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Implied correlation from VaR

Abstract

Value at risk (VaR) is a risk measure that has been widely implemented
by financial institutions. This paper measures the correlation among
asset price changes implied from VaR calculation. Empirical results
using US and UK equity indexes show that implied correlation is not
constant but tends to be higher for events in the left tails (crashes) than
in the right tails (booms).
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1. Introduction

Value at risk measures the potential loss of a market position over a given time-period
and for a given confidence level. For example, a 1-day 99% VaR of $ 1 000 000 means that over
the next trading day, in one case over one hundred, the portfolio loss will be higher than
$ 1000 000. In order to compute the VaR of a portfolio, it is necessary to make assumptions on
the distribution of asset price changes (see Jorion, 2000; and Dowd, 2002; for a presentation of
VaR methods). The Gaussian distribution with a constant correlation matrix is often assumed in
practice. This paper takes the reverse approach by inferring the correlation implied by VaR

calculation.

2. VaR calculation

In this section we consider a portfolio composed of two assets, asset 1 in proportion x;
and asset 2 in proportion x; (x;+ x,=100%). The frequency used to measure the asset and
portfolio price changes, which also corresponds to the holding period used to compute the VaR,
is denoted by f. The portfolio VaR is computed by two approaches: first, by considering the
distribution of asset price changes of the whole portfolio and then compute the portfolio VaR as
a quantile of this distribution; second, by considering the distribution of price changes of each
asset, then compute the VaR for each asset and finally compute the portfolio VaR by using an

aggregation formula.

a) The portfolio approach

In the portfolio approach, a time-series of the portfolio price changes for a given

frequency f is built from the time-series of each asset price: AP, =x,-AFR +x,-AP,. The

ort

distribution of portfolio price changes is then built in order to compute the portfolio VaR,



denoted by VaR In this approach the dependence between asset price changes is implicitly

port *

ort *

taken into account in the creation of the portfolio by building the time-series for AP,

b) The risk factor approach

In the risk factor approach, the distribution of price changes of each asset (more
generally called “risk factors”) is first estimated in order to compute the individual VaR of each
asset, denoted by VaR, and VaR,. The portfolio VaR is then computed by using an aggregation
formula linking the individual VaR and the portfolio weights (more generally called “risk
sensitivities”). A classical aggregation formula used in practice (see for example the

RiskMetrics software developed by JP Morgan, 1995) computes the portfolio VaR denoted by

VaR ¢ for a given f as follows:

port

VaR ‘8 = \/xf ‘(VaRl )2 +x; -(VaR2 )2 +2-x-x,- Py, VaR, -VaR, (D

port

This approach uses explicitly the correlation coefficient between asset price changes,
denoted by p,,. This approach is also theoretically justified in the case of normality. If asset
price changes are distributed according to a Gaussian distribution, then the two approaches to

compute the VaR lead exactly to the same result.

3. Implied correlation

In this section we use the VaR calculation derived above in a reverse manner in order to
estimate the implied correlation between asset price changes. By assuming that both approaches
lead to the same VaR results, we compute the correlation coefficient in the aggregation formula

that equates the two VaR. The correlation implied from VaR is given by:

. (Var,,,)’ = x>-(VaR, )’ =2 -(VaR,)’ o
" 2-x,-x,-VaR, -VaR,




If asset price changes are distributed according to a Gaussian distribution, then the same
number should be found for the correlation coefficient. Especially, correlation should be

autonomous from the following parameters:

The probability used to compute the VaR: p,

The weights used to build the portfolio: x; and x,

The type of position: long or short,

The frequency used to measure asset price changes: f (under the i.i.d. assumption).

Under normality, the implied correlation does not depend on the parameters listed above
and is simply equal to the classical Pearson correlation coefficient. Whether these set of

propositions hold true is empirically tested in the next section.

4. Empirical results

The correlation implied from VaR is computed for a portfolio comprising the S&P 500
and FTSE 100 indexes. Data are closing index values over the time-period from January 1, 1995
to December 31, 2003. Two frequencies are used to measure price changes: daily and weekly.
Different probability levels are used to compute the VaR: 80%, 95.45%, 98.46%, 99.23%,
99.62% and 99.81% (for daily VaR) and 75%, 92.31%, 96.15% and 98.08% (for weekly VaR).
These probability levels correspond to average waiting time-periods of 1 week, 1 month,
1 quarter, 1 semester, 1 year and 2 years (for daily VaR) and 1 month, 1 quarter, 1 semester and
1 year (for weekly VaR). Different weights are chosen to build the portfolios: (25%, 75%),
(50%, 50%) and (75%, 25%). Two types of position are used: long positions and short positions
in both indexes. The individual and portfolio VaR are computed with historical distributions.
Table 1 gives the correlation implied from daily VaR (Panel A) and from weekly VaR (Panel

B). A graphical representation is also given in Figure 1.



Results indicate that the implied correlation tends to depend on the type of position (long
or short), on the probability level used to compute the VaR and on the frequency used to
measure price changes. However, the same pattern of implied correlation is obtained when

portfolio weights vary.

Considering first results from daily VaR, implied correlation appears to be higher for
long positions than for short positions and particularly for more extreme probabilities. For
example, for an equally-weighted portfolio (50%, 50%), the implied correlation for long
positions is higher than the Pearson correlation coefficient equal to 0.42 while it is
systematically lower for short positions. The results indicate that the implied correlation for long
and short positions tends to diverge as the probability level used to compute the VaR increases
(that is when we look further in the distribution tails). For a probability level of 99.62%
(corresponding to an average waiting time-period of 1 year), it is equal to 0.516 for the VaR on

long positions and 0.261 for the VaR on short positions.

Implied correlation also depends on the frequency used to measure price changes. It is
higher for weekly price changes than for daily price changes: 0.695 instead of 0.420 on average.
Due to the lower number of weekly observations (divided by 5 compared to daily observations),
the pattern of correlation implied from weekly VaR appears more erratic but once again, for
high probability levels (or equivalently long average waiting time-periods), implied correlation
is again much higher for long positions than for short positions. For example, for the equally-
weighted portfolio and for a probability level of 99.08% (corresponding to an average waiting
time-period of 1 year), the implied correlation is equal to 0.744 for the VaR on long positions
and to 0.358 for the VaR on short positions. As for daily data, at the highest probability level,

correlation for long positions (crashes) is double that of short positions (booms).

A similar pattern of implied correlation is found for different portfolio weights. For
example, for the highest probability level, implied correlation from daily and weekly VaR of

long positions is systematically higher than those of short positions.
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5. Summary

The empirical results presented in the previous section can be summarized as the

following stylized facts:
1) Implied correlation is not constant,
2) Implied correlation tends to be higher for long positions than for short positions,

3) Implied correlation tends to increase (decrease) with the probability level for long

(short) positions,
4) Implied correlation tends to decrease overall with the frequency of price changes.

5) Implied correlation behaves in a similar way for different portfolio weights.
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Table 1. Correlation between US and UK index price changes implied from VaR.

Panel A. Correlation implied from daily VaR.

Portfolio weights

(wgirgsabl}elr% N (25%, 75%) (50%, 50%) (75%, 25%)
£p Long Short Long Short Long Short
80% 0.407 0.410 0.402 0.374 0.340 0.310
(1 week)
95.45% 0.387 0.368 0.451 0.397 0.533 0.425
(1 month)
98.46% 0.351 0.403 0.412 0.403 0.430 0.571
(1 quarter)
99.23% 0.466 0.571 0.597 0.291 0.572 0.158
(1 semester)
99.62% 059 0441 0.516 0.261 0.568 0213
(1 year)
99.81% 0.511 0.138 0.484 0.209 0.345 0.214
(2 years)

Panel B: Correlation implied from weekly VaR.

Portfolio weights

(wl;irffsablgrtiyod) (25%, 75%) (50%. 50%) (75%. 25%)
£P Long Short Long Short Long Short
(1 Zrifith) 0.564 0.651 0.506 0.675 0.077 0.781
(lngalrzr) 0.643 0.656 0.622 0.737 0.446 0.564
(1 9s§rr112;7t0er) 0.565 0.714 0.737 0.858 0.794 0.965
?f}?fﬁ; 0.684 0.491 0.744 0.358 0.682 0.391

Note: this table gives the correlation implied from daily VaR (Panel A) and from weekly VaR (Panel B)
of long and short positions on portfolios composed of the S&P 500 and FTSE 100 indexes. Different
probability levels (or equivalently average waiting time-periods) are used to compute the VaR. Different
weights are chosen to build the portfolios.



Figure 1. Correlation between US and UK index price changes implied from VaR.

Figure A. Correlation implied from daily VaR
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Fihure B. Correlation implied from weekly VaR
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Note: this figure represents the correlation implied from daily VaR (Figure A) and from weekly VaR
(Figure B) of long and short positions on an equally-weighted portfolio composed of the S&P 500 and
FTSE 100 indexes for different average waiting time-periods (or equivalently probability levels) used to
compute the VaR.



