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Abstract

We find out-of-sample predictability of commodity futures excess returns using
forecast combinations of 28 potential predictors. Such gains in forecast accuracy
translate into economically significant improvements in certainty equivalent returns
and Sharpe ratios for a mean-variance investor. Commodity return forecasts are
closely linked to the real economy. Return predictability is countercyclical, and
the combination forecasts of commodity returns have significantly positive predict-
ive power for future economic activity. Two-factor models featuring innovations
in each of the combination forecasts and the market factor explain a substantial
proportion of the cross-sectional variation of commodity and equity returns. The
associated positive risk prices are consistent with the Intertemporal Capital Asset
Pricing Model (ICAPM) of Merton (1973), given how the predictors forecast an
increase in future economic activity in the time-series. Overall, combination fore-
casts act as state variables within the ICAPM, thus resurrecting a central role for
macroeconomic risk in determining expected returns.
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1. Introduction

Compared to the vast literature on predictability of aggregate stock, bond, and currency
returns (see, for example, Cochrane, 2011 and the references therein), the predictability
of aggregate returns on commodities has received relatively little attention. This is des-
pite the fact that commodity prices play an important role in explaining fluctuations in
macroeconomic activity and help forecast it (Hamilton, 2009). Hence, they are natural
candidates as drivers of variation of risk premia and, therefore, as predictors of asset
returns. Also, interest in commodities as an alternative investment asset class has grown
tremendously in recent years (Fuertes, Miffre, and Rallis, 2010; Erb and Harvey, 2016).

In this paper, we provide a comprehensive study of the time-series predictability
of aggregate commodity futures excess returns - measured as the return on the S&P
Goldman Sachs Commodity Index (S&P GSCI) in excess of the one-month T-bill rate. We
consider return-forecasting models that differ in the way they allow for variability of the
futures conditional mean return based on 28 potential predictors. In addition to forecasts
from individual predictive models, we also consider combination forecast methods that
combine forecasts from the individual models.1 This is important considering that the
forecasting literature has identified two important issues that typically plague individual
return-forecasting models, leading to their poor out-of-sample performance: parameter
instability and model uncertainty (see, for example, Stock and Watson, 1996; Paye and
Timmermann, 2006, Rapach and Wohar, 2006). We implement 16 combination forecasts
ranging from simple averaging schemes of individual forecasts to more sophisticated ones,
for a total of 44 time-varying expected excess return models. As a benchmark model,
we consider a simple no-predictability (historical average) return model against which
we compare the performance of our time-varying mean models. The data set consists of
monthly observations for the period from January 1976 to December 2016.

To measure the statistical performance of the futures excess return forecasts, we use
the out-of-sample (OOS) R2 which measures the proportional reduction in mean squared
forecast error (MSFE) attainable by using the time-varying forecasts instead of the histor-
ical average forecast. Consistent with the evidence for equities in Welch and Goyal (2008),
we find that the majority of the individual predictive model forecasts generate negative
and statistical insignificant OOS R2. On the other hand, we find positive out-of-sample
1A simple diversification argument is often used to justify the use of combination forecast methods. That
is, their ability to diversify against model instability and uncertainty, akin to how portfolio diversification
reduces the risk of investment portfolios. For an introduction and survey of the literature on combination
forecast methods, see Hendry and Clements (2004) and Timmermann (2006).
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R2 values of 0.30%–4.96%, which are statistically significant, for all the combination fore-
casts. To explain the different performance of the individual and combination forecasts,
we test the stability of the forecasting ability of each using the Giacomini and Rossi’s
(2009) forecast breakdown test and by conducting an in-depth visual comparison of their
relative MSFEs. The results suggest that the poor out-of-sample performance of the in-
dividual forecasts can be attributed to the instability of the models’ parameters used in
generating the forecasts. The ability of forecast combinations to diversify against model
instability support their superior forecasting performance.

We evaluate the economic significance of return predictability by examining the port-
folio benefits for an investor. We consider a mean-variance investor with a relative risk
aversion of three who exploits predictability when forming optimal portfolios composed
of the commodity futures index and risk-free T-bills. We find that the gains in predictive
accuracy from combination forecasts translate into higher Sharpe ratios and certainty
equivalent return gains for the investor. For example, the investor would be willing to
pay a fee of 3.4% per annum to have access to the portfolios generated by the combina-
tion forecasts relative to the one generated by the benchmark forecast. In contrast, these
findings are reversed for individual forecasts.

We then examine the drivers of commodity futures return predictability. First, we ad-
dress the sources of predictability by analysing the extent to which futures excess return
predictability is related to the business cycle using the NBER-dated business cycle indic-
ator. We find that return predictability is largely concentrated in economic recessions,
with R2 values as high as 18%. Second, we assess whether the ability of the combination
forecasts to predict commodity returns stem from their ability to proxy for state variables
that drive discount rates. To do so, we follow the advice in Cochrane (2005, 2007) and
check whether combination forecasts predict economic activity. If time-varying expected
returns are related to time-varying discount rates, then the predictors used to forecast
asset returns (in our case commodity returns) should also have forecasting power for fu-
ture economic activity. In a nutshell, this is because, in dynamic equilibrium, aggregate
returns must reflect aggregate economic activity and vice versa. Consistent with this
notion, we find that combination forecasts predict increases in economic activity proxied
by the smoothed recession probability of Chauvet (1998), Aruoba, Diebold, and Scotti
(2009) business condition index, the Chicago Fed national activity index, log growth
in industrial production index, change in total capacity utilization, and log growth in
total nonfarm payroll employment with R2 values ranging from 2% to 11% for 1-, 3- and
12-month horizons.
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Taken together, these results suggest that the ability of combination forecasts to pre-
dict commodity returns boils down to their ability to capture time-varying discount rates.
That is, an implication of the ability of combination forecasts to predict both aggregate
commodity returns and future economic activity is that they could be valid state variables
within Merton’s (1973) intertemporal capital asset pricing model (ICAPM).2 Therefore,
as a final contribution, we test this implication by estimating a two-factor models that
includes a state variable (combination forecast of commodity returns) next to the market
factor, using the cross-section of 23 individual commodity futures and 25 equity portfolios
formed on size and book-to-market as test assets. Our results show significant positive
risk prices associated with the state variables, consistent in sign with how the same vari-
ables forecast an increase in future economic activity. Our results thus imply consistency
of the predictability in the time-series and the cross-section of commodity returns, an
important implication of the ICAPM of Merton (1973).

Our study is related to a strand of literature that investigates the time-series predict-
ability of commodity returns (see, for example, Hong and Yogo, 2012; Gorton, Hayashi,
and Rouwenhorst, 2013; Gargano and Timmermann, 2014; Ahmed and Tsvetanov, 2016,
and the references therein). However, we depart from these studies along the following
dimensions. First, we examine commodity return predictability using a much broader set
of predictors selected from the commodity return, stock return, bond return, and macroe-
conomic predictability literature. Second, we address the impact of parameter instability
and uncertainty about return prediction models by implementing forecast combination
methods. In this regard, our approach is similar to Gargano and Timmermann, 2014.
While they use commodity spot indexes, we study commodity futures and use a much
broader set of forecast combination methods. We are motivated by studies such as Rapach
and Wohar (2006) and Welch and Goyal (2008), among others, who show that the poor
out-of-sample forecasting performance of predictive models of U.S. stock excess returns
might be a direct consequence of structural breaks and uncertainty in the underlying data
generating process. Many studies have shown that the use of combination forecasts leads
to improved forecast performance in a variety of settings. See, for example, Stock and
Watson (2003, 2004) for forecasting inflation and output growth for seven developed coun-
tries, and Timmermann (2006) and Rapach, Strauss, and Zhou (2010) for forecasting U.S.
2State variables that forecast macroeconomic activity (recession state variables) should command a risk
premium since they are of hedging concern to investors. The argument is that besides stocks and bonds,
most investors own other non-marketed assets such as labour income. Therefore, aggregate stock returns
could be a relatively poor proxy for the return on aggregate wealth, which is the investment opportunity
set of ultimate importance to the representative investor (Roll, 1977).
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stock excess returns. Third, we address concerns raised by previous studies that find that
statistical evidence of return predictability does not always translate into economic signi-
ficance (Ahmed and Tsvetanov, 2016 for commodity futures returns; Della Corte, Sarno,
and Tsiakas, 2009 and Potì, 2018 for exchange rate returns; Thornton and Valente, 2012
and Sarno, Schneider, and Wagner, 2016 for bond returns). We fill this gap by examining
the utility gains that accrue to risk-averse investors who exploit predictability of commod-
ity futures excess returns relative to the no-predictability benchmark in a mean-variance
optimal asset allocation framework. Finally, our study goes further by linking the ability
of combinations of individual predictors to forecast aggregate commodity returns to their
ability to predict future economic activity and capture time-varying discount rates. In
doing so, we specify, test and offer empirical support for a novel version of the ICAPM
of Merton (1973) where the innovations to combination forecasts of commodity returns
act as valid state variables.

The rest of the paper is organised as follows. Section 2 details the commodity futures
returns data and predictor variables and presents descriptive statistics. It also details the
return prediction models we consider, and the framework for evaluating out-of-sample
return predictability. In Section 3, we present and discuss in-sample and out-of-sample
evidence of commodity futures excess return predictability. Section 4 analyses the link
between commodity return predictability, portfolio performance and the business cycle.
In this section, we also present our ICAPM-type two factor model and discuss its implic-
ations for time-series and cross-sectional return predictability. Section 5 concludes.

2. Data and Methodology

2.1. Return and Predictor Data

Our dataset contains monthly observations for the sample period January 1976 to Decem-
ber 2016. It includes primarily end-of-month total return data on the S&P Goldman Sachs
Commodity Index (S&P GSCI),3 a fully investable commodity index, downloaded from
Bloomberg. Our use of this index rather than individual commodities or more special-
3Three S&P GSCI indices are published: excess return, total return and spot. The excess return index
measures the returns accrued from investing in uncollateralized nearby commodity futures, the total
return index measures the returns accrued from investing in fully-collateralized nearby commodity
futures, and the spot index measures the level of nearby commodity prices. Thus, the excess return and
total return indices provide useful representations of returns available to investors from investing in the
S&P GSCI. For more information, see https://www.goldmansachs.com/gsci/insert.html.
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ized commodity spot indices is because it is designed to resemble the total return on
an investable portfolio of commodities, hence it realistically reflects transaction costs.
Compared to equally weighted portfolios of individual commodity futures (considered,
for example, by Hong and Yogo, 2012; Gorton et al., 2013; Ahmed and Tsvetanov, 2016,
and the references therein)4 its advantage is that, as well as being diversified, its com-
position resembles realistic portfolios of investment managers seeking to gain exposure
to the broad commodity market, viewed as an asset class. We compute excess returns as
the log return on S&P GSCI less the log return on a one-month T-bill.5 Subtraction of
the risk-free rate is needed because the total return index measures the returns accrued
from investing in fully-collateralized nearby commodity futures.6

As predictors, we consider a set of 28 variables. They include commodity market,
stock market, treasury market, corporate bond market, currency market, and macroeco-
nomic variables. The commodity and currency market variables include the futures basis
(namely, the difference between the futures and the spot price), crude oil production,
crude oil inventory, and the exchange rate of major commodity exporting countries, such
as Canada, South Africa, India, and New Zealand, against the U.S. dollar. These are all
predictors that have been shown, in the prior studies on commodity return predictability
mentioned earlier, to have predictive power for commodity spot and futures returns. For
example, Gorton et al. (2013) find that individual commodity futures risk premia are
driven by the basis and inventory levels. Their role can be rationalized with the classical
theories of storage (Kaldor, 1939; Brennan, 1958) and normal backwardation (Keynes,
1930; Hicks, 1939), which imply that commodity market variables such as basis, influ-
enced by hedging pressure, and inventory should exhibit predictive power for commodity
returns.

The stock, treasury, and corporate bond market variables include the dividend-price
ratio, the return on the S&P 500 stock market index, the yield on 3-month treasury
bill, the term spread default premium, among others. The definition of the predictors,
4Due to the high storage, transportation and insurance costs associated with holding physical com-
modities, individual and institutional investors have traditionally relied on commodity futures to gain
exposure to commodities. The S&P GSCI is the benchmark commodity futures tracked by investment
vehicles such as commodity-based exchange traded products through which individual and institutional
investors gain broad exposure to the commodities market (see, for example, Jensen, Johnson, and
Mercer, 2000; Jensen and Mercer, 2011; and Erb and Harvey, 2016).

5The T-bill rate is downloaded from Amit Goyal’s website, http://www.hec.unil.ch/agoyal/.
6The total return (i.e., the S&P GSCI total return index) is the measure of commodity returns that is
completely comparable to returns from a regular investment in the S&P 500 (with dividend reinvest-
ment) or a government bond, while the return on the excess return index is comparable to the return
on the S&P 500 above cash.
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motivation for their use, and relevant prior commodity return predictability studies are
summarized in Table 1.

[Insert Table 1 about here]

Most of these variables are considered in studies of U.S. equity excess return predictab-
ility (Welch and Goyal, 2008), treasury and corporate bond excess return predictability
including Gargano, Pettenuzzo, and Timmermann (2017) and Lin, Wu, and Zhou (2017),
and references therein. Recent evidence such as Tang and Xiong (2012) and Hamilton
and Wu (2015) show that the financialization of commodities has led to the commodities
market becoming more integrated with capital markets, and explains why the dividend-
price ratio of the S&P 500 stock index could be informative about future commodity
returns.

Finally, the macroeconomic variables include, among others, inflation, money stock,
unemployment rate, industrial production growth, degree of capacity utilization in U.S.
manufacturing, and a global real economic activity index. Because of short-term mis-
matches between the demand and supply of commodities due to the business cycle, the
general state of the economy is expected to influence (hence, be captured by) commodity
prices (see, for example, Bessembinder and Chan, 1992). Gargano and Timmermann
(2014) show that macroeconomic variables such as the 3-month treasury bill rate, the
term spread, the growth rate of consumer price index, money supply, among others, have
forecasting power for raw industrials and metals commodity index returns.

Panel A of Table 2 presents descriptive statistics of monthly excess returns on the S&P
GSCI for the full sample period. We report the number of observations, the mean, stand-
ard deviation, minimum and maximum values, first-order autocorrelation and Sharpe
ratio of excess returns. The table shows that the mean excess return was 0.14% with
volatility close to 6%. The index thus recorded an annualized Sharpe ratio of 0.09. The
low mean return and high standard deviation suggests that static positions in commod-
ities would be unattractive as a stand-alone investment strategy on a risk-adjusted basis.

Panel B of Table 2 presents the summary statistics for the predictor variables. The
data on the variables used in computing the statistics are in percent except TBL, CTBL,
TMS, CTMS, YS, CDFP which are in annualized percent because the t-bill and corporate
bond rates data are annualized. Except for the commodity currencies, LTR, DFR, M1,
and UNRATE, the other predictors are strongly positively autocorrelated with first-order
autocorrelation coefficients between 0.28 and 0.99 encouraging the use of test statistics
that are robust to autocorrelation when testing for predictability.
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[Insert Table 2 about here]

2.2. Models for Forecasting Returns

This section details the individual and combination forecasting models used in our study
of commodity excess-return predictability. The individual forecasting models condition
on a single predictive variable and generate predictions, to which we refer as “individual
forecasts”, based on one of the 28 predictors at a time. The combination forecasting
models are 16 different combinations of the individual forecasts. We refer to their pre-
dictions as “combination forecasts”. The section also details our procedure for generating
(pseudo) out-of-sample forecasts using these models and statistical and economic meas-
ures of out-of-sample forecasting performance.

2.2.1. Individual Forecasts

Following much of the literature on return predictability, we model commodity returns
as

rt+1 = αi + βixi, t + εt+1, (1)

where rt+1 is the continuously compounded return on the (fully collateralized) commodity
futures index in excess of the risk-free rate at time t + 1, xi, t is one of the 28 predictor
variables of interest available at time t, and εt+1 is a zero-mean error term.

We estimate first the individual forecasting models to generate (pseudo) out-of-sample
forecasts based on a single predictive variable at a time and then combine these individual
forecasts to obtain the combination forecasts (as described in the next sub-section). The
out-of-sample forecasts are generated using a recursive (expanding window) estimation
scheme as follows. Suppose T observations are available for rt and xi, t. We divide the
total sample into two parts: an in-sample period containing the first n = 167 observations
(February 1976 to December 1989) and an out-of-sample period containing the remaining
P = T − n = 312 observations (January 1990 to December 2016). The choice of length
of the in-sample estimation period enables us to have a sufficiently long out-of-sample
forecast evaluation period. Hansen and Timmermann (2012), for example, show that
using a relatively large proportion of the available sample for forecast evaluation leads to
better size properties of the test statistics of predictive ability. The first out-of-sample
forecast of commodity excess returns based on the xi,t predictor is given by

r̂i,n+1 = α̂i,n + β̂i,nxi, n, (2)
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where α̂i,n and β̂i,n are the ordinary least squares (OLS) estimates of αi and βi in (1),
respectively, from regressing {rt}nt=2 on a constant and {xi,t}n−1

t=1 . The next out-of-sample
forecast is given by

r̂i,n+2 = α̂i,n+1 + β̂i,n+1xi, n+1, (3)

where α̂i,n+1 and β̂i,n+1 are the OLS estimates from regressing {rt}n+1
t=2 on a constant

and {xi,t}nt=1. We proceed in this recursive fashion until the end of the out-of-sample
period, generating a time-series of P one-step-ahead out-of-sample forecasts of returns
{r̂i,t+1}T−1

t=n .

2.2.2. Combination Forecasts

A big issue that arises when studying return predictability is to decide what economic
variables have predictive power for asset returns, especially when the set of possible
predictors is large. One possibility is to use financial theory to guide the selection of the
relevant variables. The difficulty is that economic theory alone may not provide enough
guidance and so one is likely to ignore potentially important predictors. There are also
the important issues of structural breaks resulting from changes of the parameters of
the underlying data generating process and estimation uncertainty surrounding return
forecasting models, leading to poor out-of-sample performance (see, for example, Paye
and Timmermann, 2006; Rapach and Wohar, 2006; Welch and Goyal, 2008).

Combination forecasts have been shown to perform well out-of-sample (see, for ex-
ample, Stock and Watson, 2004; Timmermann, 2006; Rapach et al., 2010). As suggested
by Hendry and Clements (2004), there are several potential explanations for why forecast
combination methods might work. The common thread is that they provide a means
to diversify against estimation sampling error of the forecasting model parameters and
model uncertainty. The latter, in turn, derives from model instability in the presence of
possible structural breaks in the data generating process as well as the fact that all mod-
els are likely misspecified. Both sets of circumstances are impossible (or very difficult) to
model in full and therefore an advantageous course of action is to diversify against the
risk of forecast errors to which they give rise.7

We consider three types of combination forecasts: 4 simple combination forecasts; 9
performance-based forecasts; and 3 factor model forecasts. Our combination forecasts
use individual predictive model forecasts as building blocks and differ in the way weights
7Attempting to correct the individual models in any particular way, in a financial portfolio management
analogy, would correspond to hedging the forecasting error risk instead of diversifying it.
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assigned to the individual forecasts are computed. Generally, it entails (i) estimating a
regression of returns on each of the predictors, (ii) forming individual forecasts based on
the estimated parameters from each of the regressions, and (iii) combining the individual
forecasts to generate a single forecast. Formally, let r̂i, t+1 denote the out-of-sample fore-
cast of rt+1 computed at time t based on the ith predictor variable as given by (2). A
combination forecast at time t + 1, r̂cf

t+1, is a weighted average of the individual out-of-
sample forecasts:

r̂cf
t+1 =

N∑
i=1

wi, tr̂i, t+1, (4)

where wi, t is the weight assigned to the ith forecast with ∑N
i=1 wi, t = 1 and N is the

number of individual forecasts.
The first set of combination forecasts we consider use simple averaging schemes: mean,

trimmed mean, median, and weighted-mean forecasts. They are very easy to generate
and do not take into account the historical performance of the individual forecasts. Stock
and Watson (2003, 2004) find that simple combining methods work well in forecasting
inflation and output growth for seven developed countries using a large number of po-
tential predictors compared to more sophisticated methods. Rapach et al. (2010) report
similar results for forecasting the U.S. stock excess returns. Smith and Wallis (2009)
argue that the reason why simple combination methods work better compared to more
sophisticated methods is because there is little or no estimation error associated with
estimating their combining weights. The mean combination forecast, r̂Mean

t+1 , is the av-
erage of the N (N=28) individual predictive model forecasts that assign equal weights,
wi, t = 1/N, i = 1, ..., N , to each forecast defined in (2). The trimmed mean forecast,
r̂
Trimmed mean
t+1 , sets in (4) wi, t = 0 for the lowest and highest forecasts and wi, t = 1/(N−2)
for the remaining individual forecasts. Removing the lowest and highest forecasts before
combining mitigates the influence of outliers on the forecasts. The median combination
forecast, r̂Median

t+1 , is the sample median of the 28 individual predictive model forecasts.
The weighted-mean forecast (r̂Weighted mean

t+1 ) proposed by Bates and Granger (1969) spe-
cifies the combination weights to be proportional to the inverse of the estimated residual
variance, σ2

i, t, for the individual predictive regression models given by (1),

r̂
Weighted mean
t+1 =

1/(σ̂2
1, t)∑N

i=1 1/(σ̂2
i, t)

r̂1,t+1 +
1/(σ̂2

1, t)∑N
i=1 1/(σ̂2

i, t)
r̂2,t+1 + ...+

1/(σ̂2
1, t)∑N

i=1 1/(σ̂2
i, t)

r̂N,t+1, (5)

The second set of combination methods consist of several performance-based combin-
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ation forecasts. First, we compute the discounted mean squared forecast error (DMSFE)
combination forecast following Stock and Watson (2004). Here, the combining weights de-
pend inversely on the historical performance of the individual predictive model forecasts
over a holdout out-of-sample period,

wdmsfe
i, t =

φ−1
i, t∑N

i=1 φ
−1
i, t

, φi, t =
t−1∑
s=1

θt−1−s (rs+1 − r̂i, s+1) (6)

where θ ∈ (0, 1) is the discount factor.8 When θ < 1, greater importance is attached to the
individual predictive model forecasts with the lowest mean squared forecast error (MSFE).
By attaching more weight on the recent forecasting accuracy of the individual predictive
models, thereby allowing time-variation in the data generating process of returns, the
DMFSE should work relatively well. In the special case where there is no discounting
(θ = 1) and forecasts are uncorrelated, this leads to the optimal combination weights
proposed by Bates and Granger (1969) given by (5). We consider θ values of 0.9 and
0.7 to examine the impact of discounting forecast further back in time. Rapach et al.
(2010) also show that the DMSFE combination forecasts of U.S. stock excess returns
consistently outperforms a constant expected excess return benchmark forecast.

Second, we consider an Approximate Bayesian Model Averaging (ABMA) combination
forecast following Garratt, Lee, Pesaran, and Shin (2003) and choose the combining
weights as follows:

wabma
i, t = exp(4i,t)∑N

i=1 exp(4i,t)
, (7)

where4i,t = AICi,t−maxi(AICi,t) and AICi,t is the Akaike Information Criterion of model
i. The ABMA thus gives higher weight to models with better historical fit as measured
by the AIC. The ABMA combination has the advantage that, it has a firmer information-
theoretic rationale and robust to parameter and model uncertainty. For example, Detzel
and Strauss (2017) find that DMSFE and ABMA combination forecasts generate more
accurate forecasts of the value weighted return on Fama-French thirty eight and forty
eight industry portfolios compared to the mean combination forecast.

Third, we use so-called complete Subset Regression forecasts, a class of combina-
tion forecasts recently proposed by Elliott, Gargano, and Timmermann (2013), based
on equally-weighted averages of all forecasts predictive regression models that include a
8The DMSFE combination forecast require a holdout evaluation period to estimate the combining
weights. However, note that the first out-of-sample forecast of this method is simply calculated as
the mean combination forecast because there is no past individual forecast used to form the DMSFE
weights at this time point.
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fixed number of the predictor variables. They show that the complete subset regression
forecast controls estimation error by trading off the bias and variance of the forecast
errors similarly to generating the mean-variance efficient frontier of individual assets in
portfolio theory. In an application to studying the predictability of U.S. stock excess
returns, Elliott et al. (2013) find that subset regression combination forecasts produce
more accurate forecasts than approaches based on equally-weighted combinations of fore-
casts from individual return prediction models or forecasts generated by bagging, ridge
regression or Bayesian model averaging. Suppose the number of potential predictors that
enter a regression is N . A subset regression combination is then defined by the set of
regression models that include a specified number of regressors, k ≤ N . The k ≤ N

dimensional subset forecasts are then averaged to generate the forecasts. In our analysis,
we use a maximum k value of 7. Given N regressors in full and k regressors chosen
for short models, one has to average over the CN

k = N !/(k!(N − k)!) subset regression
forecasts combinations, where ! is the factorial function. As a special case, when k = 1,
this results in the mean combination forecast. Formally, the Subset Regression forecast
is thus given by

r̂
Subset
t+1 = 1

CN
k

CNk∑
i=1

β̂i, tx
′
i, t, (8)

where dim(xi, t) = k.
Finally, following Stock and Watson (2002a,b), we generate out-of-sample forecasts

by estimating a predictive regression based on a diffusion index that assumes a latent
factor structure:

r̂pc
t+1 = α̂ +

K∑
k=1

β̂k, tFk, t, (9)

where Fk, t is the kth principal component extracted from our 28 predictor variables.
Diffusion indexes provide a convenient way of extracting common factors from a large
number of potential predictor variables. Neely, Rapach, Tu, and Zhou (2014), for ex-
ample, show that this approach helps forecast U.S. stock excess returns. We consider
models where the principal components are selected via the Akaike information criterion
(AIC), the Bayesian information criterion (BIC), and the adjusted R2 statistical model
selection criterion. We set the maximum number of principal components to 4.

12



2.3. Measures of Predictability

2.3.1. Statistical Measures

Motivated by the debate on in-sample vs. out-of-sample predictability (see, for example,
Inoue and Kilian, 2005), we measure and evaluate evidence on the predictive ability of
our forecasting models of commodity excess-returns both in-sample and (pseudo) out-of-
sample.

Our measures of in-sample predictability are the t-statistic of the significance of βi
in (1) estimated over the full sample from February 1976 to December 2016 and the
coefficient of determination, R2. Because the error term can be heteroskedastic and
autocorrelated, we compute the t-statistic using heteroskedasticity and autocorrelation
consistent standard errors à la Newey and West (1987).

Following a popular approach in the return predictability literature, we measure the
accuracy of the forecasts generated by the candidate (individual and combination) mod-
els relative to a no-predictability benchmark return forecast using the Campbell and
Thompson (2008) out-of-sample R2 statistic, R2

oos, given by:

R2
oos = 1−

1
T−n

T−1∑
t=n

(
rt+1 − r̂t+1|t

)2

1
T−n

T−1∑
t=n

(
rt+1 − r̄t+1|t

)2
, (10)

where rt+1 is the realized log return at time t+ 1, r̂t+1|t is a candidate forecast, and r̄t+1|t

is the benchmark forecast generated by the constant expected excess return model that
includes only a constant, α, alongside the error term:

rt+1 = α + εt+1, (11)

This is a popular benchmark model that has been used widely in studies of return predict-
ability (see, for example, Welch and Goyal, 2008; Rapach and Zhou, 2013; Ahmed and
Tsvetanov, 2016; and the references therein). The use of this model as the benchmark is
also consistent with the hypothesis that commodity futures prices follow a random walk
so their returns are unpredictable (Alquist and Kilian, 2010; Chinn and Coibion, 2014).
We refer to it as the historical average (HA) model. We use the forecast from this model
as the benchmark forecast against which all other forecasts are compared in assessing
commodity return predictability.
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The R2
oos statistic measures the proportional reduction in mean squared forecast error

(MSFE) for a candidate forecast relative to the HA forecast. A positive R2
oos implies the

candidate forecast outperforms the HA forecast as it has a lower MSFE. We evaluate
the statistical significance of the R2

oos statistic using the p-value of the MSFE-adjusted
statistic of Clark and West (2007). The statistic tests the null hypothesis of equal out-of-
sample predictive ability of the candidate model forecasts against the one-sided (upper-
tailed) alternative hypothesis that HA forecast MSFE is greater than the MSFE of the
candidate forecast. Under the null of no-predictability, the HA return forecast is expected
to have a lower MSFE.

In addition to carrying out our formal test of significance of the R2
oos, we assess the

stability of our forecasts also by examining their relative MSFEs defined as the ratio of
the MSFE of a predictive forecast to the MSFE of the HA benchmark forecast, following
Stock and Watson (2003). To this end, we divide our out-of-sample forecast period into
two halves and compute the MSFEs over the two periods. Forecasts that are stable should
have relative MSFEs less than one in both periods, whereas unstable forecasts will have
relative MSFEs less than one in one period and greater than one in another period or
greater than one in both periods.

Also, we use the forecast breakdown test of Giacomini and Rossi (2009) to test the
stability of the individual predictive models. This test is designed to detect forecast
breakdowns by assessing whether a model that displays good forecasting performance in
one sample period will continue to do so in other sample periods. In our framework, the
null hypothesis of the forecast breakdown test is that the out-of-sample MSFE of a model
is equal to its in-sample MSFE. We test this hypothesis using a one-sided t-statistic for
our recursive forecasts. The one-sided t-test focusses on the alternative hypothesis that
the out-of-sample MSFE of a model is higher than its in-sample MSFE.

2.3.2. Economic Measures

We next detail the asset allocation framework that we use to evaluate the risk-adjusted
economic significance of commodity return predictability. We test whether any statistical
evidence of commodity return predictability translates into economic gains for a risk-
averse investor. We are motivated by studies such as Della Corte et al. (2009) and Potì
(2018) for exchange rate returns, and Thornton and Valente (2012) and Sarno et al. (2016)
for bond return predictability, who find that statistical evidence of return predictability
does not always translate into economic significance.
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Following Campbell and Thompson (2008), we consider a mean-variance investor who
monthly allocates her wealth between commodities futures and risk-free T-bills using
either the individual (combination) forecasts or HA forecast of futures excess returns. The
investor optimally allocates the following share of her portfolio to commodities during
the subsequent month t+ 1

wt =
(

1
γ

)(
r̂t+1

σ̂2
t+1

)
, (12)

where γ is the investor’s relative risk aversion coefficient, r̂t+1 is the simple excess return
forecast and σ̂2

t+1 is the excess return variance. Like Campbell and Thompson (2008), we
assume that the investor uses five-year rolling-windows of past returns to estimate the
variance of commodity futures excess return. We set the risk aversion coefficient equal
to 3 and allow for a moderate portfolio leverage of 50%, similar to other studies such as
Campbell and Thompson (2008) and Rapach, Ringgenberg, and Zhou (2016). Since we
use futures, we do not need to impose short-sales constraint.

To evaluate the performance of the portfolios generated by the individual and com-
bination forecasts, we first compute the realized average utility or certainty equivalent
return (CER) given by

CER(rp) = µ̂p −
1
2γσ̂

2
p, (13)

where µ̂p and σ̂p are the mean and standard deviation, respectively, of portfolio excess
returns over the forecast evaluation period. The CER is the return on a risk-free T-bill
that the investor would be willing to accept rather holding a risky portfolio. The CER
for the investor who uses the historical average forecast to compute portfolio weights is
calculated similarly. Our direct measure of the economic significance of return predict-
ability is the CER gain (4): the difference between the CER of the portfolio generated
by the individual or combination forecast and the portfolio generated by the HA return
forecast. We annualize the CER gain so that it can be interpreted as the annual portfolio
management fee that the investor would be willing to pay to have access to the portfolio
generated by the individual or combination forecast relative to the portfolio generated
by the HA return forecast. Positive values indicate that the time-varying predictabil-
ity models perform better than the HA model. A CER gain of 2% or more is usually
considered to be economically significant (see, for example, Rapach et al., 2010, and the
references therein). We also report the annualized Sharpe ratio (SR) computed as the
ratio of the mean of portfolio excess returns to its standard deviation.

A realistic assessment of the profitability of any dynamic asset allocation strategy
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should take into account the effect of transaction costs. With sufficiently high costs of
trading, we should expect the portfolio strategies based on the individual and combination
forecasts to be more costly to implement compared to the strategy based on the HA
return forecast because of fluctuations in their portfolio weights. We account for the
effect of transaction costs in two ways. First, we compute our performance measures
for the investor’s realized portfolio returns net of transaction costs, where we set the
proportional transaction costs to 20 basis points per dollar of trading. Second, following
Della Corte et al. (2009), we calculate the break-even proportional transaction costs, τbe,
that will render the investor indifferent between two competing portfolio strategies as

τbe =
r̄fc
p − r̄ha

p

TOfc − TOha , (14)

where r̄FCp and r̄HAp are the portfolio mean returns of the individual (combination) and
HA portfolio strategies, respectively, and TOfc and TOha are their respective average
turnover. In comparing a dynamic portfolio based on individual (combination) forecast
to that of static strategy based on HA forecast, an investor who faces actual transaction
costs lower than the break-even cost will prefer the dynamic strategy. We report the τbe

in basis points, and to facilitate the interpretability of our results, do so only when the
CER gain is positive.

3. Empirical Results

3.1. In-Sample Predictability

Table 3 reports the OLS estimates of the slope coefficient, β, the associated t-statistic
computed using Newey andWest (1987) autocorrelation and heteroskedasticity-consistent
standard errors, and the R2 statistic. From the table, we can see that of the 28 predictor
variables, one third of these (namely LTR, CDFP, DFR, INDPRO, CUTIL, CFNAI, CLI,
BCI, and CCI) display statistically significant predictive power for commodity futures
excess returns at conventional levels. The R2 statistics for these nine variables range
from 1.20% to 6.35%. The CLI and BCI predictors display substantial predictive ability
at the 1% level with R2 statistics of 3.65% and 6.35%, respectively.

The last two columns of Table 3 report R2 statistics separately for the National
Bureau of Economic Research (NBER)-dated business-cycle expansions and recessions.
To gauge the strength of predictability during the business cycle, we compute the following
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version of the conventional R2 statistic for business-cycle expansions (EXP) and recessions
(REC):

R2
c = 1−

∑T
t=1 I

c
t ε̂

2
i,t∑T

t=1 I
c
t (rt − r̄)2 for c = exp, rec, (15)

where Iexp
t (Irec

t ) is an indicator function that takes a value of one when month t is an
expansion (recession) and zero otherwise, ε̂i,t is the fitted error based on the full estimate
of the predictive regression model in (1), r̄ is the full sample mean of rt, and T is the full
sample observations. The table shows that commodity return predictability is stronger
in recessions relative to expansions for 23 out of the 28 predictors. For example, the R2

rec

for the DFR, INDPRO, CLI, and BCI quadruples during recessions.

[Insert Table 3 about here]

3.2. Out-of-Sample Predictability

The in-sample tests of predictability reported in Table 3 are not based on truly ex ante
measures of future expected commodity futures returns as the predictions would not
have been available to an investor in real time because we use the full sample data for
estimation. Further, there is the concern of in-sample overfitting which could overstate the
true extent of predictability. To circumvent this problem and guard against overfitting,
we conduct out-of-sample tests for predictability.

3.2.1. Tests of Out-Of-Sample Predictability

Table 4 summarizes the performance of the individual and the combination forecasts
relative to the HA benchmark forecast for one-month ahead forecast of commodity futures
returns. The table reports the mean squared forecast error, the R2

oos as defined in (10)
and the MSFE-adjusted statistic. The out-of-sample statistics are based on forecasts
generated using the recursive estimation approach detailed in the earlier section. As
explained therein, statistical significance of R2

oos > 0 is assessed using the p-value of the
MSFE-adjusted statistic of Clark and West (2007).

In Panel A of Table 4, we report results for the individual predictive regression fore-
casts. Most of the individual predictors fail to outperform the HA forecast in terms of
MSFE, similar to the evidence reported in many of the extant return predictability stud-
ies (see, for example, Welch and Goyal, 2008; Gargano and Timmermann, 2014; Neely
et al., 2014). Only for twelve out of the 28 predictors do we find a positive R2

oos, with
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MSFEs significantly less than the MSFE of the HA forecast at the 5% level. The excep-
tions are the impressive R2

oos statistics of 3.80% and 6.92% recorded for CLI and BCI,
and these are significantly greater than zero at the 1% level. In comparison, for the four
variables that exhibit the second greatest predictive ability, namely CDFP, DFR, CUTIL,
and CFNAI, the R2

oos ranges from 1.13% to 3.15%. Pagano and Pisani (2009) find similar
results when examining the possibility of forecasting crude oil futures returns with the
CLI as a predictor. CLI and BCI variables are indicators of global economic activity and
provide early warning of cyclical conditions in the world economy, being combinations of
key economic indicators (including opinions about economic activity, financial and mon-
etary data, labour market statistics, information on production, stocks and orders on
finished goods, and foreign trade9). The rather good performance of these two variables
suggests a possible link between forecasting ability for commodity returns and ability to
forecast economic activity, which we shall investigate later.

Panel B of Table 4 report results for the combination forecasts. In this case, the
findings are much more supportive of predictability. The R2

oos generated by each of
the combination forecasts is in some cases impressive, ranging from 0.30% for the Mean
combination forecast to 4.96% for the PC (IC = BIC) combination forecasts, and all
outperform the HA benchmark forecast. All the combination forecasts have R2

oos that
are significantly greater than zero at the 1% level except the Median and PC (IC=BIC)
forecasts that have R2

oos significantly greater than zero at the 5% level.

[Insert Table 4 about here]

3.2.2. Tests of Stability of Return Forecasts

As earlier hypothesized, parameter instability of the individual predictive models may
explain their poor out-of-sample performance as reported in Table 4, and why forecast
combinations work well to improve forecast accuracy.

We assess the stability of our forecasts by examining their relative MSFEs. We divide
our out-of-sample forecasts period in two parts: the first period from January 1990 to
December 2003 and the second period from January 2004 to December 2016, and compute
the relative MSFE of each model (i.e., the model MSFE relative to the MSFE of the
constant-mean model) over the two periods. Forecasts that are stable should have relative
MSFEs less than one in both periods, whereas unstable forecasts will have relative MSFEs
9See the following link from the website of the OECD: https://www.oecd.org/sdd/
leading-indicators/45430429.pdf.
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less than one in one period and greater than one in another period or greater than one
in both periods. Figure 1 displays the scatterplot of the logarithm of the relative MSFEs
of the forecasts based on all the individual predictors in the first period (x-axis) versus
the second period (y-axis). In the scatterplot, a point represents the pair of log relative
MSFEs for each of the predictors. If the forecasts were stable, we should expect the points
to be scattered around the third (southwest) quadrant. The figure shows that many of
the points are rather scattered in the first (northeast) and second (southeast) quadrants,
indicating the poor performance of the individual forecasts in one period and vice versa.

The scatterplot of the log relative MSFE for the combination forecasts is displayed in
Figure 2. As can be seen from the figure, the combination forecasts show considerable
stability. All the points plot in the third (southwest) quandrant, indicating improved
forecasting performance compared to the HA benchmark forecast in both out-of-sample
periods.

[Insert Figure 1 about here]

[Insert Figure 2 about here]

As a further analysis of the instability of the individual predictive models, Table 5 re-
ports the Giacomini and Rossi (2009) t-statistic and the associated p-value for testing the
stability of forecasting ability of the individual predictive models (that is, the hypothesis
that a model’s out-of-sample MSFE is equal to its in-sample MSFE). The out-of-sample
forecasts used in the test are generated using the same recursive estimation approach as
before, and the test statistics are computed similarly using a quadratic loss function. As
presented in the table, the null hypothesis is rejected at the 1% level for all the individual
predictive models. These results provide further evidence of parameter instability of the
individual predictive models, and help explain their poor out-of-sample performance.

[Insert Table 5 about here]

3.2.3. Economic Evaluation of Return Forecasts

Table 6 presents results for the economic significance of predictability as measured by
the CER gains, Sharpe ratios, portfolio turnover ratios, and break-even transaction costs.
The mean-variance investor’s relative risk-aversion coefficient is set equal to 3, the optimal
portfolio weights are between −∞ and 1.5, and transaction costs are set to 20 basis points.
CER gains are annualized percent values, Sharpe ratios are annualized values, and break-
even transaction costs are reported in basis points. The turnover ratio is the ratio of the
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average turnover of the dynamic portfolio strategy based on individual (combination)
forecasts to the average turnover of the static portfolio strategy generated by the HA
return forecast. The break-even transaction cost is the transaction cost that will render
the investor indifferent between the dynamic portfolio strategy and the static portfolio
strategy. A positive CER gain indicates that the CER of the dynamic portfolio strategy
is greater than that of the static portfolio strategy. We will refer to CER gain of 2% or
more as economically significant.

From Column 6 of Panel A in Table 6, we see that for almost all the individual pre-
dictors the CER gain is negative, consistent with the R2

oos limited statistical significance
reported in Table 4. Positive values well above the 2% threshold are documented for only
four predictors, namely CDFP, CUTIL, CLI and BCI, consistent with the out-of-sample
statistical evidence of predictability reported in Table 4. The CER gains associated with
the combination forecasts are reported in Panel B of Table 6. In contrast to the results
for the individual forecasts, positive CER gains are realized for all combination forecasts.
The Subset (k = 2, ..., 7) and the PC, ic = R2 forecasts all record CER gains well above
the 2% level. These findings are consistent, in terms of greater economic value of com-
bination forecasts compared to the individual ones, with the greater predictive ability of
the former compared to the latter suggested by the statistical tests reported in Table 4.

Consistent with these findings, Sharpe ratios of the commodity portfolios generated
by the individual (combination) predictive model forecasts are lower (higher), for almost
all predictors, than for the portfolio that relies on the historical average return forecast.
These results are also consistent with the poor (strong) statistical performance of the
individual (combination) forecasts.

[Insert Table 6 about here]

Column 7 of Panel A in Table 6 reports the CER gains net of transaction costs
for the individual predictive model forecasts. From the table, we observe that, just
as in the case without transaction costs, CER losses are recorded for almost all the
portfolio strategies based on the individual predictive model forecasts. On the other
hand, accounting for the effect of transaction costs does not erode the performance of
the portfolios based on the combination forecasts as they continue to deliver positive
CER gains net of transaction costs well above the 2% level. The break-even transaction
costs values are also much higher than the actual proportional transaction cost for the
combination forecasts meaning that investors would prefer the portfolios based on the
combination forecasts. This performance, however, comes at the cost of a higher average

20



turnover. For example, the Subset (k = 2, ..., 7) combination forecasts deliver CER gains
net of costs of 2.2% compared to 2.6% without transaction costs. The relative magnitude
of Sharpe ratios for individual and combination forecasts is consistent with the relative
magnitude of CER gains when both are calculated net of transaction costs.

4. Return Predictability and the Business Cycle

We conduct further analysis to shed light on the economic drivers of commodity return
predictability by investigating the link between return forecasts and the real economy.

4.1. Statistical Performance of Return Forecasts and the Busi-
ness Cycle

Studies such as Rapach et al. (2010), Henkel, Martin, and Nardari (2011) for US stock
returns, and Gargano and Timmermann (2014) for commodity spot index returns show
that return predictability is stronger during business cycle recessions compared to expan-
sions. These findings suggest a link between return predictability and cyclical variation
of expected returns. To test this hypothesis, as done earlier for our analysis of in-sample
predictability, we use the same R2 statistics for business cycle expansions (EXP) and
recessions (REC), given in (15), but this time we compute them based on the errors of
the out-of-sample forecasts.

Table 7 reports the out-of-sample R2, the Clark and West (2007) MSFE-adjusted
statistic and associated p-values separately for NBER-dated business cycle expansions
(R2

exp) and recessions (R2
rec). Panel A of the table reports results for the individual

predictive model forecasts. Almost all the individual predictive model forecasts fail to
outperform the historical average forecast in terms of MSFE during both recessions and
expansions. The DFR, CLI and BCI predictors, however, continue to show significant
levels of predictability with significantly greater than zero R2 at the 5% level during
recessions and expansions. The lack of out-of-sample predictive ability of all predictors
but DFR, CLI and BCI is in sharp contrast to our earlier in-sample findings where
we documented that commodity futures return predictability was stronger in recessions
relative to expansions for 23 out of the 28 predictors.

Panel B of Table 7 reports results for the combination forecasts. None of the forecasts
are statistically greater than zero R2

oos during expansions. However, during business cycle
recessions, the combination forecasts deliver R2

oos values ranging from 0.73% to 18.18%

21



which are statistically greater than zero at the 5% level and, in some cases, at levels close
to or at the 1% threshold. These results show that (out-of-sample) predictability from
combination forecasts is stronger in recessions relative to expansions and are supportive
of the findings in Gargano and Timmermann (2014).

[Insert Table 7 about here]

To sum up, whilst almost all the individual forecasts of futures returns fail to out-
perform the benchmark forecast in both recessions and expansions, predictability from
combination forecasts is stronger in recessions compared to expansions. Therefore, these
results suggest that commodity predictability is a phenomenon largely associated with
recessions which can be captured by combination forecasts rather than by individual
forecasts.

4.2. Economic Performance of Return Forecasts and the Busi-
ness Cycle

We now examine whether the performance of the portfolios that can be generated using
the commodity return forecasts is related to the business cycle. We use the same asset
allocation framework detailed earlier, and report results separately for the NBER-dated
business cycle expansions and recessions.

We are motivated by the fact that, in the foregoing analysis, we found evidence of
countercyclical commodity return predictability. The key questions are then whether
commodity return predictability is genuinely countercyclical and, if so, whether it is
related to time-variation in risk premia (discount rates). Asset pricing models featuring
habit persistence such as Campbell and Cochrane (1999) suggest that risk premia move
countercyclically and, due to a reduced surplus consumption ratio, the Sharpe ratio of the
aggregate stock market should be higher during recessions than in expansions. Wachter
(2006) derives implications for bond risk premia and the term structure of interest rates
in a setting with habit persistence. If risk premia vary with the business cycle, then the
portfolios generated by the return forecasts should perform better in recessions relative
to expansions.

Table 8 reports Sharpe ratios (net of transaction costs of 20 basis points) computed
separately for NBER-dated business cycle expansions and recessions based on the same
asset allocation framework detailed earlier. We use the full out-of-sample forecast evalu-
ation period so as to ensure that there are enough observations for the separate analysis of
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recessions. The Sharpe ratios for the individual forecasts reported in Panel A are mixed
in magnitude. Only a few individual predictors, notably CDFP, CUTIL, CLI and BCI,
have better performance in recessions compared to expansions. In contrast, as shown
in Panel B, the Sharpe ratios of portfolios based on all the combination forecasts are
substantially higher in recessions relative to expansions. This provides strong support for
the suggestion of Campbell and Cochrane (1999) that risk premia move countercyclically
and this gives rise to return predictability.

Table 8 also reports estimates of economic significance as measured by CER gains
(CER gains net of proportional transaction costs of 20 basis points) separately for busi-
ness cycle expansions and recessions. The out-of-sample portfolio performance analysis
demonstrates the economic value of commodity return predictability with benefit concen-
trated in the recessionary phases of the business-cycle relative to expansions, especially
for all the combination forecasts. In contrast, the results for the individual predictive
model forecasts are mixed. This is not surprising considering their poor performance
shown earlier.

[Insert Table 8 about here]

Our results taken together show that, as suggested by the fact that commodity re-
turn predictability (captured by combination forecasts) tracks business conditions, the
performance of strategies that exploit it is indeed higher when these are entered when
business conditions are weak and vice-versa, consistent with the possibility that commod-
ity return predictability derives from time-variation of risk premia.

4.3. State Variables, Economic Activity, and Risk Premia

Cochrane (2007) suggests that it is more likely that return predictability is due to time-
variation in risk premia (rather than time-varying mean-reverting mispricing) if the pre-
dictors used to forecast returns display predictive power for future economic activity. In
this case, according to the intertemporal capital asset pricing model (ICAPM) frame-
work of Merton (1973),10 the predictors could be considered proxies for state variables
that capture changes in the investment opportunity set. Moreover, since the sensitivity
of risk-premia to state variables depends on risk aversion and the latter decreases with
wealth, risk premia should be more reactive to changes in the state variables during reces-
10See, for example, Campbell (1996), Cochrane (2005), Maio and Santa-Clara (2012), among others.
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sions. Therefore, if predictability is due to time-varying risk premia, it should be stronger
during recessions.

In our context, this means that, if certain variables or combinations thereof forecast
commodity returns because they proxy for state variables in the ICAPM sense, they
should predict economic activity too, and their forecasting power should be stronger dur-
ing recessions. If this was empirically the case, the implication would be that combination
forecasts capture time-variation in commodity futures risk premia driven by macroeco-
nomic risk whereas individual forecasts fail to do so. This, in turn, would imply that
combination forecasts outperform individual forecasts because the former proxy for state
variables that drive variation in commodity risk premia (hence in their expected returns)
whereas the latter do not.

We test this explanation of the performance of forecast combinations by examining
whether combination forecasts of commodity returns can be used to forecast future eco-
nomic activity, hence whether they can be treated as valid state variables within the
intertemporal capital asset pricing model (ICAPM) framework of Merton (1973). This
amounts to testing an implication of the ICAPM for the relation between predictability
of commodity returns and predictability of economic activity. It is the first of two im-
plications of the ICAPM for commodity (excess-)returns and their predictability that we
test.

For a given factor model to be consistent with the ICAPM, the factor risk premia
should obey sign restrictions if the factors are state variables that forecast aggregate
commodity returns and macroeconomic activity in time-series regressions (see applica-
tions in Maio and Santa-Clara, 2012 and Boons, 2016). If a state variable forecasts an
increase in future expected aggregate commodity returns and economic activity, the risk
price associated with the state variable in the cross-section should also be positive, and
vice versa. This is the second implication of the ICAPM for commodity (excess-)returns
and their predictability that we test.

We test in turn each one of the two implications of the ICAPM outlined above in the
two sub-sections that follow.

4.3.1. Predicting Future Economic Activity

To test whether a state variable forecasts future economic activity, we run the following
univariate predictive regression,

yt+h = αi + βizi,t + εt+h, (16)
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where yt+h = yt+1 + ... + yt+h is the economic activity variable, h is the forecast horizon
corresponding to 1-, 3-, or 12-months, and zi,t = r̂cf

t+1 is one of the 16 combination forecast
of commodity returns (state variable) at a time. It is well known that because of the use
of overlapping data, the error term εt+h is serially correlated thereby distorting statistical
inference. We address this issue by computing heteroskedasticity and autocorrelation
consistent t-statistic for the test of βi = 0. As proxies for yt, we use the smoothed
recession probability (SRP) of Chauvet (1998), Aruoba et al. (2009) business condition
index (ADSI), the Chicago Fed national activity index (CFNAI), log growth in industrial
production index (IP), change in total capacity utilization (TCU), and log growth in total
nonfarm payroll employment (PAYEMS). Similar variables are used in studies such as
Nieto and Rubio (2014), Lin et al. (2017), Choi, Mueller, and Vedolin (2017), and Maio
and Philip (2018), among others. The data on SRP, CFNAI, IP, TCU, and PAYEMS
are obtained from the St. Louis FED database (FRED) whereas ADSI is obtained from
the Federal Reserve Bank of Philadelphia database (ALFRED). IP and TCU are lagged
by one-month to account for delays in the release of such data thus ensuring the data
represents publicly available information.

Table 9 reports estimation results of the predictive regression in (16) for the 1-, 3-,
and 12-month horizons. From the table, we can see that all the combination forecasts
of commodity returns display strong predictive content for future economic activity at
all horizons. They forecast significantly increases in ADSI, CFNAI, IP, and TCU, and a
decline in SRP. For all state variables, t-stats for the significance of βi and the R2 values
rise from 1-month horizon to the 3-months horizon, and then falls for the 12-months
horizon. For example, the mean combination forecast of commodity returns significantly
forecast increases in changes in IP with R2 values that increase from 11.81% for h = 1 to
21.78% for h = 3, and then falls to 7.5% for h = 12. Of all the economic activity variables,
only the results for the PAYEMS amount to mixed findings about the predictive power
of future economic activity.

[Insert Table 9 about here]

4.3.2. How Is Exposure to State Variable Risk Priced?

If the combination forecasts of commodity returns are truly state variables, they should
be priced in the cross-section of asset returns. Specifically, since combination forecasts
predict increases in future economic activity, they should be priced with a positive risk
premium. To test this implication, we estimate a simple two-factor asset pricing model
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representing an implication of Merton’s (1973) ICAPM:

E(Ri) = λMβi,M + λzβi,z + ei, i = 1, ..., N, (17)

where E(Ri) is the expected excess return on test asset i and βi,M and βi,z are the
asset loadings on the market factor and the state variable, respectively, λM is the risk
premium for exposure to the market factor, and λz is the risk premium for exposure
to innovations in state variable z. The proxy for the market factor is the CRSP value-
weighted return minus the return on the 1-month Treasury bill downloaded from Professor
Kenneth French’s Data library.

Following Campbell (1996), the time-series dynamics for each state variable (com-
bination forecast of commodity returns) is specified as a first-order vector autoregressive
VAR(1) process,

Ft+1 = A0 + A1Ft + Z̃t+1. (18)

The first element of the state vector Ft = (RM,t, zt) is the excess return of the market
portfolio and the second element is the state variable, where zi,t = r̂cf

t+1 is one of the 16
combination forecast of commodity returns at a time. The corresponding elements in the
error vector Z̃t represent the innovations to state variables that is used as a risk factor in
(17).

As test assets, we use the monthly returns on 23 individual commodity futures covering
the energy, grains, oilseeds, livestock, metals and softs categories obtained from Thom-
son Reuters Datastream, and 25 portfolios of CRSP NYSE/AMEX/NASDAQ stocks
formed on size and book-to-market also downloaded from Professor Kenneth French’s
Data library. The latter dataset is widely used in cross-sectional asset pricing tests. Our
justification for expanding the set of test assets to include stocks is inline with the ICAPM
which posits that state variables in the model must be state variables for all assets, and
not just commodities. The sample period is January 1990 to December 2016, and is
dictated by the availability of commodity futures data. Futures returns are measured
as the logarithmic price changes of the front-end contracts up to one month before ma-
turity; the positions are then rolled to the second-nearest contract, and so on. We use
individual commodities as opposed to commodity futures portfolios which is standard
in the commodity pricing literature (see for, example, Yang, 2013; Szymanowska, Roon,
Nijman, and Goorbergh, 2014 and Bakshi, Gao, and Rossi, 2019). Our reasons for using
individual commodities are two-fold: first, the cross-section of commodities is small which
limits the number of portfolios that can be formed. This could distort the risk premia
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estimates. Second, Ang, Liu, and Schwarz (2010) argue that the use of individual assets
can lead to more efficiency gains in the estimated risk prices than portfolios because the
wider dispersions should make up for the noise in the estimated exposures.

To test our two-factor model in (17), we run cross-sectional regressions using the
two-step approach following Cochrane (2005). In the first step, the factor loadings are es-
timated from a multivariate time-series regression for each of the 23 individual commodity
futures or an extended set which includes the 25 equity portfolios:

Ri,t+1 = δi + βi,MRM,t+1 + βi,z z̃t+1 + εi,t+1, t = 1, ..., T for each i, (19)

where Ri,t+1 is the excess return on test asset i at time t+ 1, RM,t+1 is the excess return
on the market portfolio at time t + 1, and z̃t+1 is the innovation in the state variable z
at time t+ 1. In the second step, we estimate OLS cross-sectional regressions across the
test assets of average returns on the estimated betas in the first step,

R̄i = λ0 + λM β̂i,M + λzβ̂i,z + αi, i = 1, ..., N, (20)

where (λ̂M , λ̂z) and α̂i are the estimated risk prices and pricing errors, respectively, and
λ̂0 is the zero-beta rate.11

We test the significance of the risk prices using t-statistics computed with GMM
standard errors that correct for heteroskedasticity and autocorrelation in the error term,
and errors-in-variables bias in the cross-sectional regression (see Cochrane, 2005). This
adjustment is important considering that both the betas and the innovations to the state
variables are estimated, and are thus subject to estimation error. We also assess the fit of
the model based on each state variable by computing the cross-sectional OLS coefficient
of determination (see Campbell and Vuolteenaho, 2004; Fernandez-Perez, Fuertes, and
Miffre, 2017; Maio and Philip, 2018; among others),

R2
OLS = 1− VarN(α̂i)

VarN(R̄i)
, (21)

where VarN(·) is the cross-sectional variance, and R2
OLS represents the fraction of the

cross-sectional variance of average excess returns on the test assets that is explained by
the factor loadings associated with the model. When an intercept is not included in the
11We also report results for a version of the model that does not include an intercept in the cross-sectional
regression as dictated by the asset pricing model. Essentially, if a given model is correctly specified,
the intercept in the cross-sectional regression should be equal to zero.
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cross-sectional regression, the R2 measure can assume negative values.
Table 10 presents results for monthly cross-sectional regressions using the 23 individual

commodities as test assets. The table reports the unconditional monthly average risk
premiums and associated t-statistics, and the cross-sectional OLS R2 for two-factor model
specifications that include innovations in each of the combination forecasts of commodity
returns state variables next to the market portfolio. Panel A of the table shows that
the risk premiums of all the state variables are positive and statistically significant. The
results also indicate that the state variables have good explanatory power for the cross-
section of commodity returns as indicated by the R2

OLS ranging from 9% for the mean
combination forecast to 28% for the DMSFE combination forecast. However, all the risk
premium estimates for the market portfolio are negative and statistically insignificant.
The results for the models that restricts the intercept to zero are presented in Panel B.
There are clear differences with the results in Panel A. Risk premiums for the market
factor, although now significant, increase substantially to levels that more than double the
typical values of the sample average of the market portfolio excess returns. Risk premiums
for the state variables also almost double. Unsurprisingly, however, the fit of the model
also deteriorates substantially with R2

OLS values as low as about 4%. In summary, the
results based on the individual commodity test assets indicate a potential estimation
inconsistency, akin to sample selection bias, resulting from the use of a restricted universe
of test assets.

[Insert Table 10 about here]

Table 11 presents results for the extended set of test assets that include, in addition
to the 23 individual commodities, the 25 equity portfolios formed on size and book-
to-market. The results for the models that include an intercept in the cross-sectional
regressions reported in Panel A indicate very similar findings to those reported in Panel
A of Table 10. Although the risk premiums for the market are now positive, however, they
are not statistically significant based on a one-tailed t-test. We also observe a considerably
high explanatory power of over 74% for all choices of state variable. Turning to the models
that restrict the intercept to zero, we make the following two observations. First, the
estimated market risk premiums are all statistically significant with typical values that are
close to the sample average of the market portfolio excess returns. Second, the estimated
risk premiums are positive and significant risk premiums for all the combination forecast
state variables and the R2

OLS is considerably high, values of about 70%.

[Insert Table 11 about here]
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Overall, our results are consistent in sign with how the state variables (all our 16
combination forecasts of commodity returns) forecast both positive economic activity in
the time-series and returns in the cross-section, an implication of the ICAPM. This is
especially the case for the models estimated using the extended set of test assets (that
include the individual commodities and the equity portfolios) restricting the intercept to
zero as dictated by the asset pricing model.

5. Conclusion

This paper provides a comprehensive study on aggregate commodity futures return pre-
dictability using a large set of predictors, including commodity, stock, corporate bond
and treasury market, and macroeconomic variables. Our analysis considers individual
predictive regression models and forecast combination methods that account for both
parameter instability and model uncertainty.

We find that almost all of the individual predictive regression model forecasts of
futures excess returns fail to outperform the benchmark historical average return fore-
cast both statistically and economically. Forecast stability analysis using relative mean
squared forecast errors and a forecast breakdown test show strong evidence of instability
in the relation between commodity futures excess returns and the individual predictors,
and provides an explanation for their inconsistent out-of-sample performance. Combina-
tion forecasts, on the other hand, are very stable over our sample and perform significantly
better than the historical average forecast both statistically and economically. The super-
ior forecasting performance of the combination forecasts can be attributed to their ability
to diversify against instability and uncertainty associated with the individual predictive
models.

We also find that the sources of predictability of combination forecasts for commodity
futures returns have links to the real economy. Commodity return predictability is found
to be countercyclical with predictability stronger during business cycle recessions relat-
ive to expansions, similar to the findings in studies such as Gargano and Timmermann
(2014), Henkel et al. (2011), Rapach et al. (2010), and Lin et al. (2017) for commodity
spot indexes, stocks and bond returns, respectively. Importantly, combination forecasts
display significant predictive power at horizons ranging from 1-month to 12-months for
macroeconomic activity proxied by the smoothed recession probability of Chauvet (1998),
Aruoba et al. (2009) business condition index, the Chicago Fed national activity index,
log growth in industrial production index, change in total capacity utilization, or log
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growth in total nonfarm payroll employment.
Finally, we provide evidence consistent with Merton’s (1973) ICAPM framework that

the combination forecasts of commodity returns are valid state variables that command
significant positive risk premiums in the cross-section of individual commodity futures
and equity portfolio returns. Our results also establish an important implication of the
ICAPM, namely the positive sign of the risk prices associated with the state variables
ability to forecast an increase in future economic activity. These results provide a fur-
ther explanation for the significant out-of-sample performance of the combination fore-
casts, implying it derives from an ability of the combination forecasts of picking up time
variation in the expected compensation for macroeconomic risks in commodity futures
returns.
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Table 1: Monthly Predictor Variables for Commodity Futures Returns
Predictor Article(s) Variable definition and motivation for their consideration

Basis
Fama and French (1987),
Hong and Yogo (2012), Gor-
ton et al. (2013).

To construct our monthly aggregate measure of commodity basis,
we first collect futures prices of 32 individual commodities. Most of
these individual commodities make up the constituents of the S&P
GSCI. We then compute the basis for each individual commodity fu-
tures as the difference in log prices between two nearest-to-maturity
futures prices:

Basisit = log(f i,T1
t )− log(f i,T2

t )
T2 − T1

,

where f i,T1
t and f i,T1

t are the nearby and next-to-nearby futures
prices of commodity i, respectively. We then compute the mean
basis across commodities for each commodity sector, namely agri-
culture, energy, livestock, and metals. Finally, the aggregate basis
variable is computed as an equally weighted average of the basis
across the four commodity sectors similar to Hong and Yogo (2012).
The consideration of the basis is motivated by the theory of stor-
age of Brennan (1958) which posits that the benefit of holding the
physical commodity (convenience yield) should decline with rising
inventory levels. The convenience yield is therefore closely linked
to basis since it is benefit that accrues to inventory holders and
not to holders of futures contract. The information content of basis
could be used as a signal for inventories since commodities with
low inventories have higher basis which means higher prior futures
prices. As such, basis should be important for forecasting commod-
ity returns.

Log growth of global crude
oil production (PROD)

Groen and Pesenti (2011),
Baumeister and Kilian
(2012), Baumeister and
Kilian (2014), Baumeister
and Kilian (2015)

Log growth in global crude oil production is cal-
culated as log(global crude oil production(t)) −
log(global crude oil production(t − 1)). Data on global crude
oil production is downloaded from the database of the U.S. Energy
Information Administration. Supply is one the most important
determinants of crude oil prices. For example, if crude oil produc-
tion should drop whiles demand remains constant, prices would be
pushed upwards. Considering that energy commodities, and more
especially crude oil, are heavily weighted in the S&P GSCI, crude
oil production should affect the overall price level of the index.
These motivate our consideration of this variables.

Log growth of global crude
oil inventory (INV )

Ye, Zyren, and Shore
(2005), Groen and Pesenti
(2011), Gorton et al. (2013),
Kilian and Murphy (2014)

Log growth of global crude oil inventory is
defined as log(global crude oil inventory(t)) −
log(global crude oil inventory(t − 1)). The inventory data used
in calculating this variables is constructed by multiplying U.S.
crude oil inventories by the ratio of OECD petroleum inventories
to U.S. petroleum inventories. Petroleum inventories are defined
to include both stocks of crude oil and stocks of refined products.
te consideration of this variable is motivated by the theories of
storage and normal backwardation of Brennan (1958) and Keynes
(1930) which posit that the fundamental determinants of expected
commodity returns is inventory. For example, rising crude oil
inventories should signal speculative demand in the commodities
market. Speculators receive compensation for taking long positions
since commodity producers hedge the future spot price by taking
short positions in the futures market. Also, since the S&P
GSCI is more heavily weighted towards energy commodities, and
more especially crude oil, we should expect the level of crude oil
inventory to partly drive movements in the returns of the index.
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Table 1: continued
Predictor Article(s) Variable definition and motivation for their consideration

Log dividend-price ratio
(DP)

Bessembinder and Chan
(1992), Gargano and
Timmermann (2014)

Log dividend-price ratio is the difference between the log of the
12-month moving sum of the dividends paid on the S&P 500 index
and the log price of the S&P 500 index. The consideration of this
variable as a predictor for commodity returns is motivated by stud-
ies such as Tang and Xiong (2012) and Hamilton and Wu (2015)
who show that the commodities market has become more integ-
rated with the stock and bond markets. As such, state variables
that drive stock and bond returns should partly be responsible for
movements in commodity returns.

S&P 500 index return
(SP500 )

Jones and Kaul (1996), Sad-
orsky (1999), DeRoon and
Nijman (2001)

SP500 is the log return on the S&P 500 computed as log(S&P 500
(t))-log(S&P 500 (t-1)). S&P 500 is the price level of the S&P 500
stock market index. Jones and Kaul (1996) and Sadorsky (1999)
find that the stock market and oil prices tend to move together
in the same direction as a response to global aggregate demand
factors. Shifts in aggregate demand should therefore influence both
corporate profits and the demand for oil. The S&P GSCI is heavily
weighted towards energy commodities, particularly crude oil. We
should expect the S&P index returns to drive movements in com-
modity returns. These motivate our consideration of this variable
as a predictor for commodity returns.

3-month Treasury bill rate
(TBL)

Bessembinder and Chan
(1992), Sadorsky (2002)
Bessembinder (1992),
Bjornson and Carter
(1997), Hong and Yogo
(2012), Gargano and
Timmermann (2014)

TBL is the yield on U.S. 3-month Treasury bill (secondary market).
The following are the motivations for considering this variable. Ac-
cording to the theory of storage, interest rate determines the storage
cost of storable commodities. For example, a commodity market
participant’s expectation of the futures price of a storable commod-
ity will depend on prevailing interest rate and the cost of storage
if borrowed funds are used to purchase the commodity. The TBL
is also negatively correlated with the business-cycle; expected re-
turns are high when business conditions are weak and low when
business conditions are strong. If assume market integration, then
we should also expect the same variable known to predict stock and
bond returns to forecast commodity returns. Again the monetary
policy regime of the U.S. could impact commodity prices through
currency valuation and interest rates.

Change in 3-month T-bill
rate (CTBL)

Bessembinder and Chan
(1992), Bessembinder
(1992), Bessembinder
(1993), Hong and Yogo
(2012)

CTBL is defined as TBL (t) - TBL (t-1). Similar to the motiva-
tions given for considering the 3-month T-bill rate as a candidate
predictor, changes in the T-bill rate is also an economic activity
variable and therefore tracks changes in business condition.

Long term return (LTR) Gargano and Timmermann
(2014)

LTR is the return on long-term government bonds. The same mo-
tivations stated for considering the log dividend-price ratio pre-
dictor applies to the long term return.

Term spread (TMS)

Bessembinder and Chan
(1992), Bessembinder
(1993), Groen and Pesenti
(2011), Gargano and
Timmermann (2014)

The TMS is defined as long term government bond yield minus
the yield of T-bills. The TMS is an economic activity variable
and therefore tracks changes in business condition. It is known to
predict returns on stocks and bonds (Fama and French (1989)),
and negatively correlated with the business-cycle: expected returns
are high when business conditions are weak and low when business
conditions are strong. If one assumes that the commodities market
is integrated with the stock and bond markets, then we should
also expect the term spread to forecast commodity returns. These
reasons motivate our consideration of this variable as a predictor
for commodity returns.

Change in term spread
(CTMS)

Bessembinder (1992),
Bessembinder (1993)

CTMS is defined as TMS(t) - TMS(t-1). Similar to the motiva-
tions given for considering the the term spread as a predictor for
commodity returns, changes in the term spread is also an economic
activity variable and therefore should tracks changes in business
condition.
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Table 1: continued
Predictor Article(s) Variable definition and motivation for their consideration

Yield spread (YS)

Fama and French (1989),
Bessembinder and Chan
(1992), Hong and Yogo
(2012)

The yield spread is defined as the yield on Aaa-rated bond minus
the yield on the 3-month treasury bill rate. Our consideration of
the YS is motivated by the fact it is an economic activity variable
and therefore should track changes in business condition. It is neg-
atively correlated with the business-cycle (Hong and Yogo (2012))
and therefore we should expect the returns on commodities to be
high when business conditions are weak and low when business con-
ditions are strong.

Change in default premium
(CDFP) Bessembinder (1992)

Change in default premium is defined as yield on Baa-rated bond
minus yield on long-term government bond. What motivates the
use of this variable as a predictor for commodity returns is that it is
an economic activity variable and therefore tracks changes in busi-
ness condition. It is also negatively correlated with the business-
cycle (Fama and French, 1989). We should therefore expect com-
modity returns on commodities to be high when business conditions
are weak and low when business conditions are strong.

Default return spread
(DFR)

Bessembinder and Chan
(1992), Gargano and
Timmermann (2014)

DFR is defined as long-term corporate bond returns minus long-
term government bond returns. The motivation for considering
this variable is the same as the motivation given for considering the
log dividend-price ratio predictor variable.

Inflation (INFL)

Bessembinder (1993),
Groen and Pesenti (2011),
Gargano and Timmermann
(2014)

INFL is defined as the log growth in U.S. consumer price index.
The following motivates its consideration as predictor for commod-
ity returns. It is an economic activity variable and therefore tracks
changes in business condition, and also signal fluctuations in eco-
nomic activity. It is negatively correlated with the business-cycle
(Hong and Yogo (2012)). We should expect commodity returns on
commodities to be high when business conditions are weak and low
when business conditions are strong. Commodity futures prices are
also of interest to central banks and policy-makers because they
provide forecasts for key commodities, and play an important role
in explaining fluctuations in and projecting macroeconomic activ-
ity.

Money stock (M1 )
Groen and Pesenti (2011),
Gargano and Timmermann
(2014)

M1 is the log growth in log growth in monthly M1 money stock.
The motivation for considering this variable is same as the motiv-
ations given for considering the log dividend-price ratio predictor.

Unemployment rate (UN-
RATE)

Groen and Pesenti (2011),
Gargano and Timmermann
(2014)

UNRATE is the monthly unemployment rate from the website of
the Archival Federal Reserve Bank of St. Louis Economic Data
(ALFRED). As measure of economic activity, UNRATE variables
also signal fluctuations in economic activity similar to given for
inflation, the term spread, among others.

Log industrial production
(INDPRO)

Bessembinder (1993),
Bjornson and Carter
(1997), Pagano and Pis-
ani (2009), Groen and
Pesenti (2011), Gargano
and Timmermann (2014)

INDPRO) is the monthly log growth in OECD aggregate in-
dustrial production obtained from OECD data website, https:
//data.oecd.org/. As a measure of economic activity, INDPRO
also signal fluctuations in economic activity similar to, for example,
the inflation rate, unemployment rate, the term spread predictors.

Log degree of capacity util-
ization in U.S. manufactur-
ing (CUTIL)

Pagano and Pisani (2009),
Baumeister and Kilian
(2016)

CUTIL is the log growth in the degree of capacity utilization in U.S.
manufacturing. As a measure of economic activity, CUTIL also
signal fluctuations in economic activity similar to, for example, the
inflation rate, unemployment rate, industrial production, the term
spread predictors.
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Table 1: continued
Predictor Paper(s) Variable definition and motivation for their consideration

Global real economic activ-
ity index (REA)

Alquist, Kilian, and Vigfus-
son (2013), Baumeister and
Kilian (2014)

The global real activity index is constructed from data on global
dry cargo ocean shipping freight rates as described in Kilian (2009).
The reason that motivates its consideration as a predictor is that
global economic activity drives demand for oil and other industrial
commodities in global markets and has has been shown to fore-
cast movement in crude oil returns. This variable is based on dry
cargo single voyage ocean freight rates and is explicitly designed to
capture shifts in the demand for industrial commodities in global
business markets. It exploits the positive correlation between ocean
freights rate and economic activity. Commodities are traded glob-
ally as such the state of the global economy will partly impact
movements in commodity prices.

Chicago Fed National
Activity index (CFNAI ) Hong and Yogo (2012)

The CFNAI is a monthly summary statistic for U.S. economic
growth. As a measure of economic activity, the index is designed
to gauge overall economic activity and related inflationary pres-
sure. The motivation for considering this variable is that commod-
ity prices form a key component of forming expectations of inflation.
High economic activity is also negatively correlated with inflation
(Stock and Watson, 1999). Therefore we should expect the index
to drive movement in commodity prices.

OECD composite leading
indicator (CLI ), business
confidence index (BCI ),
consumer confidence index
(CCI )

Pagano and Pisani (2009),
Groen and Pesenti (2011)

These variables are measures of global economic activity similar to
the global index of real economic activity. They are designed to
provide signals of turning points in the business cycle and fluctu-
ations in economic activity. This motivates their consideration as
predictors for commodity returns.

Commodity currencies:
Australia (AUS), Canada
(CAN ), New Zealand (NZ ),
South Africa (SA) & India
(IND)

Chen, Rogoff, and Rossi
(2010), Gargano and Tim-
mermann (2014), Groen
and Pesenti (2011)

These predictors are motivated by the study of Chen et al. (2010)
who exploit the notion that changes in commodity currencies are
correlated with commodity prices. These countries are major com-
modity exporters where commodities represent a quarter to one-half
of their total export earnings, and also have a sufficiently long his-
tory of market-based floating exchange rates. Therefore movements
in their exchange rate against the US dollar should be informative
for future commodity returns.

Notes. This table outlines and defines the predictors that we use, the motivation for their use, and the relevant prior
commodity return studies.
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Table 2: Summary Statistics for Returns and Predictor Variables

Standard Auto Sharpe
Variable Obs Mean deviation Min Max correlation ratio
Panel A: Returns
S&P GSCI 491 0.14 5.57 −28.29 22.31 0.16 0.09
Panel B: Predictor Variables
Basis 491 0.52 1.05 −3.83 4.04 0.70
INV 491 100.70 4.98 86.40 120.95 0.83
PROD 491 0.09 1.46 −9.49 6.50 −0.07
DP 491 −365.60 43.90 −452.36 −275.33 0.99
SP500 491 0.63 4.30 −24.54 12.38 0.04
TBL 491 4.68 3.58 0.01 16.30 0.99
CTBL 491 −0.01 0.46 −4.62 2.61 0.36
LTR 491 0.73 3.19 −11.24 15.23 0.05
TMS 491 2.21 1.45 −3.65 4.55 0.95
CTMS 491 0.00 0.47 −3.28 4.23 0.10
YS 491 2.99 1.52 −2.28 5.93 0.97
CDFP 491 0.00 0.30 −1.20 1.39 −0.12
DFR 491 0.00 1.48 −9.75 7.37 −0.03
INFL 491 0.30 0.37 −1.92 1.52 0.62
M1 491 0.49 0.87 −3.20 4.93 0.12
UNRATE 491 −0.73 17.23 −70.00 60.00 0.12
INDPRO 491 0.17 0.61 −3.98 2.01 0.27
CUTIL 491 0.00 0.76 −3.55 2.53 0.28
REA 491 −0.02 55.19 −163.74 187.66 0.96
CFNAI 491 −3.51 92.67 −466.00 273.00 0.62
CLI 491 0.00 0.15 −0.78 0.60 0.96
BCI 491 0.00 0.16 −0.85 0.52 0.88
CCI 491 0.00 0.13 −0.44 0.45 0.82
AUS 491 −0.11 3.30 −18.68 9.92 0.03
CAN 491 −0.06 2.00 −13.03 8.85 −0.06
NZ 491 −0.08 3.49 −24.89 18.01 −0.03
SA 491 −0.56 4.22 −24.82 14.05 0.02
IND 491 −0.41 2.11 −19.89 7.05 0.05

Notes. This table reports the summary statistics of the returns on the S&P GSCI and the 28 predictors.
We report the number of observations (Obs), the mean, standard deviation, minimum and maximum
values, first-order autocorrelation and the annualized Sharpe ratio. All values are in percent except TBL,
CTBL, TMS, CTMS, YS, CDFP which are in annualized percent. The sample period is from February
1976 to December 2016.
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Table 3: Full-Sample Predictive Regression Estimates

Predictor
Variable β t-stats R2 (%) R2

exp (%) R2
rec (%)

Basis −0.12 −0.49 0.05 −0.12 0.47
INV −0.07 −1.27 0.43 1.12 −1.19
PROD −0.04 −0.22 0.01 −0.04 0.13
DP 0.00 −0.12 0.00 0.02 −0.03
SP500 0.02 0.26 0.02 −0.28 0.75
TBL 0.02 0.33 0.02 −0.05 0.19
CTBL 0.27 0.47 0.05 0.02 0.13
LTR −0.22 −2.44** 1.52 0.91 2.94
TMS 0.02 0.10 0.00 0.03 −0.06
CTMS 0.70 1.33 0.34 0.41 0.19
YS −0.12 −0.68 0.11 −0.21 0.86
CDFP −3.22 −3.56*** 2.97 −0.04 10.07
DFR 0.79 2.61*** 4.30 0.15 14.12
INFL 0.54 0.63 0.13 −0.36 1.27
M1 −0.45 −1.33 0.49 −0.55 2.94
UNRATE −0.02 −0.97 0.26 −0.37 1.74
INDPRO 1.01 1.96** 1.20 −0.69 5.67
CUTIL 1.05 2.18** 2.04 −0.67 8.46
REA 0.00 0.82 0.22 0.36 −0.10
CFNAI 0.01 2.34** 2.29 0.45 6.62
CLI 7.00 3.33*** 3.69 0.07 12.23
BCI 9.06 3.81*** 6.35 1.17 18.57
CCI 4.91 1.86* 1.22 0.55 2.79
AUS 0.08 0.77 0.21 −0.93 2.91
CAN 0.08 0.51 0.09 −0.44 1.34
NZ 0.07 0.76 0.16 −0.60 1.96
SA 0.05 0.70 0.14 −0.52 1.70
IND 0.19 1.37 0.53 −0.38 2.69

Notes. This table reports the in-sample OLS estimation results for the bivariate predictive regression
model of log commodity excess returns and the predictor variables individually. The immediate right of
slope coefficients, beta, report the t-statistics calculated using Newey and West (1987) heteroskedasticity
and autocorrelation consistent standard errors. R2 is the coefficient of determination. TheR2

exp (%) (R2
rec

(%)) statistics in the last two columns are computed separately for the National Bureau of Economic
Research (NBER)-dated business cycle expansions (recessions). The sample period is February 1976 to
December 2016. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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Table 5: Tests of Stability of Return Forecasts

Predictor t-stats p-value Predictor t-stats p-value
Basis 3.23 0.001 M1 3.07 0.002
INV 3.12 0.002 UNRATE 3.11 0.002
PROD 3.09 0.002 INDPRO 3.13 0.002
DP 3.15 0.002 CUTIL 3.11 0.002
SP500 3.00 0.003 REA 3.07 0.002
TBL 3.15 0.002 CFNAI 3.11 0.002
CTBL 3.10 0.002 CLI 3.10 0.002
LTR 3.04 0.002 BCI 3.21 0.001
TMS 3.10 0.002 CCI 3.25 0.001
CTMS 3.08 0.002 AUS 3.09 0.002
YS 3.09 0.002 CAN 3.14 0.002
CDFP 3.03 0.002 NZ 3.17 0.002
DFR 3.33 0.001 SA 3.24 0.001
INFL 3.07 0.002 IND 3.08 0.002

Notes. This table reports the t-statistics and associated p-values for the forecast breakdown tests of
Giacomini and Rossi (2009) using a quadratic loss function. The null hypothesis is that a model that
displays good forecasting performance in one sample period will continue to do so in other sample periods.
That is, the out-of-sample MSFE of a model is equal to its in-sample MSFE. Similarly to our out-of-
sample forecasting tests, we use a recursive window estimation approach where the step-ahead forecast
starts in January 1990 till the end of the sample in December 2016. p-values lower than 0.1, 0.05 and
0.01 denotes significance at the 10%, 5% and 1%, respectively.
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Table 6: Economic Performance of Return Forecasts
Strategy µp σp SR SRτ 4 4τ TO τBE

HA benchmark 0.002 0.09 0.02 0.02
Panel A: Individual predictive forecasts

Basis −0.006 0.13 −0.05 −0.08 −1.97 −2.40 12 —
INV −0.001 0.11 −0.01 −0.05 −0.82 −1.18 10 —
PROD −0.011 0.08 −0.14 −0.16 −1.04 −1.23 6 —
DP 0.002 0.14 0.01 0.00 −1.93 −2.05 4 —
SP500 0.013 0.15 0.09 0.02 −1.23 −2.27 29 —
TBL −0.003 0.16 −0.02 −0.02 −2.93 −2.98 2 —
CTBL 0.000 0.09 0.00 −0.01 −0.14 −0.18 2 —
LTR 0.033 0.15 0.22 0.12 0.73 −0.66 37 45
TMS −0.003 0.09 −0.04 −0.05 −0.51 −0.55 2 —
CTMS 0.002 0.12 0.02 −0.03 −0.79 −1.36 16 —
YS −0.001 0.09 −0.01 −0.02 −0.27 −0.31 2 —
CDFP 0.064 0.16 0.40 0.30 3.65 2.07 43 77
DFR 0.101 0.28 0.37 0.30 −0.24 −2.06 49 —
INFL −0.002 0.11 −0.02 −0.05 −0.99 −1.24 8 —
M1 0.011 0.13 0.09 0.03 −0.43 −1.19 21 —
UNRATE −0.009 0.11 −0.08 −0.13 −1.70 −2.19 14 —
INDPRO 0.015 0.12 0.13 0.05 0.34 −0.54 24 30
CUTIL 0.033 0.12 0.28 0.22 2.17 1.57 17 103
REA −0.003 0.13 −0.02 −0.04 −1.91 −2.09 6 —
CFNAI 0.035 0.14 0.24 0.20 1.44 0.84 17 109
CLI 0.097 0.18 0.54 0.52 5.83 5.59 8 689
BCI 0.123 0.21 0.59 0.56 6.74 6.35 12 557
CCI −0.006 0.11 −0.05 −0.09 −1.34 −1.73 11 —
AUS −0.004 0.09 −0.04 −0.10 −0.66 −1.16 14 —
CAN −0.012 0.09 −0.12 −0.18 −1.51 −2.03 14 —
NZ 0.005 0.12 0.04 −0.03 −0.65 −1.41 21 —
SA −0.003 0.10 −0.03 −0.09 −0.72 −1.26 15 —
IND 0.006 0.09 0.07 0.02 0.40 0.07 10 23

Panel B: Combination forecasts
Mean 0.019 0.09 0.21 0.18 1.66 1.46 6 106
Median 0.006 0.09 0.06 0.05 0.44 0.35 3 22
Trimmed mean 0.017 0.09 0.19 0.16 1.46 1.28 6 93
Weighted mean 0.020 0.09 0.21 0.19 1.69 1.48 6 108
DMSFE (θ = 0.9) 0.020 0.09 0.22 0.19 1.75 1.54 6 112
DMSFE (θ = 0.7) 0.021 0.09 0.23 0.20 1.82 1.61 7 117
ABMA 0.019 0.09 0.21 0.18 1.64 1.44 6 104
Subset (k = 2) 0.033 0.11 0.31 0.27 2.60 2.21 11 192
Subset (k = 3) 0.046 0.13 0.36 0.31 3.16 2.61 16 267
Subset (k = 4) 0.054 0.14 0.38 0.33 3.46 2.75 19 322
Subset (k = 5) 0.062 0.16 0.39 0.34 3.50 2.66 23 367
Subset (k = 6) 0.068 0.17 0.39 0.34 3.35 2.39 26 405
Subset (k = 7) 0.073 0.19 0.39 0.33 3.07 1.99 29 436
PC (ic = aic) 0.106 0.25 0.43 0.35 2.56 0.73 49 636
PC (ic = bic) 0.080 0.21 0.39 0.35 2.59 1.80 22 480
PC (ic = R2) 0.115 0.25 0.45 0.38 2.91 1.03 50 691

Notes. This table reports portfolio performance results for a mean-variance investor with relative risk aversion of three
who monthly allocates his wealth between commodities and risk-free T-bills using either the HA benchmark forecast
(static portfolio strategy) or the individual predictive regression (combination) forecasts (dynamic portfolio strategy). The
forecasts in Panel A are based on each of the 28 predictor variables. The forecasts in Panel B are based on 28 predictors
using the different forecast combination methods outlined in Section 2.2.2. For each portfolio strategy, we report the
annualized mean realized return (µp), annualized realized volatility (σp), annualized realized Sharpe ratio (net of cost), SR
(SRτ ), annualized utility gain (net of cost), 4 (4τ ), the portfolio management fee that the investor would be willing to
pay in order to have access to the dynamic strategy relative to the static strategy, the turnover ratio (TO) ratio, the ratio
of the average turnover of the dynamic strategy relative to that of the static strategy, and the break-even transaction costs,
τBE, that will render the investor indifferent between the dynamic and static portfolio strategies. We set proportional
transaction costs of 20bps per dollar of trading. Since we use commodity futures, we avoid short sales restrictions but limit
leverage to 50% of wealth to avoid excessive risk taking. The out-of-sample forecast evaluation period is January 1990 to
December 2016.
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Table 7: Statistical Performance of Return Forecasts in Expansions and Recessions

Expansion Recession

MSFE- MSFE-
Predictor MSFE R2

oos (%) adjusted MSFE R2
oos (%) adjusted

HA 29.32 109.37
Panel A: Individual predictive model forecasts

Basis 29.65 −1.14 −1.11 108.75 0.56 0.72
INV 29.32 0.01 0.41 109.23 0.13 0.29
PROD 29.34 −0.07 −0.49 110.17 −0.73 −1.10
DP 29.66 −1.15 −1.15 109.04 0.30 0.89
SP500 29.15 0.57 1.25 112.93 −3.25 −1.32
TBL 29.55 −0.80 −0.39 111.82 −2.24 −1.54
CTBL 29.35 −0.12 −1.81 109.20 0.16 1.27
LTR 29.36 −0.14 0.70 105.24 3.78 1.55*
TMS 29.32 0.00 0.24 110.30 −0.85 −1.81
CTMS 29.36 −0.15 −0.02 109.36 0.01 0.08
YS 29.32 −0.02 0.06 109.84 −0.43 −0.89
CDFP 29.43 −0.37 0.54 100.31 8.28 2.12**
DFR 29.18 0.48 1.56* 99.86 8.70 1.32
INFL 29.46 −0.48 −0.92 109.76 −0.36 −0.21
M1 29.76 −1.50 −0.62 105.71 3.35 2.18**
UNRATE 29.47 −0.52 −0.94 109.00 0.34 0.37
INDPRO 29.30 0.06 0.58 107.47 1.74 1.10
CUTIL 29.50 −0.61 −0.02 101.61 7.10 2.14**
REA 29.44 −0.40 −0.22 110.40 −0.94 −0.44
CFNAI 29.42 −0.35 −0.10 101.58 7.12 1.64*
CLI 29.41 −0.32 1.28 95.86 12.35 2.21**
BCI 29.06 0.89 1.94** 88.08 19.46 2.50**
CCI 29.32 0.00 0.63 107.63 1.59 0.85
AUS 29.42 −0.36 −0.27 109.97 −0.55 −0.32
CAN 29.48 −0.55 −0.47 110.73 −1.24 −0.85
NZ 29.80 −1.64 −2.08 107.16 2.02 2.05**
SA 29.38 −0.20 0.05 110.57 −1.09 −1.24
IND 29.31 0.03 0.49 108.67 0.64 0.88

Panel B: Combination forecasts
Mean 29.26 0.21 0.88 105.85 3.22 2.49**
Median 29.29 0.10 0.82 108.57 0.73 2.26**
Trimmed mean 29.27 0.15 0.74 106.32 2.79 2.58***
Weighted mean 29.26 0.21 0.88 105.79 3.27 2.50**
DMSFE (θ = 0.9) 29.26 0.20 0.83 105.56 3.48 2.48**
DMSFE (θ = 0.7) 29.26 0.20 0.82 105.43 3.61 2.48**
ABMA 29.26 0.20 0.87 105.91 3.16 2.49***
Subset (k = 2) 29.24 0.28 0.85 103.00 5.82 2.50**
Subset (k = 3) 29.24 0.25 0.84 100.67 7.95 2.50**
Subset (k = 4) 29.27 0.17 0.82 98.75 9.71 2.49**
Subset (k = 5) 29.31 0.03 0.81 97.19 11.14 2.49**
Subset (k = 6) 29.36 −0.14 0.78 95.94 12.28 2.48**
Subset (k = 7) 29.42 −0.34 0.76 94.89 13.24 2.47**
PC (ic = aic) 29.71 −1.32 0.86 90.43 17.32 2.48**
PC (ic = bic) 29.73 −1.39 0.50 93.53 14.49 2.40**
PC (ic = R2) 29.73 −1.40 0.85 89.49 18.18 2.50**

Notes. This table reports out-of-sample results for the individual (Panel A) and combination (Panel B) forecasts of log
excess commodity returns using the NBER-dated recession indicator. HA is the historical average benchmark forecast.
MSFE is the mean squared forecast error. The R2

oos statistic measures the proportional reduction in MSFE for the
competing forecasts given in the first column relative to the HA forecast. Statistical significance for the R2

oos statistic is
based on the p-value for the Clark and West (2007) MSFE-adjusted statistic. This statistic tests the null hypothesis that
the HA forecast MSFE is less than or equal to the competing forecast MSFE against the alternative hypothesis that the HA
forecast MSFE is greater than or equal to the competing forecast MSFE. The out-of-sample evaluation period is January
1990 to December 2016. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

46



T
ab

le
8:

Ec
on

om
ic

Pe
rf
or
m
an

ce
of

R
et
ur
n
Fo

re
ca
st
s
in

Ex
pa

ns
io
ns

an
d
R
ec
es
sio

ns

Ex
pa

ns
io
n

R
ec
es
sio

n
St
ra
te
gy

S
R

S
R
τ

4
4
τ

T
O

τ
B
E

S
R

S
R
τ

4
4
τ

T
O

τ
B
E

H
A

be
nc
hm

ar
k

0.
01

0.
01

0.
06

0.
06

Pa
ne
lA

:I
nd

iv
id
ua

lp
re
di
ct
iv
e
m
od

el
fo
re
ca
st
s

Ba
sis

−
0.
12

−
0.
16

−
2.
31

−
2.
74

11
—

0.
22

0.
20

0.
59

0.
16

8
16
8

IN
V

−
0.
03

−
0.
07

−
0.
97

−
1.
32

9
—

0.
09

0.
06

0.
33

−
0.
15

9
18

PR
O
D

−
0.
01

−
0.
05

−
0.
08

−
0.
26

5
—

−
0.
65

−
0.
67

−
8.
37

−
8.
61

5
—

D
P

−
0.
05

−
0.
06

−
2.
33

−
2.
47

4
—

0.
28

0.
27

1.
18

1.
09

3
10
64

SP
50
0

0.
28

0.
18

1.
94

0.
92

25
57

−
0.
34

−
0.
38

−
25
.9
0

−
27
.0
4

19
—

T
BL

0.
02

0.
01

−
1.
47

−
1.
52

2
—

−
0.
14

−
0.
15

−
14
.4
1

−
14
.5
4

3
—

C
T
BL

−
0.
03

−
0.
04

−
0.
22

−
0.
26

2
—

0.
09

0.
09

0.
44

0.
41

1
34
2

LT
R

0.
07

−
0.
04

−
0.
86

−
2.
24

34
—

0.
79

0.
74

13
.3
8

12
.0
2

22
31
2

T
M
S

0.
01

0.
00

0.
04

0.
00

2
3

−
0.
22

−
0.
23

−
4.
72

−
4.
77

2
—

C
T
M
S

−
0.
04

−
0.
11

−
0.
55

−
1.
11

14
—

0.
17

0.
14

−
2.
76

−
3.
35

11
—

Y
S

0.
00

−
0.
01

−
0.
05

−
0.
08

2
—

−
0.
07

−
0.
08

−
2.
03

−
2.
09

2
—

C
D
FP

0.
12

−
0.
02

0.
13

−
1.
46

39
17

1.
41

1.
37

32
.8
4

31
.4
3

25
58
2

D
FR

0.
22

0.
12

0.
12

−
1.
66

43
42

0.
91

0.
87

−
1.
10

−
3.
12

36
—

IN
FL

−
0.
04

−
0.
07

−
0.
72

−
0.
95

7
—

0.
02

−
0.
01

−
3.
12

−
3.
54

8
—

M
1

−
0.
07

−
0.
14

−
2.
13

−
2.
90

19
—

0.
79

0.
75

13
.0
9

12
.3
2

13
40
4

U
N
R
AT

E
−
0.
12

−
0.
18

−
1.
20

−
1.
68

13
—

−
0.
01

−
0.
04

−
5.
73

−
6.
21

8
—

IN
D
PR

O
0.
05

−
0.
06

0.
03

−
0.
83

22
8

0.
38

0.
34

2.
67

1.
85

14
21
1

C
U
T
IL

0.
00

−
0.
07

−
0.
54

−
1.
13

15
—

1.
26

1.
23

23
.9
9

23
.4
1

10
91
5

R
EA

−
0.
06

−
0.
08

−
1.
36

−
1.
53

5
—

0.
07

0.
05

−
6.
36

−
6.
62

5
—

C
FN

A
I

−
0.
02

−
0.
09

−
0.
64

−
1.
23

15
—

0.
96

0.
93

18
.4
4

17
.7
2

13
82
4

C
LI

0.
34

0.
32

2.
66

2.
45

6
33
7

1.
34

1.
32

33
.1
9

32
.5
5

15
12
84

BC
I

0.
41

0.
37

3.
48

3.
08

11
22
6

1.
41

1.
40

36
.3
6

35
.9
1

14
17
20

C
C
I

0.
04

0.
00

−
0.
25

−
0.
60

9
—

−
0.
44

−
0.
47

−
9.
75

−
10
.3
4

10
—

A
U
S

0.
02

−
0.
04

0.
04

−
0.
41

12
3

−
0.
26

−
0.
30

−
6.
15

−
6.
87

12
—

C
A
N

−
0.
08

−
0.
14

−
0.
69

−
1.
16

12
—

−
0.
30

−
0.
34

−
7.
90

−
8.
57

12
—

N
Z

−
0.
16

−
0.
25

−
1.
99

−
2.
76

19
—

0.
65

0.
63

9.
97

9.
41

10
50
1

SA
0.
08

0.
01

0.
26

−
0.
29

14
21

−
0.
45

−
0.
49

−
8.
24

−
8.
67

8
—

IN
D

0.
03

−
0.
02

0.
11

−
0.
22

9
10

0.
20

0.
18

2.
65

2.
46

4
20
7

47



T
ab

le
8:

co
nt
in
ue

d

Ex
pa

ns
io
n

R
ec
es
sio

n
St
ra
te
gy

S
R

S
R
τ

4
4
τ

T
O

τ
B
E

S
R

S
R
τ

4
4
τ

T
O

τ
B
E

H
A

be
nc
hm

ar
k

0.
01

0.
01

0.
06

0.
06

Pa
ne
lB

:C
om

bi
na

tio
n
fo
re
ca
st
s

M
ea
n

0.
07

0.
04

0.
44

0.
24

6
29

0.
74

0.
73

11
.3
1

11
.1
1

4
11
93

M
ed
ia
n

0.
03

0.
02

0.
19

0.
10

3
9

0.
19

0.
18

2.
38

2.
31

2
19
7

Tr
im

m
ed

m
ea
n

0.
07

0.
04

0.
39

0.
21

5
25

0.
66

0.
65

9.
92

9.
75

4
10
47

W
ei
gh

te
d
m
ea
n

0.
08

0.
04

0.
45

0.
25

6
29

0.
75

0.
74

11
.4
8

11
.2
8

4
12
14

D
M
SF

E
(θ

=
0.

9)
0.
07

0.
04

0.
43

0.
23

6
28

0.
79

0.
77

12
.1
6

11
.9
4

4
12
93

D
M
SF

E
(θ

=
0.

7)
0.
08

0.
04

0.
44

0.
24

6
29

0.
82

0.
80

12
.7
2

12
.5
0

5
13
56

A
BM

A
0.
07

0.
04

0.
43

0.
24

6
28

0.
73

0.
72

11
.1
4

10
.9
5

4
11
72

Su
bs
et

(k
=

2)
0.
10

0.
04

0.
50

0.
11

10
42

1.
08

1.
06

19
.3
7

18
.9
8

7
23
04

Su
bs
et

(k
=

3)
0.
11

0.
04

0.
49

−
0.
06

14
53

1.
21

1.
19

24
.8
7

24
.2
9

10
32
77

Su
bs
et

(k
=

4)
0.
12

0.
04

0.
42

−
0.
28

18
63

1.
29

1.
26

28
.4
0

27
.6
6

13
39
65

Su
bs
et

(k
=

5)
0.
12

0.
04

0.
25

−
0.
58

21
70

1.
31

1.
28

30
.4
8

29
.6
0

15
45
51

Su
bs
et

(k
=

6)
0.
11

0.
03

0.
02

−
0.
94

24
74

1.
31

1.
28

31
.3
8

30
.3
5

17
50
58

Su
bs
et

(k
=

7)
0.
11

0.
02

−
0.
28

−
1.
35

26
—

1.
30

1.
27

31
.6
3

30
.4
6

19
55
11

PC
(ic

=
ai

c)
0.
15

0.
04

−
0.
99

−
2.
91

46
—

1.
38

1.
36

34
.6
5

33
.4
7

23
74
91

PC
(ic

=
bi

c)
0.
09

0.
04

−
1.
36

−
2.
18

20
—

1.
42

1.
40

36
.4
9

35
.8
6

14
61
32

PC
(ic

=
R

2 )
0.
16

0.
05

−
0.
79

−
2.
74

47
—

1.
44

1.
41

37
.1
9

35
.7
7

26
82
10

N
ot

es
.

T
hi
s
ta
bl
e
re
po

rt
s
po

rt
fo
lio

pe
rf
or
m
an

ce
re
su
lts

fo
r
a
m
ea
n-
va
ri
an

ce
in
ve
st
or

w
ith

re
la
tiv

e
ri
sk

av
er
si
on

of
th
re
e
w
ho

m
on

th
ly

al
lo
ca
te
s
hi
s
w
ea
lth

be
tw

ee
n

co
m
m
od

iti
es

an
d

ri
sk
-fr

ee
T
-b
ill
s
us
in
g
ei
th
er

th
e
H
A

be
nc
hm

ar
k

fo
re
ca
st

(s
ta
tic

po
rt
fo
lio

st
ra
te
gy

)
or

th
e
in
di
vi
du

al
pr
ed
ic
tiv

e
re
gr
es
si
on

(c
om

bi
na

tio
n)

fo
re
ca
st
s

(d
yn

am
ic

po
rt
fo
lio

st
ra
te
gy

).
T
he

fo
re
ca
st
s
in

Pa
ne
lA

ar
e
ba

se
d
on

ea
ch

of
th
e
28

pr
ed
ic
to
r
va
ri
ab

le
s.

T
he

fo
re
ca
st
s
in

Pa
ne
lB

ar
e
ba

se
d
on

28
pr
ed
ic
to
rs

us
in
g
th
e

di
ffe

re
nt

co
m
bi
na

tio
n
m
et
ho

ds
ou

tli
ne
d
in

Se
ct
io
n
2.
2.
2.

Fo
r
ea
ch

po
rt
fo
lio

st
ra
te
gy
,w

e
re
po

rt
th
e
an

nu
al
iz
ed

re
al
iz
ed

Sh
ar
pe

ra
ti
o
(n
et

of
co
st
),
S
R

(S
R
τ
),

an
nu

al
iz
ed

ut
ili
ty

ga
in

or
ce
rt
ai
nt
y
eq
ui
va
le
nt

re
tu
rn

ga
in

(n
et

of
co
st
),
4

(4
τ
),

th
e
po

rt
fo
lio

m
an

ag
em

en
t
fe
e
th
at

th
e
in
ve
st
or

w
ou

ld
be

w
ill
in
g
to

pa
y
in

or
de
r
to

ha
ve

ac
ce
ss

to
th
e
dy

na
m
ic

st
ra
te
gy

re
la
tiv

e
to

th
e
st
at
ic

st
ra
te
gy
,t

he
tu
rn
ov
er

ra
tio

(T
O
)
ra
tio

,t
he

ra
tio

of
th
e
av
er
ag
e
tu
rn
ov
er

of
th
e
dy

na
m
ic

st
ra
te
gy

re
la
tiv

e
to

th
at

of
th
e
st
at
ic

st
ra
te
gy
,
an

d
th
e
br
ea
k-
ev
en

tr
an

sa
ct
io
n
co
st
s,
τ

B
E
,
th
at

w
ill

re
nd

er
th
e
in
ve
st
or

in
di
ffe

re
nt

be
tw

ee
n
th
e
dy

na
m
ic

an
d
st
at
ic

po
rt
fo
lio

st
ra
te
gi
es
.
W
e
se
t
pr
op

or
tio

na
l

tr
an

sa
ct
io
n
co
st
s
of

20
bp

s
pe

r
do

lla
r
of

tr
ad

in
g.

Si
nc
e
w
e
us
e
co
m
m
od

ity
fu
tu
re
s,

w
e
av
oi
d
sh
or
t
sa
le
s
re
st
ri
ct
io
ns

bu
t
lim

it
le
ve
ra
ge

to
50

%
of

w
ea
lth

to
av
oi
d
ex
ce
ss
iv
e

ri
sk

ta
ki
ng

.
R
es
ul
ts

ar
e
re
po

rt
ed

se
pa

ra
te
ly

fo
r
N
B
E
R
-d
at
ed

bu
si
ne
ss
-c
yc
le

ex
pa

ns
io
ns

an
d
re
ce
ss
io
ns
.
T
he

ou
t-
of
-s
am

pl
e
ev
al
ua

tio
n
pe

ri
od

is
Ja

nu
ar
y
19

90
to

D
ec
em

be
r

20
16

.

48



Table 9: Predicting Economic Activity with Combination Forecasts of Commodity
Returns

Forecast horizon: 1-month Forecast horizon: 3-months Forecast horizon: 12-months
Combination forecast β t-stats R2 (%) β t-stats R2 (%) β t-stats R2 (%)
y = SRP
Mean −0.28 −1.76 6.62 −0.86 −1.49 7.45 −1.44 −1.19 1.65
Median 0.05 0.21 0.06 0.17 0.20 0.09 2.18 0.88 1.08
Trimmed mean −0.29 −1.68 6.06 −0.90 −1.38 6.63 −1.35 −0.96 1.18
Weighted mean −0.28 −1.77 6.74 −0.86 −1.51 7.61 −1.44 −1.22 1.71
DMSFE (θ = 0.9) −0.27 −1.83 7.28 −0.86 −1.57 8.25 −1.41 −1.28 1.82
DMSFE (θ = 0.7) −0.27 −1.85 7.59 −0.86 −1.60 8.66 −1.39 −1.26 1.81
ABMA −0.28 −1.74 6.50 −0.87 −1.46 7.29 −1.43 −1.15 1.59
Subset (k = 2) −0.20 −2.34 10.41 −0.63 −2.07 11.84 −1.25 −2.14 3.81
Subset (k = 3) −0.15 −2.52 11.60 −0.48 −2.25 13.19 −0.98 −2.41 4.48
Subset (k = 4) −0.12 −2.57 11.97 −0.39 −2.30 13.56 −0.79 −2.45 4.60
Subset (k = 5) −0.11 −2.60 12.16 −0.33 −2.33 13.73 −0.67 −2.46 4.59
Subset (k = 6) −0.09 −2.60 12.12 −0.29 −2.31 13.61 −0.57 −2.39 4.42
Subset (k = 7) −0.08 −2.58 11.98 −0.26 −2.29 13.42 −0.51 −2.32 4.23
PC (ic = aic) −0.06 −2.14 9.88 −0.19 −2.33 13.38 −0.52 −2.55 8.22
PC (ic = bic) −0.11 −4.30 23.64 −0.33 −3.91 27.43 −0.86 −3.24 15.25
PC (ic = R2) −0.05 −2.05 9.14 −0.18 −2.24 12.52 −0.52 −2.58 8.45
y = ADSI
Mean 1.42 2.93 15.07 3.90 2.35 13.84 7.47 2.45 4.07
Median 1.03 1.46 2.53 2.54 1.03 1.83 1.97 0.24 0.08
Trimmed mean 1.57 3.01 15.38 4.26 2.39 13.60 7.99 2.31 3.80
Weighted mean 1.40 2.94 15.14 3.85 2.36 13.91 7.38 2.49 4.10
DMSFE (θ = 0.9) 1.36 3.00 15.77 3.75 2.41 14.44 7.00 2.55 4.07
DMSFE (θ = 0.7) 1.36 3.05 16.33 3.74 2.45 14.86 6.82 2.52 4.01
AMBA 1.43 2.93 15.00 3.95 2.34 13.76 7.56 2.41 4.04
Subset (k = 2) 0.92 3.44 18.92 2.57 2.81 17.92 5.30 3.59 6.24
Subset (k = 3) 0.68 3.59 20.02 1.92 2.94 19.10 3.99 3.83 6.85
Subset (k = 4) 0.55 3.63 20.39 1.55 2.97 19.46 3.23 3.87 7.00
Subset (k = 5) 0.47 3.67 20.67 1.32 3.00 19.75 2.73 3.90 7.04
Subset (k = 6) 0.41 3.68 20.70 1.16 3.00 19.74 2.38 3.86 6.94
Subset (k = 7) 0.37 3.67 20.66 1.04 3.00 19.69 2.13 3.81 6.82
PC (ic = aic) 0.23 2.73 14.79 0.69 2.39 15.59 1.74 2.92 8.37
PC (ic = bic) 0.37 4.28 25.26 1.07 3.50 26.01 2.61 3.20 12.87
PC (ic = R2) 0.23 2.68 14.27 0.68 2.36 15.28 1.75 2.98 8.63
y = CFNAI
Mean 0.91 2.76 12.71 2.68 2.47 16.65 5.29 2.67 5.32
Median 0.69 1.50 2.30 1.84 1.16 2.46 1.78 0.34 0.17
Trimmed mean 1.02 2.86 13.14 2.91 2.51 16.28 5.61 2.52 4.89
Weighted mean 0.90 2.76 12.77 2.64 2.48 16.72 5.22 2.71 5.35
DMSFE (θ = 0.9) 0.87 2.81 13.28 2.57 2.53 17.32 4.96 2.78 5.32
DMSFE (θ = 0.7) 0.88 2.86 13.78 2.57 2.60 18.00 4.87 2.79 5.33
ABMA 0.92 2.76 12.65 2.71 2.46 16.57 5.36 2.64 5.29
Subset (k = 2) 0.59 3.16 15.67 1.74 2.91 21.01 3.66 3.69 7.77
Subset (k = 3) 0.43 3.27 16.54 1.29 3.03 22.22 2.74 3.87 8.43
Subset (k = 4) 0.35 3.31 16.83 1.04 3.06 22.55 2.21 3.90 8.56
Subset (k = 5) 0.30 3.34 17.08 0.89 3.09 22.82 1.87 3.93 8.57
Subset (k = 6) 0.26 3.35 17.09 0.78 3.08 22.75 1.63 3.91 8.43
Subset (k = 7) 0.24 3.35 17.05 0.70 3.07 22.66 1.45 3.88 8.27
PC (ic = aic) 0.15 2.50 12.52 0.47 2.48 18.42 1.19 2.91 10.27
PC (ic = bic) 0.23 3.88 20.59 0.71 3.49 29.43 1.77 3.11 15.37
PC (ic = R2) 0.14 2.40 11.60 0.45 2.40 17.50 1.18 2.91 10.10
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Table 9: continued
Forecast horizon: 1-month Forecast horizon: 3-months Forecast horizon: 12-months

Combination foreacst β t-stats R2 (%) β t-stats R2 (%) β t-stats R2 (%)
y = IP
Mean 1.05 3.70 11.81 3.03 3.70 21.78 5.56 3.73 7.50
Median 1.05 2.55 3.75 2.77 1.91 5.65 3.97 0.81 1.09
Trimmed mean 1.19 3.94 12.51 3.36 3.79 22.06 5.96 3.50 7.05
Weighted mean 1.03 3.69 11.77 3.00 3.72 21.90 5.50 3.79 7.57
DMSFE (θ = 0.9) 0.99 3.68 12.02 2.91 3.88 22.62 5.22 3.88 7.53
DMSFE (θ = 0.7) 0.98 3.57 11.99 2.86 3.88 22.65 5.01 3.77 7.19
ABMA 1.06 3.72 11.83 3.07 3.67 21.64 5.62 3.66 7.42
Subset (k = 2) 0.65 3.88 13.61 1.92 4.44 25.97 3.72 5.39 10.20
Subset (k = 3) 0.48 3.87 13.95 1.41 4.62 27.04 2.76 5.73 10.86
Subset (k = 4) 0.38 3.85 13.96 1.14 4.67 27.34 2.22 5.80 10.99
Subset (k = 5) 0.32 3.82 13.86 0.96 4.70 27.46 1.87 5.83 10.93
Subset (k = 6) 0.28 3.80 13.78 0.85 4.69 27.41 1.63 5.77 10.75
Subset (k = 7) 0.25 3.76 13.54 0.76 4.66 27.25 1.45 5.69 10.54
PC (ic = aic) 0.14 2.54 7.40 0.48 3.24 19.90 1.19 4.49 13.01
PC (ic = bic) 0.25 4.10 16.03 0.73 5.34 31.17 1.65 4.41 17.10
PC (ic = R2) 0.13 2.48 7.18 0.47 3.13 18.91 1.17 4.55 12.75
y = TCU
Mean 0.81 4.16 12.12 2.31 4.42 22.71 4.19 3.63 8.28
Median 0.79 2.67 3.67 2.03 2.06 5.43 2.27 0.80 0.69
Trimmed mean 0.90 4.39 12.45 2.52 4.42 22.25 4.27 3.47 7.03
Weighted mean 0.80 4.15 12.13 2.29 4.47 22.92 4.17 3.65 8.46
DMSFE (θ = 0.9) 0.77 4.18 12.43 2.22 4.74 23.76 3.99 3.57 8.55
DMSFE (θ = 0.7) 0.75 4.03 12.25 2.17 4.70 23.41 3.74 3.54 7.79
AMBA 0.82 4.16 12.11 2.34 4.37 22.49 4.21 3.61 8.09
Subset (k = 2) 0.51 4.36 14.12 1.47 5.50 27.43 2.85 4.40 11.64
Subset (k = 3) 0.37 4.34 14.42 1.08 5.75 28.46 2.11 4.50 12.35
Subset (k = 4) 0.30 4.30 14.34 0.87 5.77 28.59 1.69 4.51 12.37
Subset (k = 5) 0.25 4.24 14.12 0.73 5.78 28.47 1.41 4.49 12.09
Subset (k = 6) 0.22 4.20 13.92 0.64 5.69 28.16 1.22 4.44 11.68
Subset (k = 7) 0.19 4.14 13.57 0.57 5.61 27.75 1.08 4.39 11.25
PC (ic = aic) 0.11 3.03 8.77 0.39 4.18 23.48 1.01 5.61 18.19
PC (ic = bic) 0.21 5.07 19.32 0.61 8.21 38.74 1.43 4.40 24.81
PC (ic = R2) 0.11 2.92 8.30 0.37 3.97 21.82 0.96 5.65 16.87
y = PAYEMS
Mean 0.18 1.54 5.22 0.54 1.25 6.13 1.49 1.26 3.42
Median 0.09 0.64 0.39 0.20 0.38 0.26 −0.16 −0.08 0.01
Trimmed mean 0.21 1.66 5.71 0.61 1.32 6.52 1.65 1.26 3.40
Weighted mean 0.18 1.52 5.19 0.53 1.24 6.11 1.47 1.27 3.43
DMSFE (θ = 0.9) 0.17 1.52 5.39 0.51 1.24 6.38 1.41 1.29 3.49
DMSFE (θ = 0.7) 0.18 1.60 5.97 0.53 1.31 7.02 1.43 1.35 3.70
AMBA 0.18 1.55 5.24 0.54 1.25 6.14 1.52 1.26 3.41
Subset (k = 2) 0.12 1.78 7.06 0.37 1.48 8.54 1.09 1.72 5.58
Subset (k = 3) 0.09 1.86 7.67 0.28 1.55 9.34 0.83 1.85 6.23
Subset (k = 4) 0.07 1.89 7.91 0.22 1.58 9.62 0.67 1.88 6.38
Subset (k = 5) 0.06 1.92 8.16 0.19 1.61 9.90 0.57 1.90 6.47
Subset (k = 6) 0.06 1.94 8.26 0.17 1.62 9.98 0.50 1.90 6.40
Subset (k = 7) 0.05 1.95 8.32 0.15 1.63 10.01 0.45 1.89 6.29
PC (ic = aic) 0.03 1.34 4.39 0.09 1.20 5.97 0.33 1.69 6.37
PC (ic = bic) 0.05 2.30 10.91 0.16 1.96 14.29 0.59 2.33 13.66
PC (ic = R2) 0.03 1.32 4.25 0.09 1.20 5.97 0.33 1.73 6.52

Notes. This table reports estimation results for the bivariate predictive regression yt+h = αi + βizi,t + εt+1, where
yt+h = yt+1 + ...+ yt+h is the economic activity variable, h is the forecast horizon corresponding to 1-, 3-, or 12-months,
and zi,t = r̂cf

t+1 is one of the 16 combination forecast of commodity returns (state variable) at a time. yt+h is the smoothed
recession probability (SRP) of Chauvet (1998), Aruoba et al. (2009) business condition index (ADSI), the Chicago Fed
national activity index (CFNAI), log growth in industrial production index (IP), change in total capacity utilization (TCU),
or log growth in total nonfarm payroll employment (PAYEMS). The forecast horizons are 1-, 3-, and 12-months. To the
immediate right of β is the t-statistics calculated using the Newey and West (1987) heteroskedasticity and autocorrelation
consistent standard errors. R2 is the coefficient of determination. The sample period is January 1976 to December 2016.50



Table 10: Factor Risk Premia Estimates from ICAPM: Individual Commodity Test
Assets

Model λ0 t0 λM tM λz tz R2
OLS

Panel A: Cross-sectional regressions
Mkt + Mean 0.12 2.88 −0.07 −0.08 0.07 2.67 26.87
Mkt + Median 0.11 2.60 −0.01 −0.01 0.03 1.56 8.68
Mkt + Trimmed mean 0.12 2.86 0.02 0.02 0.06 2.63 25.02
Mkt + Weighted mean 0.12 2.89 −0.07 −0.08 0.08 2.67 26.86
Mkt + DMSFE (θ = 0.9) 0.12 2.89 −0.12 −0.12 0.08 2.67 27.07
Mkt + DMSFE (θ = 0.7) 0.12 2.92 −0.26 −0.27 0.08 2.67 27.64
Mkt + ABMA 0.12 2.88 −0.07 −0.08 0.07 2.67 26.87
Mkt + Subset (k = 2) 0.12 3.00 −0.08 −0.08 0.14 2.68 27.05
Mkt + Subset (k = 3) 0.12 3.08 −0.08 −0.08 0.19 2.70 26.99
Mkt + Subset (k = 4) 0.13 3.14 −0.07 −0.07 0.24 2.71 26.66
Mkt + Subset (k = 5) 0.13 3.19 −0.05 −0.05 0.29 2.75 26.68
Mkt + Subset (k = 6) 0.13 3.22 −0.04 −0.04 0.34 2.81 27.14
Mkt + Subset (k = 7) 0.13 3.30 −0.05 −0.05 0.37 2.86 26.79
Mkt + PC (ic = aic) 0.11 2.80 0.02 0.03 0.47 2.19 20.94
Mkt + PC (ic = bic) 0.10 2.69 −0.35 −0.35 0.37 2.12 19.61
Mkt + PC (ic = R2) 0.12 2.95 −0.06 −0.06 0.52 2.42 24.94

Panel B: Restricted zero-beta rate (λ0 = 0) cross-sectional regressions
Mkt + Mean 1.76 1.75 0.12 4.22 8.64
Mkt + Median 1.24 1.28 0.06 3.50 −4.60
Mkt + Trimmed mean 1.88 1.85 0.10 4.23 6.86
Mkt + Weighted mean 1.76 1.75 0.12 4.22 8.60
Mkt + DMSFE (θ = 0.9) 1.70 1.67 0.13 4.04 8.82
Mkt + DMSFE (θ = 0.7) 1.53 1.51 0.13 4.04 9.13
Mkt + ABMA 1.76 1.74 0.12 4.23 8.68
Mkt + Subset (k = 2) 1.88 1.83 0.22 4.00 7.32
Mkt + Subset (k = 3) 1.96 1.93 0.31 4.16 6.28
Mkt + Subset (k = 4) 2.03 2.00 0.38 4.12 5.13
Mkt + Subset (k = 5) 2.11 2.06 0.45 4.10 4.38
Mkt + Subset (k = 6) 2.15 2.10 0.51 4.10 4.45
Mkt + Subset (k = 7) 2.19 2.20 0.56 4.00 3.51
Mkt + PC (ic = aic) 1.79 1.76 0.86 3.80 3.58
Mkt + PC (ic = bic) 0.95 0.96 0.70 3.89 5.26
Mkt + PC (ic = R2) 1.84 1.82 0.89 4.05 5.97

Notes. This table reports the risk premiums (in %) for each state variables (z), the 16 combination
forecasts of commodity returns, next to the market (Mkt) portfolio based on the OLS cross-sectional
regression:

R̄i = λ0 + λM β̂i,M + λzβ̂i,z + αi, i = 1, ..., N.

The testing assets (Ris) are the excess returns on the 23 individual commodity futures. Panel A reports
results for a regression of returns on exposures to the VAR(1) innovations in the state variables. Panel B
restricts the intercept to zero. λ0, λM and λz denote the zero beta rate, and risk premium for the market
and each state variables, respectively. Next to the risk premium estimates are displayed t-statistics based
on GMM standard errors corrected for heteroskedasticity, autocorrelation, and errors-in-variable bias.
R2

OLS represents the fraction of the cross-sectional variance of average excess returns on the test assets
that is explained by the factor loadings associated with the model. The sample period is January 1990
to December 2016
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Table 11: Factor Risk Premia Estimates from ICAPM: Extended Set of Test Assets

Model λ0 t0 λM tM λz tz R2
OLS

Panel A: Cross-sectional regressions
Mkt + Mean 0.13 2.95 0.34 1.23 0.06 2.37 75.00
Mkt + Median 0.10 2.17 0.38 1.40 0.03 2.32 73.61
Mkt + Trimmed mean 0.13 2.93 0.33 1.23 0.05 2.41 74.95
Mkt + Weighted mean 0.13 2.95 0.34 1.24 0.06 2.36 74.98
Mkt + DMSFE (θ = 0.9) 0.12 2.93 0.34 1.25 0.06 2.34 74.89
Mkt + DMSFE (θ = 0.7) 0.12 2.87 0.35 1.27 0.06 2.34 74.92
Mkt + ABMA 0.13 2.95 0.34 1.23 0.06 2.37 75.01
Mkt + Subset (k = 2) 0.13 3.11 0.34 1.25 0.10 2.23 74.98
Mkt + Subset (k = 3) 0.13 3.16 0.34 1.24 0.14 2.22 74.89
Mkt + Subset (k = 4) 0.13 3.20 0.33 1.24 0.18 2.22 74.80
Mkt + Subset (k = 5) 0.14 3.27 0.33 1.25 0.22 2.14 74.70
Mkt + Subset (k = 6) 0.14 3.29 0.33 1.24 0.25 2.15 74.70
Mkt + Subset (k = 7) 0.14 3.32 0.33 1.24 0.28 2.14 74.62
Mkt + PC (ic = aic) 0.12 3.00 0.35 1.29 0.40 2.18 74.34
Mkt + PC (ic = bic) 0.11 2.65 0.39 1.44 0.27 1.95 74.62
Mkt + PC (ic = R2) 0.13 3.12 0.34 1.29 0.41 2.19 74.14

Panel B: Restricted zero-beta rate (λ0 = 0) cross-sectional regressions
Mkt + Mean 0.43 1.65 0.06 2.71 71.08
Mkt + Median 0.44 1.67 0.04 3.05 71.19
Mkt + Trimmed mean 0.43 1.64 0.06 2.76 71.05
Mkt + Weighted mean 0.43 1.65 0.06 2.71 71.06
Mkt + DMSFE (θ = 0.9) 0.44 1.65 0.07 2.70 71.05
Mkt + DMSFE (θ = 0.7) 0.44 1.67 0.07 2.59 71.25
Mkt + ABMA 0.43 1.65 0.06 2.72 71.10
Mkt + Subset (k = 2) 0.44 1.69 0.11 2.52 70.86
Mkt + Subset (k = 3) 0.44 1.71 0.16 2.40 70.64
Mkt + Subset (k = 4) 0.44 1.72 0.20 2.37 70.42
Mkt + Subset (k = 5) 0.45 1.73 0.24 2.35 70.20
Mkt + Subset (k = 6) 0.45 1.75 0.27 2.28 70.11
Mkt + Subset (k = 7) 0.45 1.76 0.30 2.25 69.94
Mkt + PC (ic = aic) 0.44 1.72 0.46 2.48 70.54
Mkt + PC (ic = bic) 0.47 1.79 0.32 2.40 71.56
Mkt + PC (ic = R2) 0.44 1.74 0.46 2.44 70.05

Notes. This table reports the risk premiums (in %) for each state variables (z), the 16 combination
forecasts of commodity returns, next to the market (Mkt) portfolio based on the OLS cross-sectional
regression:

R̄i = λ0 + λM β̂i,M + λzβ̂i,z + αi, i = 1, ..., N.

The testing assets (Ris) are the excess returns on the 23 individual commodity futures and the 25 equity
portfolios formed on size and book-to-market. Panel A reports results for a regression of returns on
exposures to the VAR(1) innovations in the state variables. Panel B restricts the intercept to zero.
λ0, λM and λz denote the zero beta rate, and risk premium for the market and each state variables,
respectively. Next to the risk premium estimates are displayed t-statistics based on GMM standard
errors corrected for heteroskedasticity, autocorrelation, and errors-in-variable bias. R2

OLS represents the
fraction of the cross-sectional variance of average excess returns on the test assets that is explained by
the factor loadings associated with the model. The sample period is January 1990 to December 2016
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Figure 1: Log Relative Mean Squared Forecast Error of Individual Predictive Model
Forecasts

Notes. This figure plots the relative mean squared forecast error (MSFE) of the individual
predictive forecasts of commodity futures returns. The log relative MSFE is defined as the
lof of the ratio of the MSFEs of the predictive forecast to the MSFE of the historical average
benchmark forecast. The out-of-sample period is from January 1990 to December 2016.
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Figure 2: Log Relative Mean Squared Forecast Error of Combination Forecasts

Notes. This figure plots the log relative mean squared forecast error (MSFE) of the forecast
combination of commodity futures returns. The relative MSFE is defined as the log of the
ratio of the MSFEs of the predictive forecast to the MSFE of the historical average benchmark
forecast. The out-of-sample period is from January 1990 to December 2016.
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