

90% ES 0.00063 0.00058 0.00089 0.00110 0.00068 0.0008 

95% ES 0.00089 0.00092 0.00130 0.00170 0.00091 0.0011 

99% ES 0.00260 0.00170 0.00340 0.00470 0.00240 0.0030 

        Overall mean 0.0017 

(c) Coefficients of variation of ES 

Long position 

90% ES 32.53 37.80 34.98 28.75 37.61 34.34 

95% ES 28.46 32.28 28.33 22.25 34.29 29.12 

99% ES 20.40 21.50 18.82 10.75 19.67 18.23 

Short position 

90% ES 31.61 35.44 31.09 31.00 39.68 33.76 

95% ES 28.60 28.38 27.54 25.88 36.14 29.31 

99% ES 14.81 23.41 16.00 14.87 19.83 17.79 

         Overall mean 27.09 

(d) 90% confidence intervals for ES 

Long position 

90% ES [0.9496  1.0513] [0.9569  1.0431] [0.9538  1.0478] [0.9472  1.0567] [0.9562  1.0436]   

95% ES [0.9435  1.0596] [0.9486  1.0517] [0.9449  1.0577] [0.9308  1.0759] [0.9511  1.0485]   

99% ES [0.9206  1.0806] [0.9239  1.0768] [0.9121  1.0919] [0.8632  1.1668] [0.9217  1.0884]   

Short position 

90% ES [0.9470  1.0528] [0.9545  1.0472] [0.9482  1.0541] [0.9473  1.0546] [0.9592  1.0420]   

95% ES [0.9439  1.0586] [0.9427  1.0588] [0.9417  1.0611] [0.9387  1.0650] [0.9548  1.0456]   

99% ES [0.8937  1.1193] [0.9326  1.0729] [0.9042  1.1069] [0.8936  1.1160] [0.9188  1.0852]   

Notes: ES estimates in daily return terms are based on an average from 5000 bootstrap resamples. 

The precision estimates, standard error of ES, coefficients of variation of ES and standardised 90% 

confidence intervals of ES are also based on 5000 bootstrap resamples. The holding period is 1 day. 

Bounds of confidence intervals are standardised (i.e., divided) by the means of the estimates.  
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Table 4: Non-parametric Estimates of Spectral Risk Measures and Precision of Spectral Risk 

Measures of Futures Positions 

  S&P FTSE  DAX HANGSENG NIKKEI Mean  

(a) Spectral risk measure estimates 

Long position 

ARA= 5 0.0116 0.0124 0.0158 0.0200 0.0156 0.0151 

ARA = 10 0.0170 0.0178 0.0228 0.0293 0.0227 0.0219 

ARA = 20 0.0225 0.0231 0.0300 0.0390 0.0295 0.0288 

ARA = 40 0.0284 0.0284 0.0374 0.0495 0.0360 0.0359 

ARA = 80 0.0349 0.034 0.0454 0.0613 0.0424 0.0436 

Short position 

ARA= 5 0.0111 0.0120 0.0156 0.0192 0.0159 0.0148 

ARA = 10 0.0166 0.0174 0.0232 0.0286 0.0228 0.0217 

ARA = 20 0.0222 0.0229 0.0311 0.0384 0.0293 0.0288 

ARA = 40 0.0278 0.0286 0.0392 0.0489 0.0355 0.0360 

ARA = 80 0.0338 0.0347 0.0477 0.0603 0.0420 0.0437 

         Overall mean 0.0290 

(b) Standard errors of spectral risk measure 

Long position 

ARA= 5 0.0003 0.0003 0.0004 0.0006 0.0004 0.0004 

ARA = 10 0.0005 0.0005 0.0006 0.0010 0.0006 0.0006 

ARA = 20 0.0008 0.0007 0.0010 0.0017 0.0008 0.0010 

ARA = 40 0.0011 0.0009 0.0014 0.0028 0.0012 0.0015 

ARA = 80 0.0015 0.0013 0.0019 0.0049 0.0017 0.0023 

Short position 

ARA= 5 0.0003 0.0003 0.0005 0.0006 0.0004 0.0004 

ARA = 10 0.0005 0.0005 0.0007 0.0009 0.0006 0.0006 

ARA = 20 0.0008 0.0007 0.0011 0.0014 0.0008 0.0010 

ARA = 40 0.0012 0.0010 0.0017 0.0022 0.0011 0.0014 

ARA = 80 0.0019 0.0014 0.0026 0.0034 0.0016 0.0022 

         Overall mean 0.0011 

(c) Coefficients of variation of spectral risk measure 

Long position 

ARA= 5 34.85 38.57 35.72 31.29 37.69 35.63 

ARA = 10 33.08 38.11 35.34 29.30 38.53 34.87 

ARA = 20 29.44 33.95 31.49 22.94 36.41 30.85 

ARA = 40 25.82 29.96 26.71 17.68 30.00 26.03 

ARA = 80 23.27 26.15 23.89 12.51 24.94 22.15 

Short position 

ARA= 5 32.37 36.09 31.89 31.19 39.54 34.22 

ARA = 10 32.18 35.59 31.74 30.97 40.69 34.24 

ARA = 20 28.30 32.02 28.27 27.43 37.10 30.63 

ARA = 40 23.17 28.60 23.06 22.23 32.27 25.87 

ARA = 80 17.79 24.79 18.35 17.74 26.25 20.98 

         Overall mean 29.55 

(d) 90% confidence intervals for spectral risk measure 
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Long position 

ARA= 5 [0.9534  1.0485] [0.9564  1.0423] [0.9541  1.0458] [0.9483  1.0544] [0.9562  1.0446]  

ARA = 10 [0.9510  1.0512] [0.9587  1.0444] [0.9533  1.0452] [0.9458  1.0594] [0.9572  1.0416]  

ARA = 20 [0.9450  1.0565] [0.9520  1.0486] [0.9492  1.0522] [0.9334  1.0734] [0.9551  1.0456]  

ARA = 40 [0.9359  1.0653] [0.9445  1.0553] [0.9391  1.0615] [0.9146  1.0983] [0.9484  1.0535]  

ARA = 80 [0.9285  1.0708] [0.9382  1.0650] [0.9298  1.0716] [0.8807  1.1420] [0.9367  1.0661]  

Short position 

ARA= 5 [0.9500  1.0516] [0.9544  1.0456] [0.9489  1.0521] [0.9483  1.0535] [0.9588  1.0420]   

ARA = 10 [0.9498  1.0516] [0.9540  1.0465] [0.9487  1.0513] [0.9465  1.0535] [0.9600  1.0403]   

ARA = 20 [0.9424  1.0591] [0.9496  1.0517] [0.9434  1.0601] [0.9405  1.0609] [0.9563  1.0447]  

ARA = 40 [0.9323  1.0740] [0.9401  1.0607] [0.9331  1.0737]  [0.9274  1.0775] [0.9480  1.0524]  

ARA = 80 [0.9107  1.0978] [0.9342  1.0645] [0.9174  1.0949] [0.9090  1.0936] [0.9373  1.0635]   

Notes: Risk estimates in daily return terms are based on an average of 5000 bootstrap resamples.  

The precision estimates, standard error, coefficients of variation and standardised 90% confidence 

intervals are also based on 5000 bootstrap resamples. The holding period is 1 day. Bounds of 

confidence intervals are standardised (i.e., divided) by the means of the estimates.  

 

 

 

 

 

 

 


