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Abstract 

Understanding the determinants of pro-environmental behaviour is key to 

address many environmental challenges. Economic theory and empirical 

evidence suggest that human behaviour is determined by people’s 

preferences over risk, time, and social consequences. As such, individual 

differences in these preferences should predict individual differences in pro-

environmental behaviour. In a pre-registered study, we measure economic 

preferences in seven domains (risk taking, patience, present bias, altruism, 

positive reciprocity, negative reciprocity, and trust) and test whether these 

preferences predict pro-environmental behaviour in everyday life measured 

using the day reconstruction method. We find that only altruism is 

significantly associated with everyday pro-environmental behaviour. This 

suggests that people recognise everyday pro-environmental behaviours to be 

beneficial to others, but do not integrate the riskiness, inter-temporal 

structure, nor other social characteristics of pro-environmental behaviour into 

their decision-making. We also show in an exploratory analysis that different 

clusters of everyday pro-environmental behaviours are predicted by patience, 

positive reciprocity, and altruism, indicating that these considerations are 

relevant for some, but not other, pro-environmental behaviours.  

Keywords: Time preferences; risk preferences; social preferences; pro-environmental 

behaviour; day reconstruction method. 
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1. Introduction 

It is essential to limit global warming to 1.5°C above pre-industrial levels to decrease the risk 

of irreversible climate change and loss of ecosystems (Hoegh-Guldberg et al., 2018). 

Researchers, practitioners, and policymakers alike have suggested various strategies to achieve 

this goal, and behavioural change is a key component of many of these strategies. Of particular 

importance is the encouragement of pro-environmental behaviours in people’s everyday lives 

(Hoegh-Guldberg et al., 2018; Ockwell, Whitmarsh, & O’Neill, 2009; OECD, 2017; Stern, 

2007). Pro-environmental behaviours are those actions that avoid environmental ‘bads’, such 

as CO2 emissions or plastic pollution (Steg & Vlek, 2009). Examples of pro-environmental 

behaviour include conserving water and electricity, recycling, choosing sustainable transport 

options and avoiding food items with high environmental footprints. 

Designing policies that effectively encourage pro-environmental behaviour requires an 

understanding of the determinants of this behaviour. One way to identify these determinants is 

to find out why some people act environmentally friendly while others do not, i.e. to analyse 

inter-individual differences. Economics and other social sciences assume that individual 

differences in people’s tendencies to take risks, delay rewards, and act pro-socially can explain 

why people behave differently. Economics formalises these factors as individual risk, time, and 

social preferences (DellaVigna, 2018). The present paper therefore tests whether individual 

economic preferences predict pro-environmental behaviour in everyday life. 

Empirical evidence suggests that risk, time, and social preferences predict a wide range of 

behaviours. For example, risk preferences predict people’s investment choices, occupation, and 

health behaviours (Anderson & Mellor, 2008; Bonin, Dohmen, Falk, Huffman, & Sunde, 2007; 

Dohmen et al., 2011); time preferences predict credit card borrowing and credit worthiness 

(Meier & Sprenger, 2010, 2012), and social preferences predict charitable giving (DellaVigna, 

List, & Malmendier, 2012). Despite these findings, there is an ongoing discussion regarding 

the predictive power of economic preference and their importance relative to contextual and 

situational factors (Cohen, Ericson, Laibson, & White, forthcoming; Galizzi & Navarro-

Martinez, 2018; Goeschl, Kettner, Lohse, & Schwieren, 2020; Levitt & List, 2007; Mata, Frey, 

Richter, Schupp, & Hertwig, 2018).  

There are good reasons to expect economic preferences to be associated with pro-

environmental behaviour. Pro-environmental behaviours typically generate uncertain benefits, 

suggesting links to risk preferences. Indeed, previous research suggests that risk averse people 
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are less likely to invest in energy efficient technology (He, Jin, Gong, & Tian, 2019; Qiu, 

Colson, & Grebitus, 2014). Pro-environmental behaviours are usually costly in the present and 

beneficial in the future, hinting at the importance of time preferences. Empirical work does 

find that lower discount rates predict higher investments in energy efficiency (Fuerst & Singh, 

2018; Newell & Siikamäki, 2015). Pro-environmental behaviours also impose positive 

externalities on others, implying links to social preferences (Handgraaf, Griffioen, Willem, & 

Thøgersen, 2017). People with stronger altruistic preferences have been shown to be more 

likely to adopt green electricity programmes (Clark, Kotchen, & Moore, 2003; Kotchen & 

Moore, 2007). However, the literature also documents null results and, in some cases, 

contradictory results (Bradford, Courtemanche, Heutel, McAlvanah, & Ruhm, 2017; Goeschl 

et al., 2020; Paladino, 2005; Schleich, Gassmann, Meissner, & Faure, 2019), suggesting that a 

more systematic investigation of the links between economic preferences and pro-

environmental behaviour is needed. 

There are several reasons that could potentially explain the contradictory results in the 

literature. First, recent research on the links between economic preferences and pro-

environmental behaviour tends to focus on a single pro-environmental behaviour as predicted 

by a single preference domain. Significant associations in these studies might be explained by 

the riskiness, timing, or social aspects of the behaviour in question, and it might be irrelevant 

whether the behaviour is pro-environmental or not. Second, many pro-environmental 

behaviours may be associated with risk, time, and social preferences simultaneously, and 

studies may or may not control for the other preference measures. For example the future is 

uncertain (Andersen, Harrison, Lau, & Rutström, 2008) and short-term temptations to be 

selfish may conflict with better judgments to act pro-socially (Martinsson, Myrseth, & 

Wollbrant, 2012). Third, focusing on a single pro-environmental behaviour likely ignores a 

large range of small-scale, frequent everyday behaviours linked to people’s lifestyles. These 

behaviours can have massive environmental impact once aggregated as their impact accrues 

over time. 

To overcome these limitations, the present paper presents a systematic, pre-registered test of 

whether seven economic preference measures predict a large number of pro-environmental 

behaviours enacted in people’s everyday lives. We construct several indices measuring the 

extent and intensity of pro-environmental behaviour as using these aggregate indices avoids 

identifying correlations driven by the riskiness, timing, or social elements of single behaviour. 

We conduct ceteris-paribus analyses predicting pro-environmental behaviours by all 
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preferences simultaneously to identify the effect of one preference measure while controlling 

for other preferences. Finally, we measure a large battery of pro-environmental behaviours in 

everyday life to capture the high-frequency behaviours, linked to people’s lifestyles that can 

add up to large environmental impacts. This approach also allows to identify clusters of pro-

environmental behaviours. 

Participants in our online survey (N = 349) first completed measures of seven economic 

preferences (risk taking, patience, present bias, positive reciprocity, negative reciprocity, 

altruism, and trust) using experimentally validated survey items (Falk et al., 2018; Falk, 

Becker, Dohmen, Huffman, & Sunde, 2016). Participants then reconstructed their previous day 

using a technique that facilitates recall (the day reconstruction method as developed by 

Kahneman, Krueger, Schkade, Schwarz, & Stone, 2004) and reported the pro-environmental 

behaviours they engaged in yesterday. We first calculated the number of pro-environmental 

behaviours participants had engaged in the day prior to the study as a proxy for the extent of 

pro-environmental behaviour in daily life. We also calculated the ratio of enacted pro-

environmental behaviours over the number of situations where a pro-environmental behaviour 

was possible to acknowledge that not every participant had the same number of opportunities 

to engage in pro-environmental behaviour. This provided us with a proxy for the intensity of 

pro-environmental behaviour yesterday. Additionally, we elicited participants’ general 

tendencies to engage in pro-environmental behaviours as well as their pro-environmental 

investment decisions. 

The results from the pre-registered analysis show that only altruism predicts the number of pro-

environmental behaviours participants engaged in yesterday. Altruism also predicts people’s 

general tendency to act pro-environmentally as well as the number of green investments made. 

None of the preference measures predict the ratio of the number of enacted pro-environmental 

behaviours over the number of situations where a pro-environmental behaviour was possible. 

An exploratory principal components analysis suggests that we captured four distinct clusters 

of everyday pro-environmental behaviours: eco-shopping behaviours; electricity and water 

saving behaviours; awareness behaviours; and efforts to reduce waste and consumption. 

Altruism predicts eco-shopping behaviours, positive reciprocity predicts electricity and water 

saving behaviours, and patience predicts awareness behaviours. All other preferences are 

unrelated to the four clusters. 

Our findings contribute to the increasing literature exploring links between economic 

preferences and pro-environmental behaviour by suggesting that social preferences, and in 
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particular altruism, but not risk and time preferences, are associated with pro-environmental 

behaviour. Moreover, we present evidence suggesting that the diverse range of everyday pro-

environmental behaviours comprises four distinct clusters, which differ in their relation to 

individual economic preferences. It is worth further considering the structural differences in 

decision making across these four clusters of pro-environmental behaviours in future research, 

as they may explain the disparate links to people’s preferences and, relatedly, the contradictory 

results in the existing literature. The findings can also be interpreted as a test of the external 

validity of the preference measures. The overall relatively weak relation to pro-environmental 

behaviour in everyday life highlights the need to investigate the role of further individual and 

situational factors, including the domain-specific preference measures. 

The remainder of the paper is structured as follows. Section 2 presents the methods and 

hypotheses. Section 3 presents the pre-registered and exploratory results. Section 4 concludes 

with a discussion. 

2. Material and methods 

 Participants and procedures 

We recruited 350 participants to take part in an online study via Prolific Academic 

(https://www.prolific.co/). The study was approved by the University College Dublin Human 

Research Ethics committee and informed consent was obtained from all participants. We 

staggered recruitment over seven consecutive days, collecting 50 responses per day. In order 

to take part, participants had to be registered with the recruitment service, be over 18 years of 

age, resident in the UK, and must not have participated in a pilot test of the study. Participants 

received £2.50 for completing the survey. One participant did not provide data on the key 

measures, and therefore we analyse a sample of 349 participants. 

The sample mean age was 37.03 (SD = 12.90), 63.30% were female, 36% were single and 55% 

married or cohabiting, 43.3% had at least a college degree, and the mean household size was 

2.93 (SD = 1.36), and 62% of the sample reported an individual income of less than £2000 per 

month. The self-reported mean math proficiency was 6.74 (SD = 2.80) on a scale from 0 to 10. 

Tables S1.1 and S1.2 in the Supplementary Information provides more details about the sample 

demographics. 

The online survey comprised three parts: In Part 1, participants completed the economic 

preference measures. Part 2 contained the Day Reconstruction Method used to measure the 
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pro-environmental behaviours that participants had engaged in on the day before the study. 

Part 3 asked participants to answer additional questions on how frequently they engage in pro-

environmental behaviours in general how many green investments they have made in the past, 

psychological survey measures, and their socio-economic background. All participants 

completed the measures in the same order. The Supplementary Information S1-3 summarise 

all variables we measured. 

 Economic preference measures 

We measured participants’ risk preferences, time preferences (patience and present bias), and 

social preferences (positive reciprocity, negative reciprocity, altruism, and trust) following 

Falk et al. (2018). Their approach combines quantitative and qualitative survey questions for 

each preference type. For example, the risk-preference measure combines a hypothetical lottery 

choice sequence, where people choose five times between a safe and a risky but potentially 

better option, with a self-assessment about the willingness to take risks in general. For each 

preference measure, we first computed the z-scores of the underlying survey items at the 

individual level and then computed the weighted average of these z-scores using the weights 

from an experimental validation procedure (Falk et al., 2016). In line with Falk et al., (2018), 

we then standardised this weighted measure again to obtain preference measures with a mean 

of zero and a standard deviation of one. We added one additional set of questions to measure 

present bias because this economic measure of self-control and procrastination is of particular 

interest given its potential role in explaining intention-behaviour gaps (Kollmuss & Agyeman, 

2002). We present the detailed description of the survey items and the weights in the 

Supplementary Information S2. 

 Pro-environmental behaviour measures 

To measure pro-environmental behaviours in everyday life, we used the day reconstruction 

method (Kahneman et al., 2004). This method was designed to collect information on how 

people feel and what they do in their daily lives. In our study, participants first completed a 

short diary of yesterday that helped them to systematically reconstruct what happened during 

the day prior to the study. We asked participants to divide their previous day into three phases 

reflecting the morning, the afternoon, and the evening, and participants wrote a few words 

about what they did and how they felt in diary boxes we provided. In a second step, we showed 

participants the diary boxes again and asked them to go through their day chronologically from 
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morning to evening to answer follow-up questions specific to the different parts of the day. 

Since we have 349 participants, we have data for 1047 phases of the day. 

The most important follow-up questions dealt with pro-environmental behaviours. For each of 

the three phases, we asked the participants whether they had enacted 20 pro-environmental 

behaviours, such as saving electricity, reducing heating, using public transport, and car-pooling 

(Figure 2 in section 3.1 lists all 20 behaviours). We included behaviours that are commonly 

used in research on pro-environmental behaviour in everyday life (Bissing-Olson, Fielding, & 

Iyer, 2016; Blankenberg & Alhusen, 2018; Schmitt, Aknin, Axsen, & Shwom, 2018; 

Whitmarsh & O’Neill, 2010). The answer options were “Yes”, “No, but I could have”, and 

“Not applicable or can't recall”. 

Our first measure of everyday pro-environmental behaviour is the sum of pro-environmental 

behaviours that participants had enacted yesterday (SUMY). Since we asked for 20 behaviours 

in each of the three phases (morning, afternoon, and evening), this measure ranged from 0 to 

60. An alternative measure sometimes used in the literature on pro-environmental behaviour is 

the ratio (RTOY) of the sum of enacted pro-environmental behaviours over the sum of situations 

where a pro-environmental behaviour was feasible (Binder & Blankenberg, 2017; Bissing-

Olson et al., 2016). We calculated this ratio for each participant as the sum of “Yes” answers 

divided by the sum of “Yes” or “No, but I could have” answers combined, which provided a 

range from 0 (none of the possible behaviours was enacted) to 1 (all possible behaviours were 

enacted). 

We used the day reconstruction method because it provides details about the otherwise difficult 

to observe behaviours of everyday life and in particular the high-frequency pro-environmental 

decisions that are difficult to measure using common surveys and experiments (Lades, Martin, 

& Delaney, 2019). The method allowed us to measure pro-environmental behaviours as 

enacted in everyday life in an effective way with minimal recall bias. The day reconstruction 

method has been used extensively in economic and psychological research (Daly, Baumeister, 

Delaney, & MacLachlan, 2014; Delaney & Lades, 2017; Diener & Tay, 2014; Doyle, Delaney, 

O’Farrelly, Fitzpatrick, & Daly, 2017; Knabe, Rätzel, Schöb, & Weimann, 2010). It provides 

data comparable to other experience sampling methods, but places a lower burden on 
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participants (Dockray et al., 2010; Kim, Kikuchi, & Yamamoto, 2013; Sonnenberg, Riediger, 

Wrzus, & Wagner, 2012).1 

Additionally, we measured pro-environmental behaviour that was not specific to yesterday in 

two ways. Firstly, we measured participants general tendency to act pro-environmentally 

(GEN) using a list of 23 behaviours, such as energy conservation efforts or buying products 

with less packaging. Participants rated the frequency with which they engage in these 

behaviours on a scale from 1 (“Never”) to 4 (“Very often”), and we calculated the average of 

these answers (see Table S1.1 and Figure S1.1). Secondly, we asked participants when they 

had last taken eight investments to reduce environmental impact (INV). We coded the answers 

as 0 if they had never taken the action or 1 if they had taken the action in the past. For each 

participant, we then calculated the sum of investments (see Table S1.1 and Figure S1.2). 

 Analysis strategy 

Based on the previous literature, we pre-registered seven directional research hypotheses on 

the associations between economic preferences and pro-environmental behaviours. We 

predicted that higher levels of risk-taking and present bias would be associated with fewer pro-

environmental behaviours and that higher levels of patience, positive reciprocity, negative 

reciprocity, altruism, and trust would be associated with more pro-environmental behaviours. 

To test these hypotheses, we specified the following regression models: 

𝒀𝒊 = 𝛽0 + 𝛽1𝑅𝑖𝑠𝑘𝑇𝑎𝑘𝑖𝑛𝑔𝑖 + 𝛽2𝑃𝑎𝑡𝑖𝑒𝑛𝑐𝑒𝑖 + 𝛽3𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝐵𝑖𝑎𝑠𝑖 + 𝛽4𝑃𝑜𝑠𝑅𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖𝑡𝑦𝑖 

+ 𝛽5𝑁𝑒𝑔𝑅𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖𝑡𝑦𝑖 + 𝛽6𝐴𝑙𝑡𝑟𝑢𝑠𝑖𝑚𝑖 + 𝛽7𝑇𝑟𝑢𝑠𝑡𝑖 + 𝑿𝑖 + 𝜖𝑖 

where 𝒀𝒊 represents the vector of the measures of pro-environmental behaviour (SUMY, RTOY, 

GEN, INV) for individual i. The independent variables include the seven standardised 

preference measures as suggested by their names. The vector 𝑿 represents the control variables 

age, gender, relationship status, household size, income, self-reported math proficiency, and a 

day-of-the-week. 𝜖 is the error term. To test for associations between the preference measures 

 

1 An alternative naturalistic monitoring tool is experience sampling. Experience sampling studies ask participants 

to respond to short surveys on their mobile phones in their normal everyday lives for several times per day and 

several days in a row. There are many benefits of this method, but one shortcoming is that the surveys need to be 

relatively short. For example, Baumgartner, Langenbach, Gianotti, Müri, & Knoch, (2019) asked participants in 

an experience sampling study to indicate whether they had shown five pro-environmental behaviours (not littering 

in the street; separating waste; not buying products that are not environmentally friendly; paying attention to using 

little water; and ordering coffee in a reusable cup rather than a paper cup) since the last time they had answered 

the survey. 
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and SUMY and INV, we used Poisson models, representing the count-data structure of these 

two dependent variables. To predict RTOY and GEN, we used ordinary least squares 

regressions. In order to control for the multiple hypotheses that we test, we use the conservative 

Bonferroni adjustment and interpret associations as significant if their p-value is below 0.05/7 

= 0.007143. 

Before the start of the data collection, we preregistered our hypotheses, study design and 

analysis plan (see https://osf.io/r8vpc/). A small number of deviations from the preregistered 

estimation model were necessary.2 

3. Results 

 Descriptive statistics and correlations 

Figure 1 presents the histograms of the seven economic preference measures that are the main 

predictors in this paper. The first row in Figure 1 presents the distributions of risk and time 

preferences and the second row presents the distributions of the social preference measures.  

 

 

2 We had pre-registered to control for the number of opportunities participants had in the three phases when 

predicting RTOY. However, RTOY is defined as the number of pro-environmental behaviours divided by the 

number of opportunities, and thus already accounts for the number of opportunities. Moreover, we do not present 

the multi-level regressions that we had pre-registered in the main text because (i) they do not provide additional 

insights (see Table S12) and (ii) the data is not well-suited to analyse the person/situation interactions as we 

measured situational variables (e.g. who participants interacted with) across a relatively long part of the day (e.g. 

the whole morning) and hence did not have sufficiently specific information. Finally, we do not present the 

associations between pro-environmental behaviour and green identity and trait self-control as presenting these 

findings would distract from the paper’s main message. 

https://osf.io/r8vpc/
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Figure 1 Histograms of the (standardised) economic preference measures. 

 

 
 

Figure 2 shows which pro-environmental behaviours were enacted more frequently than others. 

For example, participants indicated that they saved electricity in the house in 75% of the 1047 

phases and buying environmentally friendly products was mentioned in only 7% of the phases. 

Participants indicated that they enacted 30% of all behaviours. The figure also shows when 

participants indicated that they did not enact the behaviour although it was feasible to enact the 

behaviour. Overall, this was the case in 18% of the behaviours, but some behaviours were more 

likely than others not to be enacted although feasible. For example, participants did not save 

electricity in the house although it was feasible in 8% of the phases and they did not educate 

themselves although it was feasible in 35% of the phases. The ratio between enacted behaviours 

and feasible behaviours tells us that saving electricity in the house was enacted more than 90% 

of the time when it was feasible, and participants educated themselves about the environment 

in only 17% of the phases when it was feasible. Car-pooling was the behaviour that was least 

often feasible. 
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Figure 2 Pro-environmental behaviours. 

 

 

Figure 3 presents the histograms of our outcome measures of pro-environmental behaviours. 

Panel A shows the distribution of our main outcome measure (SUMY) which is the sum of pro-

environmental behaviours enacted yesterday. On average, participants enacted 18.5 pro-

environmental behaviours yesterday (SD = 8.44). Panel B shows the ratio of enacted behaviours 

over feasible behaviours yesterday (RTOY). On average, participants indicated that they 

enacted 69% of all feasible pro-environmental behaviours (SD = 25%), and 14% of the 

participants reported enacting all feasible pro-environmental behaviours (explaining the spike 

at RTOY = 1). Panel C presents the distribution of the general tendency to act pro-

environmentally (GEN), showing that most participants enact pro-environmental behaviours 

occasionally or often (M = 2.40, SD = 0.36; Cronbach’s α = 0.83). Panel D shows that 

participants invested on average in about three products that reduce the environmental impact 

and home improvements (M = 2.87, SD = 1.69).  
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Figure 3 Distribution of the four measures of pro-environmental behaviour. 

 

Figure 4 presents the zero-order correlations between the seven economic preference measures 

and the four measures of pro-environmental behaviour. The figure shows that some preference 

measures are significantly correlated with other preferences measures. The strongest 

association is a moderate correlation of -0.44 between present bias and patience. We find 

significant associations between the prosocial preference measures altruism, positive 

reciprocity, and trust as also reported by Falk et al. (2018). Most measures of pro-

environmental behaviour are significantly and positively correlated, suggesting that they tap 

into the same underlying factor driving such behaviour. The strongest correlation is between 

SUMY and GEN with 0.54. The figure also shows that altruism is significantly and positively 

associated with all four measures of pro-environmental behaviour, and that strong positive 

reciprocity is associated with two pro-environmental measures. This suggests that the domain 

of social preferences is a strong contender for predicting pro-environmental behaviour in our 

pre-registered analysis. There are less systematic associations between the other preferences 

and pro-environmental behaviours (present bias is negatively associated only with INV; 

patience is significantly positively related only with INV; positive reciprocity shows a 

significant positive link only with GEN; and negative reciprocity is significantly positively 

associated only with SUMY). 
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Figure 4 Correlations between measures of economic preferences and pro-environmental 

behaviour. Bold font indicates significance at p < 0.05. 

   

 

 Predicting pro-environmental behaviour 

Table 2 shows the results of our ceteris paribus analysis regarding the explanatory power of 

different economic preference. Altruism is a positive and highly significant predictor of the 

sum of pro-environmental behaviours enacted yesterday (Column 1; b = 1.428; p = 0.005). The 

results suggest that a participant whose altruism score is one standard deviation below the mean 

enacted 17.04 pro-environmental behaviours, and a participant whose altruism score is one 

standard deviation above the mean enacted 19.89 behaviours (holding all other variables 

constant at their mean). None of the other preference measures are significantly associated with 

the sum of pro-environmental behaviours enacted yesterday. 

Neither altruism nor any other preference measure predicts the ratio of enacted pro-

environmental behaviours yesterday over feasible behaviours (Column 2). This might suggest 

that participants with a higher altruism score are more likely to self-select into situations where 

Trust 0.04 0.06 0.08 0.08 0.10 0.12 -0.10 0.25 -0.15 0.23 X

Altruism 0.17 0.11 0.29 0.18 0.08 0.00 -0.03 0.32 0.01 X 0.23

Neg. reciprocity 0.09 0.04 0.00 0.05 0.15 -0.09 0.09 -0.02 X 0.01 -0.15

Pos. reciprocity 0.01 0.06 0.20 0.20 0.04 0.15 -0.04 X -0.02 0.32 0.25

Present bias -0.03 0.03 -0.01 -0.10 -0.06 -0.44 X -0.04 0.09 -0.03 -0.10

Patience 0.00 0.07 0.06 0.09 0.04 X -0.44 0.15 -0.09 0.00 0.12

Risk taking 0.07 0.03 0.06 0.07 X 0.04 -0.06 0.04 0.15 0.08 0.10

INV 0.25 0.07 0.38 X 0.07 0.09 -0.10 0.20 0.05 0.18 0.08

GEN 0.54 0.34 X 0.38 0.06 0.06 -0.01 0.20 0.00 0.29 0.08

RTO Y
0.35 X 0.34 0.07 0.03 0.07 0.03 0.06 0.04 0.11 0.06
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pro-environmental behaviour is feasible. However, once altruists are in such situations, they 

are no more likely than non-altruists to act pro-environmentally. 

Altruism does predict participants’ general tendency to act pro-environmentally (b = 0.097; 

p < 0.001; Column 3). We predict that participants whose altruism score is one standard 

deviation below the mean report a score of 2.53 on the general pro-environmental behaviour 

measure. Participants whose altruism score is one standard deviation above the mean report a 

general pro-environmental behaviour score of 2.73. The association between altruism and the 

number of long-term investments in green products (Column 4) is not significant using our 

Bonferroni-adjusted p-value (b = 0.243; p = 0.011). These findings suggest that we can reject 

the null hypothesis of no associations between altruism and pro-environmental behaviour in 

everyday life and as measured using the general pro-environmental measure. 

There is no evidence for problems of multicollinearity as the preference measures are at most 

moderately correlated with each other and the variance inflation factors for the linear regression 

models are low. However, an alternative analysis strategy would be to test for associations 

between the pro-environmental behaviour measures and each preference measure at a time. 

Tables S4.1 to S4.4 in the Supplementary Information present these analyses and show that our 

results hold when not controlling for any of the other preferences in the regressions. Similarly, 

the multi-level regressions reported in S5.1 confirm the results. 
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Table 2 Poisson regression models (Columns 1 and 4) and linear regression models 

(Columns 2 and 3) predicting four different pro-environmental behaviour measures by 

economic preferences and controls. Columns (1) and (4) present the average marginal 

effects. 

 (1) (2) (3) (4) 

 SUMY RTOY GEN INV 

Risk taking 
0.143 0.004 0.024 0.112 

(0.464) (0.016) (0.027) (0.088) 

Patience 
0.121 0.024 0.020 0.025 

(0.546) (0.017) (0.026) (0.092) 

Present bias 
-0.251 0.014 0.005 -0.063 

(0.419) (0.015) (0.025) (0.106) 

Pos. reciprocity  
-0.228 0.008 0.057** 0.186* 

(0.553) (0.016) (0.024) (0.102) 

Neg. reciprocity 
0.791 0.011 -0.007 0.063 

(0.485) (0.014) (0.022) (0.087) 

Altruism 
1.428***† 0.022 0.097***† 0.243** 

(0.506) (0.015) (0.023) (0.095) 

Trust 
0.532 0.013 -0.008 -0.061 

(0.467) (0.014) (0.022) (0.089) 

Constant 
 0.650*** 2.507***  

(0.161) (0.109) (0.160) (0.217) 

Control variables Yes Yes Yes Yes 

     

Observations 349 349 349 349 

R-squared  0.094 0.235  

The control variables are age, gender, marital status, people living in household, education, 

income, math proficiency, and day of the week. Robust SE in parentheses. ***† p < 0.007143, 

*** p < 0.01, ** p < 0.05, * p < 0.1. 

 

 Principal component analysis  

To better understand the associations between economic preferences and pro-environmental 

behaviours in our data, we conducted an exploratory principal component analysis. This 

analysis tested for clusters amongst the 20 pro-environmental behaviours that could have been 

enacted yesterday. One example of a potential cluster is transport choice: If individuals 

frequently take public transport, they might also be more likely to engage in another pro-

environmental forms of transportation like walking or cycling. We then explored whether the 

economic preferences predict some clusters of behaviours but not others. 

To conduct the principal component analysis, we first calculated how frequently participants 

enacted each of the 20 pro-environmental behaviours yesterday (with a minimum of 0 and a 
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maximum of 3 as we measured 3 phases). We then performed the principal component analysis 

on the polychoric correlation matrix of the original set (Kolenikov & Angeles, 2005). The 

results of a Kaiser-Meyer-Olkin test indicate that a significant proportion of the variance in the 

original data was attributable to common variance, making the data suited to structure detection 

and data reduction via principal component analysis. We found four distinct components, 

accounting for 57% of variance in the data.3 To aid the interpretation of these components, we 

used a Promax rotation and defined item loadings above 0.4 as contributing substantively to 

one of the four components. The resulting four components were the following: 

• Eco-shopping behaviours: The highest loading behaviours all relate to shopping and 

result in reduced environmental impact. This includes the items “bought 

environmentally friendly products”; “bought products with less packing”; “used 

reusable bags when shopping”. 

• Energy and water saving: The highest loading behaviours are actions which result in 

reduced energy or water consumption and include “switched off electrical appliances”; 

“reduced heating”; “saved electricity in the house”; “conserved water when it was not 

directly needed”. 

• Awareness behaviours: The highest loading behaviours both relate to informing others 

or oneself about environmental issues: “talked to somebody about environmental 

issues”; “educated myself about the environment”. 

• Reducing consumption and waste: The highest loading behaviours all result in either 

lower levels of consumption or waste and include: “recycled”; “used a reusable 

cup/container for drinking”; “made a product instead of purchasing it”. 

Next, we created a new variable for each of the four components containing the predicted 

principal component scores for each individual across these four components and used ordinary 

least square regressions to test the predictive power of the seven social preference measures for 

each of the components (Table 3). The results indicate that altruism predicts eco-shopping 

behaviours (b = 0.320; p = 0.011), positive reciprocity predicts water and energy savings 

behaviours (b = 0.237; p = 0.012), and patience predicts awareness behaviours (b = 0.163; 

 

3 Components 1 and 2 have eigenvalues above two (5. 87 and 2.64 respectively). Components 3-6 have 

eigenvalues between 1 and 2 with the eigenvalues of all other components taking on values of less than 1. 

Examining the scree plot an elbow is apparent at Component 4, suggesting that 4 components should be retained 

and interpreted. 
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p = 0.040). Tables S6.2 to S6.5 confirm that these results are robust to including only one 

preference measure at a time in the regression model. Using the conservative Bonferroni-

adjusted p-values would not yield any significant effect of economic preferences on the four 

clusters of pro-environmental behaviours. We interpret these results as suggestive evidence of 

the preference measures having differential effects on the different clusters of behaviours. 

Exploring these effects could therefore be a fruitful avenue of future research. 

 

Table 3 Ordinary least squares regression models predicting principal component scores by 

the economic preference measures.  

 (1) (2) (3) (4) 

 Eco-shopping 

behaviours 

Electricity and 

water saving 

behaviours 

Awareness 

behaviours 

Efforts to reduce 

consumption and 

waste 

Risk taking 
0.002 0.100 -0.137* 0.044 

(0.105) (0.096) (0.071) (0.051) 

Patience 
0.001 -0.067 0.163** 0.096* 

(0.116) (0.100) (0.079) (0.052) 

Present bias 
-0.085 0.003 0.043 0.070 

(0.091) (0.097) (0.071) (0.046) 

Pos. reciprocity  
-0.088 0.237** 0.075 0.027 

(0.120) (0.093) (0.074) (0.054) 

Neg. reciprocity 
0.190* -0.082 0.075 -0.051 

(0.112) (0.088) (0.075) (0.055) 

Altruism 
0.320** 0.012 0.052 0.007 

(0.125) (0.088) (0.068) (0.051) 

Trust 
0.125 -0.104 -0.091 -0.015 

(0.108) (0.087) (0.074) (0.051) 

Controls variables Yes Yes Yes Yes 

Constant 
2.840*** 2.252*** 0.137 -0.484 

(0.617) (0.618) (0.500) (0.312) 

     

Observations 349 349 349 349 

R-squared 0.138 0.124 0.107 0.109 

The control variables are age, gender, marital status, people living in household, education, 

income, math proficiency, and day of the week. Robust SE in parentheses. *** p < 0.01, 

** p < 0.05, * p < 0.1. 

 

4. Discussion 

This paper presented a pre-registered test of whether seven economic preference measures (risk 

taking, patience, present bias, altruism, positive reciprocity, negative reciprocity, and trust) 

predict pro-environmental behaviours in everyday life. Our main result is that altruism is the 
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only preference that is systematically associated with pro-environmental behaviour measured 

in everyday life, predicting the extent of engagement in pro-environmental behaviour as well 

as the general tendency to act pro-environmentally and past green investments. Moreover, we 

present evidence suggesting that the diverse range of everyday pro-environmental behaviours 

comprises at least four distinct clusters (eco-shopping behaviours, electricity and water savings, 

awareness behaviours, and consumption and waste reduction), and that these clusters are 

predicted by different economic preference measures. 

Our results contribute to the growing literature exploring economic preferences as predictors 

of pro-environmental behaviour (e.g. Fuerst & Singh, 2018; He et al., 2019; Newell & 

Siikamäki, 2015; Schleich et al., 2019) by showing that altruism does not only predict a single 

pro-environmental behaviour but also summary measures containing several pro-

environmental behaviours.4 These pro-environmental behaviours contain at least four distinct 

clusters and we can speculate about why these are predicted by different preference measures. 

For example, eco-shopping behaviours tend to cost money, but efforts to reduce consumption 

and waste do not, which might help explaining why altruism predicts the former but not the 

latter. Similarly, awareness behaviours may impact the environment over long time horizons, 

which may help explaining why awareness behaviours are linked to patience. These 

speculations suggest that future research should focus more on theoretically relevant features 

of behaviours, such as their material costs, riskiness, and time horizons, rather than on whether 

the behaviours are pro-environmental or not. 

We also contribute to the literature investigating the links between economic preferences and 

behaviours outside the lab more generally, sometimes referred to as external validity. A 

common result in these studies is that lab measures correlate at best weakly with field 

behaviours. For example, Galizzi & Navarro-Martinez (2018) find only very weak evidence 

for a correlation between social preferences as measures in the laboratory and field behaviours 

such as donating, helping others, and self-assesses past behaviour. Similarly, Delaney & Lades 

(2017) do not find evidence for a correlation between present bias and everyday self-control 

failures. Also Goeschl et al. (2020) find that behaviour in public good games generalises to 

 

4 A recent working paper by Fuhrmann, D’Exelle, & Verschoor (2020) also investigates the role of economic 

preferences for pro-environmental behaviour. While this working paper is the closest to our paper, there are 

several differences. For example, Fuhrmann et al. do not use the day reconstruction method but survey questions 

to measure a more limited number of pro-environmental behaviours, they investigate the topic as part of a field 

experiment in Peru, and they have not pre-registered the study. Their general result, that different preferences 

matter for different pro-environmental behaviours, however, is in line with our findings.  
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voluntary mitigation decisions only under certain circumstances. Studies focusing on potential 

explanations for the relatively low associations between preference measures and field 

behaviours have highlighted the importance of decision-making contexts (Schier, Ockenfels, 

& Hofmann, 2016) and compare self-reports to experimental measures as predictors of field 

behaviours (Gunten, Bartholow, & Martins, n.d.). 

The null results we find for six of the seven preference measures suggest that not all preference 

domains are equally important in determining pro-environmental behaviour. For example, 

participants might not consider risk and time-related characteristics of pro-environmental 

behaviours when making the decisions. It might be the case that we need to revisit our theories 

linking economics preferences to pro-environmental behaviour. Another explanation for the 

lack of significant associations is that the economic preference measures might not be 

externally valid without taking contextual variables such as the preferences domain into 

account. One avenue for future research is to investigate the role of situational factors that 

explain when we do (and do not) expect to find significant correlations between preferences 

and pro-environmental behaviour. Another avenue is to investigate the predictive ability of 

domain-specific preferences in line with previous research suggesting that social preferences 

(Fleiß, Ackermann, Fleiß, Murphy, & Posch, 2019) risk preferences (Riddel, 2012), and time 

preferences (Augenblick, Niederle, & Sprenger, 2015) differ depending on the domain in which 

they are measured. 

The paper also contributes to the literature on the determinants of pro-environmental behaviour. 

This literature has identified a broad range of factors explaining why some people behave more 

pro-environmentally than others, including green identity (Akerlof & Kranton, 2000; Binder & 

Blankenberg, 2017; Whitmarsh & O’Neill, 2010), social norms (Farrow, Grolleau, & Ibanez, 

2017), sense of control (Gifford & Nilsson, 2014), and personality traits (Markowitz, Goldberg, 

Ashton, & Lee, 2012).We add to this literature by showing that altruism, but none of the other 

economic preferences we measured, might explain some of the variance that the other studies 

have not accounted for. 

We also contribute to the literature on measuring pro-environmental behaviour (Melo, Ge, 

Craig, Brewer, & Thronicker, 2018; Schmitt et al., 2018; Whitmarsh & O’Neill, 2010). While 

most previous research focuses on general tendencies to behave pro-environmentally, we show 

that it is possible to quantify pro-environmental behaviour in everyday life using the day 

reconstruction method. This approach allows us to gain insights into people’s everyday lives 

where many environmentally-relevant behaviours are driven more by automatic processes and 
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habits and less by cognitive deliberation (Kahneman, 2011). Our exploratory analysis 

highlights several distinct clusters of pro-environmental behaviours that might differ in the 

underlying processes driving the behaviours. This suggests that simply aggregating structurally 

different behaviours might hide their underlying differences. Systematically identifying 

specific behaviours that are structurally similar (e.g., in terms of incurring material costs or 

having a time-component with costs incurred now and environmental benefits later in the 

future) seems a crucial exercise in understanding pro-environmental behaviour. 

Finally, we suggest that there are difficulties when using the RTOY measure – a common 

approach in existing literature (Binder & Blankenberg, 2017; Bissing-Olson et al., 2016). It 

does not adequately differentiate participants who enact many pro-environmental behaviours 

from participants who enact only few pro-environmental behaviours. For example, a participant 

who enacts 20 out of 20 feasible behaviours gets the same score as a participant who enacts 1 

out of 1 feasible behaviour. Additionally, the measure is likely to overestimate the extent of 

conscious pro-environmental actions, because some participants reporting “yes” for a specific 

behaviour might not have had a choice of whether to engage in this pro-environmental action. 

Limitations of this paper include the lack of a nationally representative sample and the novel 

and not yet validated use of the day reconstruction method as a tool to measure pro-

environmental behaviour in everyday life. A recent paper comparing data from the day 

reconstruction method with data from the experience sampling method shows that agreement 

between both methods is not always high and that expectations might influence answers people 

give in day reconstruction studies (Lucas, Wallsworth, Anusic, & Donnellan, 2020).  

Finally, our results have some potential implications for future research that aims to inform 

policy. Our main finding suggests that campaigns that aim to encourage pro-environmental 

behaviours should focus on testing messages that highlight the altruistic character of these 

behaviours. And the structural differences in the various pro-environmental behaviours we find 

in the principal component analysis suggests that there is no one-size-fits-all solution inspired 

by economic preference measures. Identifying clusters of similar behaviours and targeting 

these clusters through targeted interventions seems vital in this endeavour. 
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S1. Descriptive Statistics 

Table S1.1 Descriptive statistics. 

Variable N Mean SD Min Max 

Preference measures      

Risk taking 349 0 1 -2.27 3.72 

Patience 349 0 1 -2.07 1.99 

Present Bias 349 0 1 -3.04 4.4 

Positive reciprocity 349 0 1 -3.5 1.72 

Negative reciprocity 349 0 1 -1.84 2.69 

Altruism 349 0 1 -2.54 2.81 

Trust 349 0 1 -2.06 2.01 

      

Math score 349 0 1 -2.05 1.52 

      

Everyday pro-environmental behaviours      

Saved electricity in the house  349 2.25 1.01 0 3 

Switched off electrical appliances  349 1.95 1.09 0 3 

Used a reusable cup/container for drinking  349 1.81 1.23 0 3 

Recycled  349 1.77 1.05 0 3 

Conserved water when it was not directly needed  349 1.64 1.26 0 3 

Walked or cycled for more than 5 minutes  349 1.41 1.08 0 3 

Reduced heating  349 1.32 1.29 0 3 

I ate vegetarian/vegan food  349 0.85 1.12 0 3 

Used reusable bags when shopping  349 0.84 0.92 0 3 

Used both sides of the paper when drawing or printing  349 0.72 1.05 0 3 

Made/produced a product myself  349 0.68 0.97 0 3 

Reused or repaired items  349 0.66 0.95 0 3 

Used reusable hygiene products  349 0.59 1.01 0 3 

Used public transport  349 0.41 0.85 0 3 

Bought seasonal, organic, and/or local food  349 0.4 0.74 0 3 

Bought products with less packaging  349 0.29 0.63 0 3 

Talked to somebody about environmental issues  349 0.27 0.67 0 3 

Educated myself about the environment  349 0.21 0.61 0 3 

Car-pooled 349 0.21 0.60 0 3 

Bought environmentally-friendly products 349 0.20 0.55 0 3 

      

General pro-environmental behaviours      

GEN 349 2.63 0.41 1.14 3.68 

INV 349 2.87 1.69 0 8 

      

Socio-economic control variables      

Age 349 37.03 12.90 18 72 

Female 349 0.63 .48 0 1 

People in household 349 2.93 1.36 1 8 
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Table S1.2 Descriptive statistics. 

Variable N % 

More socio-economic control variables   

Marital status 349 100 

   Single 124 35.53 

   Married / cohabiting 191  54.73 

   Other 34 9.74 

   

Education 349 100 

   Leaving Cert or less 29 8.31 

   Leaving Certificate/Diploma 23 6.59 

   Some college/No degree 59 16.91 

   College graduate 40 11.46 

   Bachelor's degree 123 35.24 

   Masters 52 14.9 

   Other 23 6.59 

Income 349 100 

   £0 - £100 31 8.88 

   £101 - £600 37 10.6 

   £601 - £1 000 38 10.89 

   £1 001 - £2 000 111 31.81 

   £2 001 - £5 000 62 17.77 

   £5 001 or more 39 11.17 

   Rather not say 31 8.88 
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Figure S1.1 Answers to the question “Please indicate how often you take each action” used 

to calculate GEN.  
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Figure S1.2 Answers to the question “Please indicate the last time you took this action (if at 

all)” used to calculate INV. 

 

 

S2. Economic preference measures 

Risk taking: We measured risk preferences using a series of five interdependent hypothetical 

binary choices of the form “What would you prefer: A 50 percent chance to win £300 when at 

the same time there is 50 percent chance to win nothing? Or: The amount of £X as a sure 

payment?”, where the X was different in each question. If participants chose the sure payment, 

the next sure payment would be lower. If participants chose the lottery, the next sure payment 

would be higher. This staircase method of asking the five questions leads to 32 possible ordered 

outcomes. Additionally, we asked participants to answer the question “In general, how willing 

are you to take risks?” on an 11-point Likert scale from “0 = Completely unwilling to do so” 

to “10 = Very willing to do so”. 

Patience: We measured patience using a series of five interdependent hypothetical binary 

choices of the form “Would you rather receive £100 today or $X in 12 months?”, where X was 

different in each question. If participants chose to be paid today, the next delayed payment 

would be higher. If participants chose to be paid after 12 months, the next delayed payment 

would be lower. Again, this allows for 32 potential ordered outcomes. Additionally, we asked 
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participants to answer the question “How willing are you to give up something that is beneficial 

for you today in order to benefit more from that in the future?” on an 11-point Likert scale 

from “0 = Completely unwilling to do so” to “10 = Very willing to do so”. 

Present bias: We measured present bias by repeated the quantitative time preference questions, 

but changing the dates. Rather than having to choose between today and in 12 months, 

participants had to choose between in 12 months and in 24 months. We calculated the 

difference between both time preference measures as our indicator for present bias. For 

example, if participants obtained a patience measure of 28 in the today-versus-in-12-months 

question, and a patience measure of 30 in the in-12-months-versus-in-24-months question, 

present bias would be calculated as 2. Additionally, we asked participants to indicate whether 

they agreed with the statement “I tend to postpone tasks even if I know it would be better to do 

them right away” on a Likert-scale from “0 = Does not describe me at all” to “10 = Describes 

me perfectly”. Since Falk et al. (2018) do not provide a weighting for these questions, we use 

the same weighting as for the patience measure. 

Positive reciprocity: We measured positive reciprocity by asking participants to imagine that 

they were lost and that a stranger offered to take them to their destination for a personal cost 

of £30. Respondents were then asked whether they would give one out of several presents 

(worth between £5 and £30 euros) to the stranger as a “thank you.” Additionally, we asked 

participants to indicate whether they agreed with the statement “When someone does me a 

favour, I am willing to return it” on a 11-point Likert scale from “0 = Does not describe me at 

all” to “10 = Describes me perfectly”. 

Negative reciprocity: We measured negative reciprocity by asking participants about the 

extent to which the statement “If I am treated very unjustly, I will take revenge at the first 

occasion, even if there is a cost to do so” described them on an 11-point Likert scale from “0 

= Does not describe me at all” to “10 = Describes me perfectly” and the two questions “How 

willing or unwilling are you to punish someone who treats you (in the second question: others) 

unfairly, even if there may be costs for you?” on 11-point Likert scales from “0 = Completely 

unwilling to do so” to “10 = Very willing to do so”. 

Altruism: We measured altruism by asking participants “Imagine the following situation: 

Today you unexpectedly received £1000. How much of this amount in £ would you donate to 

a good cause?” and the question “How willing or unwilling are you to give to good causes 
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without expecting anything in return?” to be answered on an 11-point Likert scale from “0 = 

Completely unwilling to do so” to “10 = Very willing to do so.” 

Trust: We measured trust by asking participants to what extent they agreed with the statement 

“I assume that people have only the best intentions” on a, 11-point Likert scale from “0 = Does 

not describe me at all” to “10 = Describes me perfectly.” 

 

Table S2.1 Economic preference measures and the weights used following Falk et al. (2016). 

Preference Item Weight 

Risk 

taking 

Lottery choice sequence using staircase method 0.473 

Self-assessment: willingness to take risks in general 0.527 

Patience 
Intertemporal choice sequence using staircase method 0.712 

Self-assessment: willingness to wait 0.288 

Present 

bias 

Intertemporal choice sequence using staircase method 0.712 

Self-assessment: willingness to procrastinate 0.288 

Positive 

reciprocity 

Gift in exchange for help 0.515 

Self-assessment: willingness to return a favour 0.485 

Negative 

reciprocity 

Self-assessment: willingness to take revenge 0.374 

Self-assessment: willingness to punish unfair behaviour toward self 0.313 

Self-assessment: willingness to punish unfair behaviour toward 

others 
0.313 

Altruism Donation decision 0.635 

 Self-assessment: willingness to give to good causes 0.365 

Trust Self-assessment: people have only the best intentions 1 

 

 

S3 Measures elicited in the survey but not used in manuscript 

For each part of the day (morning, afternoon, and evening), we asked participants to indicate 

whether they engaged in a list of further activities (such as “Commuting to work/uni”, 

“Working/studying”, and “Eating”), where they were (“At home”, “At work/school/uni”, and 

“Somewhere else”), and whether they were enacting with anybody (such as “Spouse/significant 

other”, “Children”, and “Nobody”). The most frequent activities were “Eating”, “Watching 

TV”, “Resting/relaxing”, and “Surfing on the internet”. We also asked whether participants 

were at home, at work/school/university, or somewhere else and who they had social 

interactions with during their parts of the day. We also asked participants whether each of the 

three parts of yesterday was a normal on a scale from “0 = Totally normal” to “6 = Not normal 

at all” (M=3.53; SD=2.04). 
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We also measured green identity asking participants to indicate the degree to which they agree 

with statements such as “I think of myself as someone who is very concerned with 

environmental issues”, “I consider myself as an environmentally aware consumer”, and “I 

would be embarrassed to be seen as having an environmentally friendly lifestyle” on a scale 

from “0 = Totally disagree” to “6 = Completely agree”, following Whitmarsh & O’Neill 

(2010). Finally, we measured trait self-control using the 13-item Brief Self-Control Scale 

(Tangney et al., 2004), life satisfaction using the Satisfaction With Life Scale (Diener, 

Emmons, Larsen, & Griffin, 1985), and in the DRM we asked participants how they felt.  

 

S4 Predicting pro-environmental behaviours by each preference measure independently. 

Table S4.1 Poisson regression models predicting the sum of pro-environmental behaviours 

yesterday by economic preferences and controls. Presenting average marginal effects. 

 (1) (2) (3) (4) (5) (6) (7) 

VARIABLES SUMY SUMY SUMY SUMY SUMY SUMY SUMY 

        

Risk taking 0.482       

 (0.464)       

Patience  0.237      

  (0.512)      

Present bias   -0.322     

   (0.388)     

Pos. reciprocity     0.376    

    (0.526)    

Neg. reciprocity     0.709   

     (0.480)   

Altruism      1.500***†  

      (0.490)  

Trust       0.693 

       (0.443) 

Controls  Yes Yes Yes Yes Yes Yes Yes 

Observations 349 349 349 349 349 349 349 

The control variables are age, gender, marital status, people living in household, education, 

income, math proficiency, and day of the week. Robust SE in parentheses. ***†p<0.007143, 

***p<0.01, **p<0.05, *p<0.1. 
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Table S4.2 Linear regression models predicting the ratio of the sum of pro-environmental 

behaviours over the feasible behaviours yesterday by economic preferences and controls. 

 (1) (2) (3) (4) (5) (6) (7) 

VARIABLES RTOY RTOY RTOY RTOY RTOY RTOY RTOY 

        

Risk taking 0.011       

 (0.016)       

Patience  0.020      

  (0.015)      

Present bias   0.004     

   (0.014)     

Pos. reciprocity     0.022    

    (0.015)    

Neg. reciprocity     0.009   

     (0.013)   

Altruism      0.029**  

      (0.015)  

Trust       0.020 

       (0.013) 

Constant 0.617*** 0.620*** 0.621*** 0.647*** 0.625*** 0.647*** 0.632*** 

 (0.107) (0.105) (0.105) (0.105) (0.106) (0.106) (0.104) 

Controls  Yes Yes Yes Yes Yes Yes Yes 

Observations 349 349 349 349 349 349 349 

R-squared 0.070 0.075 0.069 0.076 0.070 0.081 0.075 

The control variables are age, gender, marital status, people living in household, education, 

income, math proficiency, and day of the week. Robust SE in parentheses. ***†p<0.007143, 

***p<0.01, **p<0.05, *p<0.1. 

 

 

 

 

 

 

 



38 

Table S4.3 Linear regression models predicting the general pro-environmental behaviour 

measure by economic preferences and controls. 

 (1) (2) (3) (4) (5) (6) (7) 

VARIABLES GEN GEN GEN GEN GEN GEN GEN 

        

Risk taking 0.039       

 (0.028)       

Patience  0.029      

  (0.023)      

Present bias   -0.006     

   (0.022)     

Pos. reciprocity     0.091***†    

    (0.023)    

Neg. reciprocity     -0.001   

     (0.022)   

Altruism      0.116***†  

      (0.021)  

Trust       0.031 

       (0.021) 

Constant 2.364*** 2.381*** 2.387*** 2.486*** 2.384*** 2.484*** 2.400*** 

 (0.167) (0.169) (0.168) (0.163) (0.170) (0.163) (0.168) 

Controls  Yes Yes Yes Yes Yes Yes Yes 

Observations 349 349 349 349 349 349 349 

R-squared 0.152 0.149 0.145 0.187 0.145 0.214 0.150 

The control variables are age, gender, marital status, people living in household, education, 

income, math proficiency, and day of the week. Robust SE in parentheses. ***†p<0.007143, 

***p<0.01, **p<0.05, *p<0.1. 
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Table S4.4 Poisson regression models predicting the number of green investments by 

economic preferences and controls. Presenting average marginal effects. 

 (1) (2) (3) (4) (5) (6) (7) 

VARIABLES INV INV INV INV INV INV IN\V 

        

Risk taking 0.162*       

 (0.088)       

Patience  0.073      

  (0.081)      

Present bias   -0.079     

   (0.093)     

Pos. reciprocity     0.258***    

    (0.099)    

Neg. reciprocity     0.082   

     (0.087)   

Altruism      0.297***†  

      (0.094)  

Trust       0.038 

       (0.091) 

Controls  Yes Yes Yes Yes Yes Yes Yes 

Observations 349 349 349 349 349 349 349 

The control variables are age, gender, marital status, people living in household, education, 

income, math proficiency, and day of the week. Robust SE in parentheses. ***†p<0.007143, 

***p<0.01, **p<0.05, *p<0.1. 

 

 

 

  



40 

S5 Multi-level analysis 

 

Table S5.1 Multi-level poisson regression models (Columns 1 and 2) 

and multi-level linear regression models (Columns 3 and 4) predicting 

four pro-environmental behaviours yesterday by economic 

preferences and controls. 

 (1) (2) (3) (4) 

VARIABLES SUM_YP SUM_YP RTO_YP RTO_YP 

     

Risk taking 0.011 0.018 0.006 0.004 

 (0.028) (0.026) (0.015) (0.016) 

Patience 0.012 0.012 0.020 0.022 

 (0.031) (0.030) (0.016) (0.016) 

Present bias -0.015 -0.010 0.011 0.013 

 (0.024) (0.022) (0.014) (0.014) 

Pos. reciprocity  0.002 0.002 0.007 0.009 

 (0.030) (0.027) (0.015) (0.015) 

Neg. reciprocity 0.038 0.031 0.010 0.010 

 (0.026) (0.026) (0.013) (0.013) 

Altruism 0.083*** 0.072*** 0.021 0.019 

 (0.028) (0.027) (0.014) (0.014) 

Trust 0.021 0.029 0.013 0.015 

 (0.025) (0.024) (0.013) (0.013) 

Phase controls No Yes No Yes 

     

Constant 1.553*** 1.513*** 0.667*** 0.688*** 

 (0.174) (0.186) (0.103) (0.108) 

     

Observations 1,047 1,047 1,034 1,034 

Number of 

groups 

349 349 349 349 

The control variables are age, gender, marital status, people living in household, education, 

income, math proficiency, and day of the week. The Phase control variables are dummies for 

the activities, locations, and social interactions. Robust SE in parentheses. ***p<0.01, 

**p<0.05, *p<0.1. 
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S6 Principal component analysis 

Table S6.1 Principal component analysis using 20 pro-environmental behaviours 

yesterday. 

    C1    C2    C3    C4 

Recycled 0.134 0.019 -0.055 0.419 

Bought environmentally-friendly products 0.406 -0.053 0.101 0.073 

Bought products with less packaging 0.549 0.007 -0.110 0.034 

Used a reusable cup/container for drinking 0.052 -0.038 -0.019 0.457 

Bought seasonal, organic, and/or local food 0.395 -0.028 0.041 0.086 

Ate vegetarian/vegan food -0.183 -0.003 0.328 0.167 

Used reusable hygiene products 0.082 -0.040 0.156 0.313 

Made/produced a product myself -0.013 -0.025 0.040 0.424 

Reused or repaired items -0.051 0.019 0.223 0.288 

Used reusable bags when shopping 0.468 0.098 -0.101 -0.008 

Car-pooled 0.019 0.018 0.314 -0.339 

Walked or cycled for more than 5 minutes 0.250 0.015 0.088 -0.073 

Used public transport 0.158 -0.119 0.299 -0.295 

Switched off electrical appliances -0.031 0.436 -0.006 0.015 

Reduced heating 0.023 0.436 0.099 -0.092 

Saved electricity in the house 0.010 0.562 -0.034 -0.019 

Conserved water when it was not directly needed 0.040 0.459 -0.020 0.046 

Used both sides of the paper when drawing or printing 0.054 0.239 0.137 0.037 

Talked to someone about environmental issues -0.117 0.057 0.537 -0.001 

Educated myself about the environment 0.013 -0.042 0.524 -0.030 

 

 

Figure S6.1 Screeplot of eigenvalues after principal component analysis 
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Table S6.2 Economic preference measures predicting the principal component scores of 

‘eco-shopping behaviours.’  

 (1) (2) (3) (4) (5) (6) (7) 

        

Risk taking 0.080       

 (0.105)       

Patience  0.035      

  (0.109)      

Present bias   -0.083     

   (0.084)     

Pos. 

reciprocity  

   0.044    

   (0.112)    

Neg. 

reciprocity 

    0.167   

    (0.109)   

Altruism      0.324***  

      (0.116)  

Trust       0.147 

       (0.099) 

Controls Yes Yes Yes Yes Yes Yes Yes 

Constant 2.465*** 2.504*** 2.542*** 2.558*** 2.565*** 2.784*** 2.580*** 

 (0.606) (0.606) (0.603) (0.619) (0.595) (0.589) (0.613) 

N 349 349 349 349 349 349 349 

R2 0.097 0.096 0.098 0.096 0.103 0.124 0.102 

OLS estimates with robust SE in parentheses. The control variables are age, gender, marital 

status, people living in household, education, income, math proficiency, and day of the week. 

***p<0.01, **p<0.05, *p<0.1. 
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Table S6.3 Economic preference measures predicting the principal component scores of 

‘energy and water saving behaviours.’ 

 (1) (2) (3) (4) (5) (6) (7) 

        

Risk taking 0.097       

 (0.095)       

Patience  -0.038      

  (0.092)      

Present bias   0.027     

   (0.088)     

Pos. 

reciprocity  

   0.216**    

   (0.088)    

Neg. 

reciprocity 

    -0.041   

    (0.086)   

Altruism      0.071  

      (0.083)  

Trust       -0.032 

       (0.085) 

Controls Yes Yes Yes Yes Yes Yes Yes 

Constant 2.050*** 2.107*** 2.092*** 2.344*** 2.089*** 2.163*** 2.087*** 

 (0.607) (0.603) (0.605) (0.598) (0.604) (0.612) (0.607) 

N 349 349 349 349 349 349 349 

R2 0.101 0.099 0.099 0.115 0.099 0.100 0.099 

OLS estimates with robust SE in parentheses. The control variables are age, gender, marital 

status, people living in household, education, income, math proficiency, and day of the week. 

***p<0.01, **p<0.05, *p<0.1. 
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Table S6.4 Economic preference measures predicting the principal component scores of 

‘awareness behaviours.’ 

 (1) (2) (3) (4) (5) (6) (7) 

        

Risk taking -0.122*       

 (0.067)       

Patience  0.137*      

  (0.072)      

Present bias   -0.005     

   (0.063)     

Pos. reciprocity  
   0.082    

   (0.071)    

Neg. reciprocity 
    0.063   

    (0.074)   

Altruism      0.049  

      (0.066)  

Trust       -0.079 

       (0.072) 

Controls Yes Yes Yes Yes Yes Yes Yes 

Constant 0.058 -0.025 -0.007 0.083 0.013 0.033 -0.047 

 (0.490) (0.492) (0.489) (0.494) (0.493) (0.494) (0.493) 

N 349 349 349 349 349 349 349 

R2 0.083 0.086 0.076 0.079 0.078 0.077 0.079 

OLS estimates with robust SE in parentheses. The control variables are age, gender, marital 

status, people living in household, education, income, math proficiency, and day of the week. 

***p<0.01, **p<0.05, *p<0.1. 
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Table S6.5 Economic preference measures predicting the principal component scores of 

‘efforts to reduce consumption and waste.’ 

 (1) (2) (3) (4) (5) (6) (7) 

        

Risk taking 0.035       

 (0.049)       

Patience  0.073      

  (0.045)      

Present bias   0.024     

   (0.038)     

Pos. reciprocity  
   0.043    

   (0.050)    

Neg. reciprocity 
    -0.044   

    (0.052)   

Altruism      0.018  

      (0.047)  

Trust       0.011 

       (0.046) 

Controls Yes Yes Yes Yes Yes Yes Yes 

Constant -0.451 -0.441 -0.442 -0.385 -0.447 -0.417 -0.427 

 (0.289) (0.298) (0.292) (0.302) (0.295) (0.293) (0.295) 

N 349 349 349 349 349 349 349 

R2 0.094 0.099 0.093 0.095 0.095 0.093 0.093 

OLS estimates with robust SE in parentheses. The control variables are age, gender, marital 

status, people living in household, education, income, math proficiency, and day of the week. 

***p<0.01, **p<0.05, *p<0.1. 

 

 

 

 


