
 
 

UCD GEARY INSTITUTE FOR PUBLIC POLICY 

DISCUSSION PAPER SERIES 

 

 

 

Hops, Skip & a Jump: 

The Regional Uniqueness of Beer Styles 

 

 

Ryan M. Hynes  

School of Economics, University College Dublin 

 

Bernardo S. Buarque  

Spatial Dynamics Lab, University College Dublin 

 

Ronald B. Davies  

School of Economics, University College Dublin 

 

Dieter F. Kogler 

Spatial Dynamics Lab, University College Dublin 

 

 

 

 

 

Geary WP2020/13 

December 2, 2020 

 

UCD Geary Institute Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation 

of such a paper should account for its provisional character. A revised version may be available directly from the author. 

 

Any opinions expressed here are those of the author(s) and not those of UCD Geary Institute. Research published in this 

series may include views on policy, but the institute itself takes no institutional policy positions. 



Hops, Skip & a Jump:
The Regional Uniqueness of Beer Styles

Ryan M. Hynes1, Bernardo S. Buarque, Ronald B. Davies and Dieter F. Kogler2

JEL classification: Q10; R11

Keywords: Beer, Economic Geography, Network Analysis

Abstract

Perhaps more than any other product, beer evokes the place it was made.
Weißbier and Germany, dubbels and Belgium, and most of all, Guinness and
Ireland. Part of what makes these beers so memorable is what sets them apart
and gives them their ‘taste of place’. Many studies have tried to place that taste,
and due to a lack of detailed data, have relied largely on qualitative methods to
do so. We introduce a novel data set of regionalized beer recipes, styles, and
ingredients collected from a homebrewing website. We then turn to the methods
of evolutionary economic geography to create regional ingredient networks for
recipes within a style of beer, and identify which ingredients are most important
to certain styles. Along with identifying these keystone ingredients, we calculate
a style’s resiliency or reliance on one particular ingredient. We compare this
resiliency within similar styles in different regions and across different styles in
the same region to isolate the effects of region on ingredient choice. We find that
while almost all beer styles have only a handful of key ingredients, some styles
are more resilient than others due to readily available substitute ingredients in
their region.

1Corresponding author: rhynes57@gmail.com
2Hynes and Davies: School of Economics, University College Dublin; Buarque and Kogler: Spatial

Dynamics Lab, University College Dublin
We thank participants at the UCD/UCLA Seminars in Economic Geography Series for useful com-
ments. All errors are our own.
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1 Introduction

When we think about beer, we think about location; dubbels and Belgium, Weiß-
bier and Bavaria, Guinness and Dublin. In an era of globalization, why do we
still have these distinctions? Is there something about the way these beer styles
are made that make them ‘local’ to a region, even though they are produced all
over the world? If the answer to this is yes, then geography clearly still matters
for brewing.

To investigate the link between styles, ingredients, and places, we borrow
economic geography’s approach to studying knowledge and place. In that liter-
ature, the co-occurrence of technological codes on patents is frequently used
to regionalize knowledge networks and link technological combinations to place
(Feldman et al., 2015; Rigby, 2015). We use information on beer recipes in a
similar way. Just as technologies are combined into a patent, ingredients are
combined in a beer recipe. Like regional knowledge networks, we create re-
gional style networks by attributing a style to its traditional place of origin (e.g.
American IPA or Kölsch). This mapping allows us to compare close styles across
different physical locations (with American versus English IPA our illustrative ex-
ample) as well as across different styles within the same physical location (with
a comparison of Kölsch and Munich Helles as our example).

This exercise reveals several insights. First, the ingredient network is far
closer within regions than within styles. In other words, different styles within the
same country like German pale ale Kölsch and lager Helles have greater overlap
in ingredients than styles within the same family, like the American and English
versions of IPA. This suggests that even in a globalized world, local ingredients
play a critical role in the distinction of a style of beer, providing some evidence
behind the desire to attribute authenticity to a physical location via appellations.

In addition, our analysis measures which ingredients are central to a style’s
definition, how resilient a style is to losing those ingredients, and how a regional
dearth or abundance of ingredients influences a style’s development. This analy-
sis provides an empirical basis for discussing concerns such as the susceptibility
of some crops to pests or climate change and the knock-on implications for the
sustainability of certain beer styles (Yool and Comrie, 2014). We thus contribute
to the existing literature on the geography of beer by bringing this detailed data
set to bear on a classic question of the importance of place. We also contribute to
the literature on Evolutionary Economic Geography (EEG) by applying its meth-
ods to product-level data and identifying how intermediate components and their
sources affect product resilience.
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There is a large body of existing literature discussing the regional aspects
of beer. Mittag (2014) considers the development of geographic appellations
of beer from their origins as brewery names to their inclusion as distinct styles
in the official Beer Judges Certification Program (BJCP) Style Guide. These
appellations and styles are an implicit acknowledgement that for its seemingly
large variety, a majority of the world’s beer styles originate from only a handful
of countries. In short, Mittag’s assertion is that place is critical to beer. Yool and
Comrie (2014) qualitatively consider this concept and the unique combination of
ingredients that give beer its ‘taste of place’, warning that climate change could
threaten beer ingredients in sensitive growing regions. Kind and Kaiser (2020)
voice similar concerns over Germany’s Hallertau region, and note the general
sensitivity of hops to extreme weather. Knudson et al. (2020) chronicle the dom-
inance of the Pacific Northwest in US hop production, but also note recently
renewed production efforts in several other US regions as demand for more lo-
cal ingredients increases. We provide rigorous empirical evidence in support
of these conclusions. Sewell (2014) provides a historical summary on the spa-
tial diffusion of beer from its origins in the Fertile Crescent, to Ancient Rome,
Europe, the United States, and to modern times with the rise of microbreweries.

Microbreweries are an especially well-studied topic in the literature. Micro-
breweries represent the combination of innovation, entrepreneurship, and rapid
growth. Elzinga et al. (2015) chart the growth of the American craft beer in-
dustry from 1979-2012, noting that craft breweries tend to appear in geographic
clusters. Dennett and Page (2017) reach similar conclusions, and find that two
distinct geographic clusters drove the recent expansion in the London craft brew-
ing industry. Wojtyra et al. (2020) find the same clustering of microbreweries in
hot spots they identify in Eastern Europe.

Why do these microbreweries gather in one location? Is it access to trade,
small business-friendly incentives, or ingredients? Flack (1997) provides one
possible answer: neolocalism. The sense of place craft beer evokes is its main
differentiator and selling point. Gatrell et al. (2018) go one step further and sug-
gest that craft and microbreweries use “place, practice, and region” to create
a strong spatial brand that is appealing to consumers. Cabras and Bamforth
(2016) note that consumers often associate local craft breweries with higher
quality beer, even when those breweries actually lag behind their larger counter-
parts in quality control and consistency. Microbreweries clearly rely on place to
differentiate their brand and their products. It appears that the same is true for
styles as well. Yet for all this research on beer and place one crucial ingredient
is missing - the ingredients themselves. This is the gap we fill.
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There has yet to be an empirical study of beer ingredients and regional vari-
ation. That is likely because it is difficult to get relevant and inclusive data on
the subject. Our first contribution is assembling data on beer recipes, styles, in-
gredients, and their locations. We use nearly 100,000 recipes created by home
brewers, craft brewers, and microbreweries. We normalize these recipes and
extract ingredients, styles, and their locations to create ingredient networks for
each unique style of beer. These networks allow us to quantitatively explore what
sets beer styles apart, and to see if there is a central ingredient responsible for a
given recipe’s ‘taste of place’. We do so by borrowing techniques from EEG and
constructing style networks composed of all the recipes and ingredients used in
beers of a given style.

Our second contribution plots beer in space, and considers which keystone
ingredients separate and define different styles. We compare our beer style net-
works with one another to identify which ingredients are most central to a given
style network and therefore define the style. This contribution is a novel appli-
cation of EEG methods, which typically utilize patent, publication, or skills data
as opposed to product-level indicators in generating knowledge networks (Clark
et al., 2003; Kogler, 2016). Expanding these methods is crucial to advance the
field as a whole because knowledge exists not just in the ivory tower, but also in
the everyday products all around us. Even something as deceptively simple as
beer is full of complex relationships and is ripe for detailed analysis.

We take inspiration from the knowledge space methodology of Kogler et al.
(2013, 2017) and Buarque et al. (2020) which maps patent technology codes
in space and create regional knowledge networks. We instead create style net-
works, where individual nodes are ingredients used in a style and edges are any
two ingredients’ co-occurrence with one another within recipes. Styles them-
selves have strong historical ties to specific regions, and are often named after
and incorporate ingredients from the specific region where the style was first pro-
duced. The historical origins of styles provide our link between styles and their
recipes and geographic regions. We are the first to apply this analysis to recipe
data, and hope that this novel application inspires others to do likewise.

We are able to create highly detailed recipe-style networks because we col-
lect the weights and measures of individual ingredients within a recipe. These
allow us to properly weight edges between ingredients based on their relative
proportions within the recipe.1 After preparing these data, the network algorithm

1Note that most EEG analyses are unable to identify the relative importance of an ingredient in
the development of a novel product or process, for example, the varying importance of individual
technology codes listed on a single patent document. We are able to do so in the present study
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minimizes total network path length, placing the most important and frequently
used nodes at the center of the network. We can then easily measure which
of the ingredients is the most important to a region. We can also observe how
resilient a given style is to the loss of key ingredients, something forewarned by
Yool and Comrie (2014) as well as Kind and Kaiser (2020). We measure re-
silience by deleting key ingredients from the network and observing changes in
overall network characteristics.

While this network analysis tells us which ingredients are most important to a
network and which ingredients set regional styles apart, we are also interested in
how geography shapes a style’s resilience and reliance on ingredients. We turn
to the concepts of relatedness and unrelated variety to measure both breadth
of ingredients a style uses, as well as the depth of those ingredients’ potential
substitutes (Whittle and Kogler, 2020). We find that New World styles generally
make use of a larger variety of easily substituted ingredients and are much more
resilient than Classic styles because of this.

In summary, we bring highly-detailed micro-data to longstanding questions
in the geography of beer literature. We also marry this literature with analysis
from EEG and innovation studies. In doing so we shed light on old questions
and pave the way for others to ask and answer new ones.

The rest of this paper proceeds as follows: Section 2 discusses how we fetch,
parse, and normalize the recipe-level data. Section 3 transforms recipe ingre-
dient data into style networks. Section 4 introduces eigenvector centrality, our
main measure of ingredient importance. Section 5 details our targeted deletion
strategy. Section 6 defines the ability of certain styles to weather losses of key
ingredients. Section 7 posits that geography and the abundance of ingredients
is a key determinant of resiliency. Section 8 concludes.

2 Data Collection and Mapping

We gather data on 126,256 beer recipes and map them to individual styles,
which in turn can be historically linked to countries, regions, and even cities. We
use the authoritative BJCP Style Guide to define broad styles of beer, then match
beer recipes to styles. We get our beer recipes and their component ingredients
by downloading BeerXML files from BrewersFriend.com. BrewersFriend allows
home brewers and small craft breweries to record and manage their recipes.
Recipe ingredients are broken down into hops and malts, each of which detail

because we capture the weight and volume of ingredients.
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the types and amounts of ingredients added to the recipe. Figure A (Appendix)
provides an abridged example of the BeerXML file for one such recipe.

BrewersFriend allows recipes to be made publicly accessible or otherwise
marked private. The 126,256 public recipes on BrewersFriend form the basis of
our sample. We download these public recipes in BeerXML format, then parse
the ingredients in each of the five categories into separate tables. Once parsed,
we spend considerable effort disambiguating ingredient names so that they may
be matched to multiple recipes.2 We then turn to refining our sample.

We first restrict our sample to include only recipes using whole ingredients.
Some recipes in BrewersFriend use pre-mixes from brewing kits that already
combine ingredients and therefore offer little information about the choice or
combination of ingredients. This restriction leaves us with 109,015 unique recipes,
or 86% of our original sample. We then turn to regionalizing our recipes through
their styles.

Each recipe is associated with a single official BJCP style. BJCP styles are
an international standard used to group and evaluate beers at brewing compe-
titions worldwide. Most BJCP styles are associated with a given country and
region, for example Kölsch is a specific BJCP style originating from Köln in Ger-
many. We group our recipes into 144 different BJCP styles, and drop 3,159
recipes that do not specify a style. We drop these BJCP “Specialty Beers" styles
including mead, cider, and other non-beers and lose an additional 4,821 recipes
(4% of our remaining total). We are left with 101,034 recipes covering 111 styles.
Table B (Appendix) lists these styles and the number of recipes in each.

The distribution of recipes across styles is highly skewed. Two styles, Amer-
ican IPA and American Pale Ale, represent more than 25% of all recipes. This
may represent an underlying bias in our data as BrewersFriend is based in the
United States, or it could also reflect the tremendous popularity of these styles.3

However, there are thousands of international users of BrewersFriends and over
100 styles with at least one thousand recipes each. Figure 1 shows the distribu-
tion of recipes by individual style.

There are a handful of styles, such as New Zealand IPA, that only have one
recipe associated with them. To ensure adequate variation within styles, we
further restrict our sample to styles that have at least 100 recipes. We lose only

2For example, one recipe may use “CaraPils" malt and another “carapils" malt, even though these
are the same underlying ingredient.

3As a robustness check, we randomly draw a sub-sample of American IPA recipes in proportion to
the number of recipes in the styles we compare with American IPA. Our results are largely unchanged,
so we present the full network in our comparisons below.
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Figure 1: Count of Recipes per Style

596 recipes (less than 1% of our sample) with this additional restriction, but do
miss out on a few valuable regional styles like Rauchbier, which is particular
to the town of Bamberg in Germany. After cleaning and regionalizing our style
sample, we have 100,438 recipes covering 90 styles and spanning 13 countries.
We map these styles into 25 regions with varying levels of precision4. We then
turn to our ingredient types of interest: hops and malts5.

We identify 4,882 different malt names across our sample, however not all
of these malts are truly unique due to minor variations in their names. We dis-
ambiguate these malts by first removing all nationality and company information
from the name6. We then remove special characters and lowercase all names.
We fuzzy match our cleaned list of malts back to the recipes and confirm the
matches by hand. Like styles, we remove infrequently used malts appearing in

4Some beers like the California Common can be located to a specific city and even a particular
brewery: Anchor Brewing in San Francisco. Others have less precise origins. The American IPA is
primarily attributed to the West Coast of the United States, but is also fairly ubiquitous across the
country. Finally, most British beers can only be mapped to the national level, i.e. Scotland or England.

5BrewersFriend.com provides five categories of ingredients: Hops, Malts, Yeasts, Waters, and
Miscellaneous. We focus on hops and malts because they: 1) are arguably the most important
ingredients in recipes; 2) are almost always combined with different varieties in recipes, as opposed
to yeasts; 3) are the most readily identifiable and easy to accurately localize.

6For example, “US - Castle Malting - Pilsner Malt” simply becomes “pilsner”.
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fifteen or fewer recipes. We are then left with 170 unique malts used in 99,943
recipes. Table C (Appendix) lists all these disambiguated malts.

Like Malts, we begin with a list of 5,023 Hops that appear at least once across
our recipes. We repeat the name normalization process above, removing brand
names and indications of origin. We once more confirm these results by hand,
paying particular attention to code names and translations. For example, one
common hop, Saaz, is known in the Czech Republic as Žatec, the name of the
town where it is produced. After normalizing we perform a fuzzy match to a list
of well known hops provided by both Barth-Haas and Hoplist.com. Barth-Hass
is one of largest producers of hops worldwide and has developed a ubiquitous
Tasting Guide detailing the flavor profile, alpha acid, and location of global hops
(BarthHaas, 2018). Hopslist.com similarly maintains a global reference of hops
and their locations (Healey, 2016).

We disambiguate our 5,023 hops from our recipes to just 229 global hops
from the Barth-Haas and Hopslist.com lists. Unmatched hops are almost all due
to misclassifications such as listing fruit or spices as hops, or other user data-
entry errors when creating the recipe. We similarly restrict our sample to hops
appearing in 15 or more recipes to ensure adequate variation across our sample.
We lose only 362 recipes with this restriction, leaving us with 229 unique hops
used in 92,813 different recipes. Table D (Appendix) lists these disambiguated
hops.

After parsing, disambiguating, and cleaning our sample we are left with 92,813
recipes made from 170 malts and 161 hops across 90 different styles. Table 1
summarizes these data. We now use these data to create recipe-ingredient net-
works for each style.

3 Beer Style Networks

We create an ingredient co-occurrence network for all 90 beer styles in our sam-
ple. Each recipe represents a unique combination of hops and malts, at the
extensive margin if a particular ingredient appears in a recipe, and at the inten-
sive margin based on the relative proportions used of each input. These style
networks are graphical representations of the distinct combinations of ingredi-
ents and their volumes.

Each ingredient is a node in the style network. We draw an edge between two
ingredients whenever they co-occur in the same recipe. Each edge is weighted
in proportion to the amounts used in the recipe. For example, if a recipe uses 1kg
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of Pale 2-Row malt for every 100g of Chocolate malt, we value the edge between
these two ingredients as 1/10.7 Because every beer belongs exclusively to one
style, we can combine the nodes and add their weighted edges to form unique
style networks. If the same ingredient pair appears in more than one recipe of
the same style, we sum up their weights.

Our style networks describe the relationship between the ingredients used in
every beer recipe of a given style. The networks allow us to visualize the unique
combinations of ingredients that make up a beer style. We can also represent
these style-ingredients relationships algebraically:

Sij = s11s12 . . .
...
. . . sn1snn (1)

where Sij is the style’s adjacency matrix and every entry sij measures how often
ingredients i and j appear together in recipes of the style, weighted by their
relative proportions. The adjacency matrix above can also be visualized as a
style network.8

Figure 2 plots two such style networks. Panel A shows the style network for
American IPA, the most popular style in our sample. Panel B shows the style
network for Kölsch, a beer style named for the Germany city where it was first
created, which perhaps best captures the regional nature of styles.9 We create
both graphs using the Kamada-Kawai force-directed drawing algorithm, which
minimizes total path length and places ingredients that are commonly used to-
gether next to one another (Kamada et al., 1989). Likewise, Kamada-Kawai puts
the most connected nodes at the center of the network. The size of each node
is proportional to that node’s degree centrality, or how many connected links a
node has. The width of each edge is proportional to the weights of the ingre-
dients’ as they co-occur in recipes. Hops are colored in green and shaded by
their alpha acid intensity, a proxy for bitterness. The darker the green, the more
bitter the hops. Malts are colored brown and shaded by their European Beer

7One does not usually observe the volume of each input used in the end product when using
patents or other data sources to build co-occurrence networks. Instead, this literature typically weights
edges based on the shares of the node. For example, if four technological codes appear in the same
patent each gets a weight of 1/4. For this reason, we also reproduce our analysis weighting the edges
of the style networks by the ingredients’ shares. Our results are robust to using this more common
weighting method.

8The adjacency matrix, edge list, and networks are different ways to represent the same relation-
ship between nodes and edges. We provide definitions for all three in the Appendix. See primary
references Wasserman et al. (1994) and Barabási et al. (2016) for further information.

9Since 1997, Kölsch holds a Protected Geographical Indication (PGI) within the European Union.
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Convention (EBC) coloration.10

These two styles and their graphs are quite different. American IPA uses
many more unique ingredients than Kölsch (321 nodes against 175). American
IPA’s ingredients are also more connected to one another with more than 17,000
total edges between its nodes, each of which has 108 edges on average. Kölsch,
on the other hand, has only 2,000 total edges and an average of 20 edges per
node. The American IPA has a very high network density, which is the number of
actual edges between nodes out of all theoretically possible edges. In fact, the
American IPA has a relatively high network density of 0.34 or 34% of all possible
edges, while the Kölsch has a network density of only 0.13.

The American IPA network seems to be more robust and complex than that
of Kölsch. The American IPA network includes more ingredients with stronger
connections between them. Still, one might argue that because our sample of
American IPA recipes is much larger than any other style, and more than ten
times greater than Kölsch, we misrepresent its network connectivity.11 Never-
theless, these differences exist across all styles in our sample, and are evident
even when considering networks with a similar number of recipes.

For example, California Common, another typical beer from the American
West Coast, has a similar number of recipes as Kölsch at about 900 each. De-
spite the similar number of recipes, California Common lists more ingredients
(220 nodes) and a higher average number of edges per node (38). Califor-
nia Common’s average clustering coefficient is 0.46 compared to Kölsch’s 0.39,
meaning California Common includes relatively more “three-way" connections
between ingredients. The California Common’s network is also smaller than
Kölsch’s in the sense that it takes fewer steps to traverse the network. Indeed,
California Common’s maximum shortest path, or diameter, is 1.0 compared to
Kölsch’s 1.5.

These style networks provide us with a tractable method to visualize and
model the relationship between recipes and ingredients. We now use these

10EBC coloration is a grading scale based on the color a particular malt imparts on a beer. Pilsners
and other light beers have an EBC of 4, whereas darker malt beers such as stouts have an EBC of
70.

11We test if the differences between the American IPA and Kölsch are the result of sample size.
To do so, we take 1,000 random sub-samples of American IPA consisting of 1,000 recipes each,
approximately the same number of Kölsch recipes. Although on average the American IPA random
sub-sample networks are not as connected as the full sample American IPA network, they remain
more connected than the Kölsch network. The random sub-samples have more nodes (22) and
edges between them (4,600), more than the Kölsch network. The sub-sample networks also have
a higher density (0.17), average clustering coefficient (0.40), and degree (40), as well as a shorter
diameter (1.4).
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models and their properties to identify key ingredients, resilience, and related-
ness across beer styles.

4 Eigenvector Centrality

While there is clearly significant variation among styles and their networks within
our sample, our main goal is to identify which key ingredients set these net-
works apart and give beer styles their unique tastes. In other words, we are
looking for the most important ingredient nodes in a given style network. We
turn to eigenvector centrality as a measure of each node’s relative importance
within a network. We follow the seminal work of Bonacich (1972) and calculate
eigenvector centrality as the weighted sum of the centrality of all adjacent nodes.
Mathematically we can express eigenvector centrality as:

λc(vi) =
n∑

j=1

sijc(vj) (2)

where λ is the eigenvalue scale factor, c(vi) represents the centrality score of
node vector vi and sij is the weighted edge between nodes i and j. Algebraically
this represents every element in the adjacency matrix (Sij) associated with our
style networks.

Eigenvector centrality differs from traditional degree measures of importance
because it also accounts for the relevance of a node’s immediate neighbors. As
Ruhnau (2000) explains: “centrality of nodes does not only depend on the num-
ber of its adjacent nodes but also their value of centrality” (p.360). Eigenvector
centrality awards points for being linked to very central nodes even if the node
itself has just a few connections. For this reason, it is often used in social sci-
ences to measure the influence of agents (Abbasi et al., 2011; Li et al., 2016;
Parand et al., 2016).

Table 2 shows the top ten ingredient nodes by eigenvector centrality in our
original American IPA and Kölsch networks. We normalize the centrality scores
between zero and one, such that the most central node in each network will
always have a score of one.12

Once again, there are considerable differences between these two styles,
this time in key ingredients. The most central nodes for American IPA are mostly

12We consider hops and malts together as both are fundamental ingredients to recipes, which use
each in different combinations.
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Table 2: Top Ten Nodes by Eigenvector Centrality

AMERICAN IPA
Ingredient Type Eigenvector
Citra Hop 1.00
Pale 2-Row Malt 0.91
Cascade Hop 0.77
Amarillo Hop 0.75
Simcoe Hop 0.74
Centennial Hop 0.74
Mosaic Hop 0.63
Columbus Hop 0.49
Chinook Hop 0.47
Maris Otter Malt 0.36

KÖLSCH
Ingredient Type Eigenvector
Pilsner Malt 1.00
Hallertau Hop 0.73
Tettnanger Hop 0.54
Saaz Hop 0.44
Vienna Malt 0.39
Hersbrucker Hop 0.36
Wheat Malt 0.29
Perle Hop 0.27
Pale 2-Row Malt 0.22
Magnum Hop 0.20

bittering hops with high-intensity alpha acids from the Yakima Valley in Washing-
ton State: Citra, Cascade, Amarillo, Centennial, etc. On the other hand, Kölsch
relies heavily on aromatic hops traditionally found in Pilsners and Lagers from
the Bavaria and Bohemia regions such as: Hallertau, Tettnanger, and Saaz.
There are likewise significant differences in eigenvector centrality between the
top ten ingredients of both styles. The distance between the first ranking ingre-
dient in Kölsch and the rest is much greater than that in American IPA, implying
the German style relies more heavily on a single malt source: Pilsner. Figure 3
further illustrates this difference and plots the histogram of eigenvector centrality
for all ingredients in both beer styles.

Both histograms in Figure 3 show signs of long tails common in power-law
and Pareto distributions, which confirm that our beer networks display scale-free
properties prevalent in many social, biological, and physical systems (Newman,
2005). In scale-free networks, there are often a small number of highly con-
nected nodes with most other nodes having little to no edges. This unequal dis-
tribution persists even when the system expands or contracts, hence the name
scale-free.

Because the number of edges per node is so skewed, a common trait across
scale-free networks are their resiliency to “errors” or the loss of nodes. Be-
cause most nodes have few connections, deleting a random node from a scale-
free network does little to change the network’s overall structure and function.
Conversely, scale-free networks are extremely vulnerable to “the selection and
removal of a few nodes that play a vital role in maintaining the network’s connec-
tivity” (Albert et al., 2000, p.379).
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The concepts of error tolerance and attack vulnerability are fundamental for
designing and understanding communication networks such as the World Wide
Web. Beer is definitely not the Internet, so instead it helps to imagine a scenario
where due to climate change or diseases we are no longer able to produce one
or two varieties of hops. Depending on the centrality of these lost hops in the
style network, we ought to expect different effects on the network structure and
number of feasible recipes. If the lost hops are very central to the style network,
we would expect its structure to change significantly. If instead the hop is periph-
eral, the network structure and its observable characteristics would not change
much at all. To put this idea into practice, imagine the world is no longer able
to produce Citra hops. Kölsch beers would not fundamentally change, whereas
the network structure and frontier of possible recipes within the American IPA
network would be significantly reduced. We explore this network resiliency and
sensitivity to particular ingredients in Section 5 below.

5 Stress Test

Rather than just observing a given node’s centrality in a network, we can ask:
what if that node had never existed in the first place? This approach is referred
to as network fragility or resiliency analysis and allows us to measure aggre-
gate network statistics like density, path length, and centrality as a function of
one particular node. We follow Albert et al. (2000) and Toth et al. (2020) and
iteratively remove nodes from our style networks and recalculate key network
statistics to measure how a network changes in the absence of a given node. In
our case, this approach reveals how sensitive a given beer style is to losing any
one ingredient, which in turn reveals that ingredient’s importance to the style.

We run this stress test in two ways. First, we delete nodes in rank order
according to their eigenvector centrality. Second, we delete nodes at random as
a baseline comparison. To truly randomize this deletion process, we run 10,000
iterations of random deletions for each network and report the average changes
in network statistics. We provide a glossary of these network statistics and their
definitions in Table A (Appendix).

Figure 4 shows the consequences of both targeted and random deletion in
the American IPA network. Panel 4A shows the resulting network after targeted
deletion of 40%, 60%, and 80% of the most central nodes according to eigen-
vector centrality. Panel 4B shows the same 40%, 60%, and 80% deletion, this
time removing nodes randomly. Like Figure 2, we use the Kamada et al. (1989)
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network plotting algorithm which places the most central nodes in the middle.
To better visualize the effects of deleting nodes, we fix the network at its origi-
nal layout, then remove nodes and edges from it. However, we properly re-scale
the network after each deletion when re-calculating network statistics. As before,
the node sizes are proportional to the weighted number of connections, and their
colors depend on the ingredient type and intensity.

Panel 4A clearly shows the sensitivity of the American IPA network to tar-
geted deletion. In contrast, Panel 4B shows American IPA’s relative resilience to
random deletion. Even if we delete 40%, 60% or 80% of the nodes, the result-
ing networks from the random attacks have more connections and shorter paths
relative to the targeted attack networks. To measure how much variation we
obtain from the deletions, we compute four key network statistics and compare
them to the full network. We reproduce the randomization order 10,000 times
and save the density, diameter, average clustering coefficient, and average de-
gree from the resulting networks. Figure 5 shows the distribution of the absolute
percentage change our four network statistics after randomly deleting 50 nodes.
We also highlight the changes in those statistics from a targeted deletion of 50
nodes with a dashed red line. Figures B and C (Appendix) repeat this targeted
and random deletion exercise for Kölsch to much the same effect. The effects of
the targeted attack are clearly much greater than its random counterpart. Even
though the American IPA is the largest style in our sample and perhaps the most
connected network out all styles, it relies on just handful of keystone ingredients
without which the entire style network crumbles. These keystone ingredients are
what differentiate styles and create a unique, identifiable flavor.

6 Resiliency

A common feature across all beer styles is their high dependence on a few key,
central ingredients. All style networks show scale-free properties and thus are
vulnerable to the failure of just a few ingredient nodes. However, there is sig-
nificant variation in ingredient dependence across styles. Beer styles are not
equally resilient and deleting the most central nodes in one style might have a
more powerful effect than in another.

Let us return to our original example and compare the network structures and
eigenvector centrality distributions of American IPA and Kölsch. American IPA is
more resilient because it has a larger number of connections and many ingre-
dients with a relatively high eigenvector centrality. As such, it can afford to lose
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more critical nodes than Kölsch. Is this a unique attribute of American IPA alone,
or common to the larger family of IPA styles?13 To find out, we compare Amer-
ican IPA within and across style families. Table 3 introduces two new styles,
English IPA and Munich Helles, and shows the network consequences of tar-
geted deletion of the top fifty ingredients for all four styles. Figure 9B (Appendix)
plots the ingredient networks for these two additional styles.

Table 3: Network Resiliency

Style Nodes Deleted Density Diameter Avg. Clust. Coeff. Avg. Degree

American IPA

0 0.34 1.20 0.54 108.50
1 0.33 1.20 0.54 106.04
5 0.31 1.50 0.53 96.60

10 0.27 1.50 0.52 85.74
20 0.22 1.55 0.50 66.80
50 0.12 2.16 0.37 32.84

English IPA

0 0.19 1.16 0.45 49.17
1 0.18 1.16 0.44 47.59
5 0.16 1.70 0.43 41.77

10 0.14 1.47 0.40 35.38
20 0.10 1.91 0.35 25.10
50 0.05 2.45 0.23 10.64

Kölsch

0 0.13 1.50 0.39 22.96
1 0.12 1.81 0.40 20.89
5 0.09 2.00 0.38 16.00

10 0.07 2.33 0.34 11.71
20 0.05 2.42 0.27 7.62
50 0.01 3.30 0.30 1.85

Munich Helles

0 0.16 1.85 0.42 15.39
1 0.14 2.15 0.43 13.63
5 0.10 2.14 0.37 9.67

10 0.07 2.15 0.35 6.68
20 0.04 1.97 0.32 3.23
50 0.01 0.83 1.00 0.62

All four example networks experience a loss in connectivity after deleting the
top five, ten, twenty, or fifty most central nodes. After deleting the top 20 nodes,
every network is nearly half its original size by density or average degree. Like-
wise, network diameter nearly doubles after removing the top 20 nodes, meaning

13The BJCP also defines several ‘Style Families’ that group multiple related styles. These families
are listed in Table B (Appendix).
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all four networks are becoming less connected and more difficult to traverse. De-
spite these similar trends, Table 3 also shows variation within each style’s ability
to withstand shocks. American IPA experiences the largest overall drop in aver-
age degree after deleting fifty nodes, yet remains more connected than the full
Kölsch or Munich Helles networks. Moreover, this is not just a function of the IPA
style family, as closely-related English IPA does not exhibit the same resiliency.
What makes the American IPA so much more robust than other networks? It is
clearly not only a function of sample size, but rather is the result of the style’s rel-
ative fungibility of key ingredients. American IPA has greater availability of close
substitutes because it makes use of more diverse ingredients.

Turning back to our hypothetical where Citra hops go extinct, American IPA
still has many alternatives with similar traits to choose from. This why the ge-
ography of a style is so important. The United States produces more than 60
different types of hops, many of which are very similar to Citra because they are
grown in the same regions. In fact, brewers refer to Citra and its sister hops as
the ‘7Cs’, which also include: Cascade, Centennial, Chinook, Cluster, Columbus
and Crystal. All of the 7Cs are known for their intensity and bright citric flavour.
So while the Citra hop is a key ingredient of American IPAs, it is also easily re-
placeable. It is then important to understand the correlation between a style’s
resiliency, the availability of related ingredients and the overall diversity of inputs
used. We introduce three new variables to measure these factors.

We measure the resiliency of each style network according to Toth et al.
(2020), who study the co-occurrence of patent classes and define technological
resiliency as the “amount of node removal that a region’s technology network
could withstand without being fragmented into many unconnected components”
(p.13). We use the Molloy and Reed (1995) criterion as the threshold below
which a network fragments into many separate pieces. Mathematically the crite-
rion is:

Ωs =

∑N
i=1 k

2
is∑N

i=1 kis
(3)

where Ωs is the resiliency score, or the percentage of nodes removed before the
Molloy-Reed criterion falls below two, and kis is the average degree, or number
of edges each node in the network has. Having defined a measure of network
resiliency, we now introduce two of its key determinants: related and unrelated
variety.

EEG discusses the differences between related and unrelated variety and
how these properties shape the ability of firms and regions to diversify, innovate,
and grow (Content and Frenken, 2016; Boschma, 2017; Miguelez and Moreno,
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2018; Rocchetta and Mina, 2019). We borrow these concepts to understand
how the availability of substitutes for key ingredients shapes the resiliency of
our style networks. We take related variety to represent the presence of similar
substitutes e.g. Citra or Chinook, while unrelated variety is a style’s ability to
source from multiple and distinct products, e.g. Pale 2-Row and roasted barley.

We measure unrelated variety according to Frenken et al. (2007) and we ap-
ply the Shannon Entropy formula (Shannon, 1948) to the incidence of ingredients
in a style as follows:

UVs =
N∑
i=1

Pis log2

(
1

Pis

)
(4)

where Pis is the probability of finding ingredient i in beer style s. The Shannon
Entropy formula applied to our beer styles captures the level of “uncertainty” or
“surprise” across each style’s recipes. In our style networks, Shannon Entropy
measures the likelihood a recipe includes an unexpected ingredient not com-
monly found in other beers that belong to the same style, as well as how styles
source distinct ingredients. For an example of a surprising ingredient, think of us-
ing a Chocolate type malt, typically found in dark and robust Stouts, to make an
American IPA. Thankfully this unsavory combination is not very common, though
it is certainly possible and would contribute towards a larger entropy or unrelated
variety for the style.14

Frenken et al. (2007) exploit the unique hierarchical structure of employment
to distinguish between related and unrelated variety. However, we cannot ap-
ply the same approach to our beer recipes as we cannot separate ingredients
into hierarchical structures. Instead, we follow Kogler et al. (2013, 2017) and
calculate average relatedness of individual ingredients as a measure of related
variety.

We first create a global co-occurrence network covering all beer recipes in
our sample regardless of style. The global network follows the same structure
as the individual styles described in Section 3. We use this network to measure
the similarity or relatedness between each ingredient pair. The more often two
ingredients appear together across recipes, the more similar they are and the
closer their “cognitive” proximity (Nooteboom, 2000). We measure relatedness
by standardizing the elements of the adjacency matrix by the square root of the
product of the number of recipes in the row and column ingredients of each
element:

14Stone Brewing has one such Valentine’s-themed example, though Stone gets no love from
the Authors for it: https://www.stonebrewing.com/beer/stone-enjoy-ipa-series/stone-enjoy-021417-
chocolate-coffee-ipa
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Rij =
sij√
Ni ∗Nj

(5)

whereRij measures the relatedness of each ingredient pair, sij are the elements
of the adjacency matrix and measure how often these two ingredients co-occur
(weighted by their proportions), and Ni, Nj are the count of total recipes contain-
ing each ingredient. Considering the incidence of ingredients within each style
to the sum of their proportions we estimate the style’s average relatedness as:

ARs =

∑
i

∑
j Rij(NiNj) +

∑
i 2Ni

Ps(Ps − 1)
(6)

where Ps is total count of recipes within each style. Therefore, while unrelated
variety measures how much each style sources from various ingredients, aver-
age relatedness measures the similarity of ingredients used within a style, where
we first estimate relatedness using the global sample of recipes. In other words,
average relatedness measures the availability of substitutes for every core ingre-
dient used in a given style. For example, two similar hops like Citra and Mosaic
have a relatively high average relatedness of 3.69, whereas two distant hops
such as Citra and Hallertau have an average relatedness of just 0.21. The same
is true of malts as well. The delicious Pale 2-Row and Chocolate example above
also has a mercifully low average relatedness of only 0.21. We conclude that if
a style uses more similar ingredients, it will have a higher average relatedness
and more readily available substitutes.

These EEG metrics allow us to measure the diversity of ingredients within
a style, as well as the importance of having substitutes. It is important to note,
however, that these variables are not mutually exclusive. A style could have both
high levels of average relatedness and unrelated variety. That is, a style could
simultaneously use many ingredients, each with ample substitutes.

After introducing these measures of resiliency, unrelated variety, and aver-
age relatedness, we can observe the interplay between them within recipes of
a given style. Figure 6 plots this relationship. Styles with higher levels of both
related and unrelated variety tend to be more resilient. Taking geography into
account, American Styles are more robust than the English, Belgian, or German
ones, precisely because of their diverse range of ingredients and easily available
substitutes.
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7 Geography Matters?

So far we have shown that beer styles are highly dependent on a few central
keystone ingredients. It remains to be shown that these keystone ingredients
differ across styles, otherwise all beers would rely on the same few ingredients.
We now turn to demonstrating how central ingredients vary across styles, and
that each beer depends on a unique combination of core ingredients. It is these
unique combinations that contribute most to a style’s network and to its distinc-
tive flavor.

Table 2 highlights that our two sample styles, American IPA and Kölsch, rely
on different ingredients with different eingevector centrality scores. Turning to
other style networks, we note how distinct nodes are both highly central to the
network and also specific to that style. For example, dark roasted barley is the
most central component of Irish Stout, and its most famous variant, Guinness.
Dark Munich malt is the most central ingredient for the local Dunkel dark lager.
Vienna malt is unsurprisingly the most central ingredient in Vienna Lager.

Part of what makes these styles so easily identifiable is that their central in-
gredients are either not used or are of much lower importance in other styles of
beer. It is helpful to visualize the distribution of eigenvector centrality for a given
key ingredient node across style networks. Figure 7 shows the probability distri-
bution of eigenvector centrality for the two most central nodes in the American
IPA and Kölsch: Citra hops and Pilsner malt, respectively. While these distri-
butions are different, they both reveal a bi-modal pattern indicating that while an
ingredient may be used in many recipes, it is highly relevant in just a few. Indeed,
we find that Citra hops are central components of most American ales but are
missing from many European lagers. By contrast, Pilsner is the preferred base
malt for many continental lagers from the Bavaria and Bohemia regions but is
not as common in English and American ales, which tend to use pale ale malts
such as Maris Otter Pale or Pale 2-Row as their base malt.

To further understand how geography shapes differences in ingredient cen-
trality it is helpful to think about two examples. Figure 8A shows the eigenvector
scores of the top ingredients in two members of the same style family, Ameri-
can and English IPA. Considering just the hops shown in Panel 8A, it is clear
that English IPA makes heavy use of American hops. Despite this colonial in-
fluence, English IPA also relies heavily on two distinctively English hops, East
Kent Golding and Fuggles. These hops are conspicuously absent from Amer-
ican IPA, and their inclusion contributes to English IPA’s unique characteristics
and flavour. The American hops are bittering hops with high levels of alpha acids
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and citric flavor, while their English counterparts are mixed purpose hops with
fewer alpha acids and are known for their earthy tones (Healey, 2016; Barth-
Haas, 2018). English IPA also uses Maris Otter malt, a classic malt produced
in England, much more than the American IPA. Looking at the centrality scores
of ingredients across the two IPAs, it is easy to see that English IPA has more
herbal tones, which captures why the English version “has less hop intensity and
more pronounced malt flavours than typical American versions" (BJCP, 2015).

Having considered regional differences in similar styles above, we turn to
style differences within the same region. Figure 8B shows the same relationship
for two German beers: Munich Helles, a light lager, and Kölsch, a pale ale.
Despite belonging to two distinct style families, there is significant overlap in
the centrality of their ingredients. Kölsch is the only pale ale brewed in Germany,
which makes it distinct from all other beers in the country and unique to Köln. Yet,
compared to ales from other nations, Kölsch uses significantly more of the base
malts usually found in German pilsners and lagers. Further, Kölsch favors using
the German and Czech hops abundant in lagers and known for their aroma, low
bitterness, and lightly flowery and spice taste (Healey, 2016; BarthHaas, 2018).
These central German nodes contribute to the uniqueness of Kölsch, a pale
ale with pronounced lager traits, which could easily lead the “untrained taster to
mistake it for a somewhat subtle Pils” (BJCP, 2015).

Another way to consider how beer styles differ with geography is to compare
similar style networks. Along these lines, we measure the product-moment cor-
relation coefficients between every style adjacency matrix. The correlation coef-
ficient captures how similar the weighted edges between ingredients are across
any two styles. Correlation gives us the overlap between style networks where
ingredients appear frequently together and combine in similar ways. From our
example in Figure 8, we ought to expect a higher correlation coefficient between
the two German styles than their American counterpart.

Mathematically, we can express the styles correlation coefficient as:

cor(S, S′) =
cov(S, S′)√

cov(S, S)cov(S′, S′)
(7)

where S and S′ are two example adjacency matrices and their covariance is
given by:

cov(S, S′) =
1

V2

∑
i,j

(Sij − µS)(S′ij − µ′S) (8)

where Sij and S′ij are the elements within each adjacency matrix, or the weighted
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edges between the ingredients i and j in both matrices, µS and µ′S are the aver-
age degree, and V2 is the variance. If two adjacency matrices have comparable
weighted edges between their ingredients then those styles are similar and will
have larger correlation coefficients.

Figure 9 lists the top ten correlations for two networks: American IPA and
Kölsch. Perhaps unsurprisingly, we find American IPA to be very similar to other
American beers, including the American Light Lager, particularly due to the pro-
nounced use of American hops. Kölsch, on the other hand, is most similar to
German and Bohemian lagers, and to a lesser degree to other pale ales from
Europe, especially those in Belgium.

Figure 9 highlights that beer recipes and styles are clustered in space. Beer
styles are more similar to other styles from the same region, even if those styles
belong to very different families. This is true for our American IPA and Kölsch net-
works, and for other styles in different regions. For example, Bohemian Pilsner
is more closely related to its regional neighbor, Czech Pale Lager (correlation
coefficient of 0.95), than it is to a beer of its same style, German Pils (correlation
coefficient of 0.76). Likewise, Saison, a beer style from French-speaking Wallo-
nia in Belgium, is more similar to other Belgian ales like the Belgian Golden Ale
(0.78). Golden Ale in turn is more similar to other styles from Dutch-Speaking
Flanders like Belgian Golden Strong Ale (0.91) and Belgian Trippel (0.91). Figure
E (Appendix) plots the correlation coefficients for all styles.

Therefore, regional ingredients are not only critical to the uniqueness and
resilience of a style, they also transcend style boundaries and link geographi-
cally proximate beers together. This makes good sense, as the original brew-
ers primarily had access to local ingredients and made the most with what was
available. This lack of variety, be it natural or imposed, as under the German
Reinheitsgebot, informed the development of these Classical styles. Even in an
era of globalization, these differences persist. New World styles like American
IPA benefit from the abundance of ingredients available to them. This results in a
large number of ingredients (average relatedness) with a substantial number of
ready substitutes (related variety). These factors give New World styles incredi-
ble resilience to losing keystone ingredients, as well as the flexibility to adapt and
embrace new ones. This adaptability explains the extreme popularity of these
styles and why so many brewers are drawn to them.
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8 Conclusion

We bring new data and methods to the discussion on beer and place. We find
that only a few key ingredients differentiate beer styles, and that geography and
the diversity of ingredients matter to the resilience of a style. We are the first
to collect and disambiguate a comprehensive set of beer recipe data, which we
hope others will build on. Not only can this beer data answer other longstanding
questions in the geography of beer literature, but the highly detailed ingredient
information can also be seen as data on intermediate goods used to produce a
final product. Because of this, we are able to bring an existing methodology to
a new area of inquiry. We hope our use of techniques from seemingly unrelated
fields inspires others to do the same. We quantify the benefits of styles having
an abundance of ingredients and substitutes in their regions. This conclusion
is a sensible one, and is by no means specific to beer alone. Especially in
today’s ever more connected world, embracing the abundance and diversity that
globalization offers is useful for everyone, brewers included. We invite you to
pour yourself a cold one and enjoy a sip of that diversity with us. Cheers.
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Table A: Glossary

Term Definition Formula
Node Connection point in a network graph −
Edge Link between two nodes in a network

graph
−

Edge List Dataframe containing the starting point
and end of every edge, as well as its
weight

−

Adjacency Matrix A square matrix were each element des-
ignate the edges between a pair of nodes

S = [sij]

Network Graphical representation of nodes and
edges

−

Degree (Centrality) Sum of all the edges incident to a node
n∑

i 6=j
sij

Eigenvector Centrality A measure of a node’s influence. We cal-
culate it as the weighted sum of the cen-
trality of all adjacent nodes

c(vi) =
n∑

j=1
sijc(vj)

Density The share of existing edges out of all pos-
sible links in the network

m
n(n−1)/2

Diameter The largest distance between any two pair
of nodes

−

Clustering Coefficient The proportion of exiting edges among
each node’s neighbors

−

Resiliency Percentage of nodes one can delete be-
fore the network becomes fragmented into
many unconnected components

−

Molloy-Reed Criterion Threshold at which a complex network will
lose its large connected component

Ωs =
∑N

i=1
k2is∑N

i=1
kis

< 2

Unrelated Variety A measure of diversity among compo-
nents of a recipe-ingredient incidence ma-
trix

I∑
i=1

Pis log2

(
1
Pis

)

Relatedness A measure of similarity between the net-
works nodes in the global network

sij√
Ni∗Nj

Average Relatedness The average relatedness across all nodes
in a style’s network

∑
i

∑
j

Rij(NiNj)+
∑

i
2Ni

Pis(Pis−1)

Note: The table shows definitions and formulas for all the network related terms used
throughout the paper. For further information on these, we refer to Wasserman et al.
(1994); Barabási et al. (2016); Frenken et al. (2007); Kogler et al. (2013).
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Table B: Style List

Style Family Country Region No. Recipes
American IPA IPA United States West Coast 14694
American Pale Ale Pale Ale United States West Coast 12363
American Light Lager Pale Lager United States Midwest 4638
Saison Pale Ale Belgium Wallonia 4163
Blonde Ale Pale Ale United States West Coast 3605
New England IPA IPA United States New England 3020
American Amber Ale Amber Ale United States West Coast 2924
Irish Red Ale Amber Ale Ireland Ireland 2133
American Stout Stout United States West Coast 1996
Weissbier Wheat Beer Germany Bavaria 1818
Witbier Wheat Beer Belgium Flemish Brabant 1704
Strong Bitter Amber Ale United King-

dom
England 1582

Sweet Stout Stout United King-
dom

England 1571

American Porter Porter United States East Coast 1560
English IPA IPA United King-

dom
England 1527

Oatmeal Stout Stout United King-
dom

England 1513

Imperial IPA IPA United States West Coast 1498
American Brown Ale Brown Ale United States West Coast 1452
Double IPA IPA United States West Coast 1366
Russian Imperial Stout Stout Russia Baltic 1341
Black IPA IPA United States West Coast 1136
Best Bitter Amber Ale United King-

dom
England 1128

Ordinary Bitter Amber Ale United King-
dom

England 1111

British Brown Ale Brown Ale United King-
dom

England 1069

California Common Amber Lager United States San Francisco 1015
Belgian Pale Ale Pale Ale Belgium Flemish Brabant 1008
American Wheat Beer Wheat Beer United States Pacific Northwest 969
Kölsch Pale Ale Germany Cologne 946
Belgian Blond Ale Pale Ale Belgium Flemish Brabant 918
Märzen Amber Lager Germany Bavaria 910
Red IPA IPA United States West Coast 893
Cream Ale United States United States Midwest 857
Berliner Weisse Wheat Beer Germany Berlin 824

26



Belgian Dubbel Amber Ale Belgium Flemish Brabant,
Antwerp

812

Robust Porter Porter American East Coast 720
Belgian Tripel Strong Ale Belgium Antwerp 712
British Golden Ale Pale Ale United King-

dom
England 705

American Lager Pale Lager United States Midwest 682
Brown Porter Porter United King-

dom
England 674

Dunkles Weissbier Wheat Beer Germany Bavaria 612
Irish Stout Stout Ireland Ireland 583
Rye IPA IPA United States West Coast 573
Belgian Golden Strong Ale Strong Ale Belgium Flemish Brabant,

Antwerp
565

Belgian Dark Strong Ale Strong Ale Belgium Flemish Brabant,
Antwerp

563

German Pils Pilsner Germany Bavaria 558
White IPA IPA United States West Coast 553
Imperial Stout Stout United King-

dom
England 546

Vienna Lager Amber Lager Austria Vienna 503
Dark Mild Brown Ale United King-

dom
England 501

Foreign Extra Stout Stout United King-
dom

England 475

English Porter Porter United King-
dom

England 465

Bohemian Pilsener Pilsner Czech Repub-
lic

Plzeň 451

American Barleywine Strong Ale United States West Coast 441
Scottish Export Amber Ale United King-

dom
Scotland 439

English Barleywine Strong Ale United King-
dom

England 426

Old Ale Strong Ale United King-
dom

England 400

Belgian IPA IPA Belgium Flanders 386
British Strong Ale Strong Ale United King-

dom
England 384

Belgian Specialty Ale Strong Ale Belgium Flemish Brabant,
Antwerp

376

Dry Stout Stout United King-
dom

England 375
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American Strong Ale Strong Ale United States West Coast 359
Weizenbock Bock Germany Bavaria 346
Doppelbock Bock Germany Bavaria 332
Baltic Porter Porter Scandinavia Baltic 331
Helles Bock Bock Germany Bavaria 319
Bière de Garde Pale Ale France Northern France 311
Altbier Amber Ale Germany Düsseldorf 304
Mild Amber Ale United King-

dom
England 299

Munich Dunkel Dark Lager Germany Bavaria 290
Scottish Heavy Amber Ale United King-

dom
Scotland 290

Trappist Single Pale Ale Belgium Flemish Brabant,
Antwerp

255

Strong Scotch Ale Strong Ale United King-
dom

Scotland 248

Flanders Red Ale Sour Ale Belgium West Flanders 243
Schwarzbier Dark Lager Germany Thuringia, Sax-

ony, & Franconia
241

Munich Helles Pale Lager Germany Munich 238
Wee Heavy Strong Ale United King-

dom
Scotland 222

Czech Premium Pale Lager Pale Lager Czech Repub-
lic

Plzeň 213

Scottish Light Pale Ale United King-
dom

Scotland 183

Lambic Wheat Beer Belgium Brussels 172
Australian Sparkling Ale Pale Ale Australia Australia 154
Brown IPA IPA United States Westcoast 153
Traditional Bock Bock Germany Einbeck 151
Roggenbier Wheat Beer Germany Regensburg 150
Festbier Pale Lager Germany Munich 147
Czech Pale Lager Pale Lager Czech Repub-

lic
Plzeň 141

Fruit Lambic Wheat Beer Belgium Brussels 138
Irish Extra Stout Stout Ireland Ireland 131
Gose Wheat Beer Germany Leipzig 119
Gueuze Wheat Beer Belgium Brussels 116
Oud Bruin Sour Ale Belgium East Flanders 110
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Table C: Malt List

Malt Name Recipes EBC Styles Countries
Pale 2-Row 37806 2.18 American Lager,

Cream Ale, etc.
AR, AU, BE, CA, DE,
DK, FI, FR, UK, US

Pilsner 25483 1.70 Altbier, Belgian Tripel,
Berliner Weisse, etc.

AR, AU, BE, BR, CA,
DE, FI, FR, NL, NZ,
UK, US

Maris Otter Pale 19820 3.66 Best Bitter, Mild, Ordi-
nary Bitter, etc

BE, CA, UK, US

Pale 14814 2.95 Belgian IPA AR, AU, BE, BR, CA,
CL, DE, FI, IE, NL, NZ,
SE, UK, US, ZA

Wheat 13826 2.09 Dunkles Weissbier,
Fruit Lambic, Weizen-
bock

AR, AU, BE, CA, DE,
FI, IE, NL, NZ, UK, US

Chocolate 13654 371.69 American Porter,
American Stout, etc

AR, AU, BE, CA, CL,
DE, FI, IE, NL, NZ, UK,
US

Munich Light 11486 8.07 Märzen AU, BE, CA, DE, FI,
NL, UK, US

Vienna 11322 3.95 Festbier, Vienna Lager AR, AU, BE, BR, CA,
CL, DE, FI, FR, IE, NL,
NZ, UK, US

Caramel/Crystal60L 10970 59.95 American Brown Ale AR, BE, CA, DE, NL,
UK, US

Carapils Dextrine 9424 1.80 Strong Scotch Ale DE, FI, US
Roasted Barley 9092 411.03 Irish Extra Stout AR, AU, BE, CA, DE,

FI, NL, NZ, UK, US
Caramel/Crystal40L 7790 40.01 Robust Porter CA, DE, UK, US
CaraMunich 7682 47.03 Flanders Red Ale BE, DE, NL, UK, US
Munich 7213 14.42 Traditional Bock AR, AU, BE, BR, CA,

CL, DE, FI, IE, NL, NZ,
UK, US

CaraPils 6659 2.39 Munich Helles AR, BE, DE, IE, UK,
US

White Wheat 6654 2.75 American Wheat Beer BE, CA, DE, US
Acidulated 5918 3.38 Gose BE, DE
Caramel/Crystal120L 5000 120.00 Imperial Stout BE, CA, DE, UK, US
Caramel/Crystal20L 4692 20.20 American IPA BE, CA, DE, FI, US
SpecialB 4312 116.08 Belgian Dubbel BE, UK
Biscuit 4072 23.21 Belgian Dubbel AR, AU, BE, CA, DE,

FI, NL, NZ, UK, US
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Dark Munich 4042 15.71 Munich Dunkel AU, CA, DE, FI, NL,
UK, US

Rye 3992 3.56 Roggenbier, Rye IPA AU, BE, CA, DE, FI,
NZ, UK, US

Honey 3828 24.60 Scottish Light CA, FI, UK, US
Victory 3784 27.98 American Brown Ale UK, US
Golden Promise 3750 2.96 Wee Heavy FI, IE, UK
Melanoidin 3530 24.87 Traditional Bock AR, BE, DE, US
Aromatic 3332 29.24 Flanders Red Ale BE, DE, FR, NL, UK,

US
Caramel/Crystal10L 3107 10.02 Blonde Ale BE, DE, FI, NL, US
Caramel/Crystal80L 3027 80.01 American Brown Ale CA, UK, US
Black 2690 506.76 Robust Porter BE, DE, FI, NL, UK, US
Pale Chocolate 2517 209.35 English Porter FI, NZ, UK, US
CaraRed 2311 20.00 Red IPA DE, UK, US
Black Patent 2101 523.74 Robust Porter UK, US
CarafaIII 2057 533.70 Black IPA DE, UK
CaraHell 2036 10.91 Helles Bock DE, US
Caramel/Crystal30L 2029 29.84 Scottish Export AR, FI, UK, US
Brown 2017 69.07 English Porter NL, NZ, UK, US
Pale Wheat 1965 1.71 Weizenbock BE, CA, DE, UK, US
Caramalt 1930 18.11 Irish Extra Stout AU, BE, CL, DE, UK,

US
Carafoam 1787 1.89 American Light Lager DE, US
Caramel/Crystal15L 1747 15.00 American Strong Ale AR, UK, US
CarafaII 1735 426.81 Schwarzbier DE
Caramel/Crystal45L 1621 44.15 Irish Extra Stout BE, NL, UK, US
CaraAroma 1609 126.07 Foreign Extra Stout DE, UK, US
Bohemian Pilsner 1544 1.92 Bohemian Pilsner DE
Dark Crystal 1499 88.99 English Porter AU, NZ, UK, US
Amber 1494 27.19 English Porter AU, BE, CA, DE, IE,

NL, UK, US
Caramel/Crystal90l 1395 90.01 Foreign Extra Stout CL, UK, US
Midnight Wheat 1347 549.76 Black IPA CA, US
Red Wheat 1281 2.48 Weizenbock CA, US
Ale 1258 2.96 British Golden Ale AU, BE, DE, FI, IE, NL,

NZ, UK, US
Oats 1257 2.25 New England IPA AU, BE, CA, FI, IE, NZ,

UK, US
Smoked 1207 4.11 Strong Scotch Ale BE, DE, FI, NL, NZ,

UK, US
Caramel/Crystal150L 1150 125.26 Oatmeal Stout BE, DE, FI, UK, US
CarafaI 1126 340.71 Irish Extra Stout DE
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Extra Dark Crystal 1096 133.84 Scottish Light AU, UK
CaraVienne 1063 20.22 Oud Bruin BE, US
CaraAmber 1025 23.55 American Amber Ale DE
Pale 6-Row 1020 1.82 Cream Ale CA, US
Golden Naked Oats 987 9.79 American Brown Ale UK
Special Roast 963 50.14 American Brown Ale BE, US
Chocolate Dark 935 459.39 Irish Extra Stout FI, NZ, US
Caramel/Crystal50L 857 43.72 Foreign Extra Stout DE, FI, UK
Caramel/Crystal75L 779 75.00 Brown Porter US
RedX 721 11.98 Red IPA DE, US
Chocolate Wheat 647 411.66 Irish Extra Stout DE, NL, US
Caramel/Crystal70l 625 69.22 English Porter FI, UK
Chocolate Rye 606 243.60 Irish Extra Stout DE, NZ, US
Caramel/Crystal140L 585 139.75 English Porter BE, CL, DE, UK, US
Blackprinz 584 500.00 Schwarzbier US
Crystal Light 566 36.06 Brown Porter AU, NZ, UK
Floor Malted
Bohemian Pilsner

545 2.15 Czech Premium
Pale Lager

DE

Coffee 531 158.31 English Porter BE, CA, CL, DE, FR,
NL, NZ, UK, US

Dextrine 524 1.75 Brown Porter FI, UK, US
Flaked Oats 478 2.07 Oatmeal Stout BE, CA, DE, NL, UK,

US
Abbey 475 17.18 Belgian Dubbel BE, DE, US
Roasted Wheat 475 49.37 Fruit Lambic AU, BE, FI, NZ, UK, US
Lager 474 1.53 British Golden Ale IE, NL, UK
Crystal Medium 472 57.59 English Porter AU, NZ, UK
Black Barley 469 525.93 Oatmeal Stout UK, US
Carastan 436 33.80 Russian Imperial Stout UK
Extra Pale 429 7.76 Belgian Specialty Ale AU, BE, CL, DE, FI,

UK, US
Darkwheat 420 6.55 Weizenbock DE
CaraCrystal Wheat 404 54.67 Brown IPA BE, US
Debittered Black 393 566.10 Imperial Stout BE
Crystal Rye 380 88.59 Black IPA NZ, UK
Dehusked CarafIII 336 470.22 Black IPA DE
Carabrown 333 55.00 American Brown Ale US
Melanoid 307 27.54 Traditional Bock BE, DE, FI, NL
Pearl 299 3.28 Strong Scotch Ale UK, US
Spelt 297 2.04 Lambic DE, NL
CaraPale 290 3.89 Irish Extra Stout BE, FI, UK, US
Caramel/Crystal100L 288 40.22 Irish Extra Stout FI, UK, US
Peated 287 2.51 Strong Scotch Ale BE, DE, UK
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CaraWheat 283 46.05 Dunkles Weissbier DE, FI
Flaked Barley 283 1.62 Irish Stout DE, US
Carabelge 257 13.51 Flanders Red Ale BE, DE
Caramel/Crystal55L 241 55.09 Oud Bruin CL, UK
CaraBohemian 238 75.00 Robust Porter DE
Crystal 232 61.44 Brown Porter AU, BE, IE, NZ, UK,

US
Dehusked CarafII 229 418.03 Schwarzbier DE
CaraRye 228 66.19 Black IPA DE, NZ, US
ESB 209 3.47 Mild CA, UK
Toffee 201 5.65 Irish Extra Stout NZ
CaraGold 180 33.47 Festbier BE, IE, UK, US
Gladiator 176 5.14 Fruit Lambic NZ
Chocolate Light 169 419.60 Irish Extra Stout AU, FI, NZ, UK, US
Flaked Wheat 164 2.03 Witbier BE, CA, DE, NZ, US
Mild 136 3.11 Mild UK
Ashburne Mild 131 5.30 Dark Mild US
Aurora 125 28.43 Belgian Pale Ale,

Brown IPA
NZ

Cookie 115 19.26 British Golden Ale FI
Dehusked CarafI 115 337.29 Schwarzbier DE
Cararuby 109 21.12 Red IPA BE, UK
Caramel/Crystal300L 108 114.82 Traditional Bock FI
Redback 106 33.86 Red IPA NL, NZ
Shepherds Delight 103 144.93 Red IPA NZ
Floor Malted
Bohemian Wheat

101 1.98 Gueuze DE

Sourgrapes 101 2.18 Gose NZ
Crystalmillet 96 17.67 Helles Bock US
Kölsch 92 3.29 Kölsch DE
Buckwheat 91 2.30 Irish Stout US
Carastan Light 91 15.00 Scottish Export UK
Pale Millet 89 1.65 Old Ale US
Stout 89 18.78 Irish Stout IE
Chit 85 1.52 Scottish Light DE, NZ, UK, US
Double Roast Crys-
tal

79 110.04 Scottish Heavy UK, US

SpecialW 79 114.72 English Porter BE, DE
Caraplus150 78 59.20 Foreign Extra Stout FI
Rice 72 58.19 American Wheat Beer US
Optic 70 2.15 Strong Scotch Ale UK
Caraplus100 66 38.00 Black IPA FI
CaraBlond 63 7.99 White IPA BE
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Caramel/Crystal250L 63 94.00 Roggenbier FI
Dark 58 71.12 Brown IPA CA, DE, FI, NZ, US
Supernova 57 57.62 Brown IPA NZ
Rolled Oats 56 1.73 Scottish Heavy NZ
Flakedrice 54 0.93 American Light Lager US
Pale Crystal 52 28.92 British Strong Ale UK
Pale Rye 50 3.29 Roggenbier DE, UK, US
Red 50 22.05 Red IPA DE, FI, NL, US
Flaked Rye 49 2.29 Dry Stout US
Munich Millet 49 6.61 Scottish Light US
Black Pearl 46 350.43 Oatmeal Stout CL, FI, NZ, US
Heritage 45 6.35 Old Ale CA, UK
Flaked Corn 42 0.71 Cream Ale US
Roasted Oats 40 6.22 Belgian Dubbel CA, UK, US
Dark Roasted Millet 39 298.21 English Porter US
Caraplus200 38 76.67 Russian Imperial Stout FI
Specialx 38 128.09 Brown Porter DE
Distillers 37 2.37 Gueuze IE, NZ, US
Smoked Wheat 35 2.31 Roggenbier DE, US
Caramel/Crystal200l 32 83.38 British Strong Ale BE, FI, UK, US
Lager Light 32 1.43 Fruit Lambic NZ
Fullpint 30 3.45 Strong Bitter US
Heidelberg 26 1.34 Munich Helles DE
Opal 44 24 35.33 American Amber Ale US
CaraMillet 22 32.32 Irish Red Ale US
Enzyme 21 0.40 Red IPA FI
Pale Compass 21 2.69 Old Ale AU
Red Crystal 21 98.59 Foreign Extra Stout UK
Light Roasted Millet 20 6.70 Irish Red Ale US
Base 19 1.97 Rye IPA NZ, US
Caramel/Crystal400L 19 198.24 British Strong Ale CA, DE, FI, UK
Caramel/Crystal65L 19 65.00 Scottish Light UK, US
Caraplus250 19 97.26 American Light Lager FI
Lamonta 19 2.89 Belgian IPA US
Barley 18 195.82 Imperial Stout BR, DE, NL, NZ
Golden 18 4.07 Gose FI, US
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Table D: Hop List

Hop Name Recipes Alpha Styles Countries
Cascade 18582 6.91 American Barleywine,

American Pale Ale, etc.
United States

Citra 15950 11.88 American IPA, Double IPA,
Black IPA, etc.

United States

Centennial 11046 9.79 American Barleywine United States
Amarillo 10867 8.60 Belgian IPA United States
East Kent Golding 9833 5.15 British Strong Ale, Scottish

Export, Strong Bitter, etc.
United Kingdom

Magnum 9696 13.90 Altbier Germany
Simcoe 9223 12.96 Imperial IPA United States
Mosaic 9151 12.58 New England IPA United States
Columbus 8245 15.01 Imperial IPA United States
Chinook 7568 12.68 American Barleywine United States
Saaz 6772 3.48 Bohemian Pilsner, Czech

Premium Lager, etc.
Czech Republic

Fuggle 6538 4.57 Mild United Kingdom
Hallertau 5328 3.88 Munich Helles Germany
Willamette 4786 4.69 American Brown Ale United States
Galaxy 3995 14.44 New England IPA Australia
Northernbrewer 3926 7.95 California Common United States
Warrior 3127 15.90 Double IPA United States
Nugget 3052 13.66 Old Ale United States
Tettnanger 2986 4.18 Altbier Germany
Styrian Gold 2816 4.87 Belgian Golden Strong Ale Slovenia
Perle 2721 7.67 Doppelbock Germany
Hersbrucker 2572 3.68 Munich Dunkel Germany
El Dorado 2240 15.06 New England IPA United States
Challenger 2221 7.91 Strong Bitter United Kingdom
Nelson Sauvin 2159 12.17 Brown IPA New Zealand
Golding 1671 4.83 British Strong Ale United States
Azacca 1549 13.75 New England IPA United States
Mandarina Bavaria 1330 8.33 White IPA Germany
Summit 1225 17.28 Black IPA United States
Target 1207 10.78 Strong Bitter United Kingdom
Motueka 1193 6.84 Belgian IPA New Zealand
Crystal 1158 4.18 Brown Porter, Cream Ale United States
Mounthood 1105 5.06 Cream Ale United States
Galena 1076 13.00 Fruit Lambic United States
Ekuanot 949 15.20 New England IPA United States
Hallertau Blanc 912 9.40 Gose Germany

34



Cluster 910 6.87 Cream Ale United States
Sorachi Ace 887 11.46 Saison Japan
Apollo 814 18.98 Imperial IPA United States
Ahtanum 788 5.50 Brown IPA United States
Bravo 760 15.19 White IPA United States
Falconer’s Flight 738 10.16 Black IPA United States
Liberty 725 4.19 Cream Ale United States
Lemondrop 712 5.80 Berliner Weisse United States
Hullmelon 693 6.75 Saison Germany
Vic Secret 624 16.34 New England IPA Australia
Sterling 571 8.42 Doppelbock United States
Bramling Cross 545 6.40 Old Ale United Kingdom
Brewer’s Gold 524 8.28 Belgian Dark Strong Ale United Kingdom
Horizon 518 12.19 American Amber Ale United States
Spalt 510 4.17 Altbier Germany
Idaho 7 503 13.08 New England IPA United States
Hallertauer Tradition 481 5.43 Festbier Germany
Calypso 466 13.08 Fruit Lambic United States
Glacier 463 5.42 Irish Stout United States
First Gold 444 7.84 British Golden Ale United Kingdom
Comet 397 10.48 Brown IPA United States
Pacific Gem 385 14.90 White IPA New Zealand
Zeus 377 16.13 Belgian IPA United States
Northdown 372 8.20 Best Bitter United Kingdom
Admiral 346 14.22 British Golden Ale United Kingdom
Pacific Jade 345 13.26 Brown IPA New Zealand
Loral 340 11.68 Fruit Lambic United States
Rakau 325 10.44 Red IPA New Zealand
Sabro 323 14.61 New England IPA United States
Strisselspalt 292 3.98 Lambic France
Zythos 286 10.72 Belgian Specialty Ale United States
Cashmere 279 7.96 Gueuze United States
Palisade 278 7.66 American Strong Ale United States
Aurora 275 8.21 Belgian Pale Ale, Brown

IPA
Slovenia

Equinox 265 13.83 Brown IPA United States
Belma 262 10.26 American Barleywine United States
Wakatu 256 7.36 Irish Extra Stout New Zealand
Ella 247 14.72 British Golden Ale Australia
Waimea 240 16.55 Belgian IPA New Zealand
Denali 235 14.12 Belgian IPA United States
Waiiti 234 2.97 Lambic New Zealand
Herkules 229 15.33 Weizenbock Germany
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Pacifica 226 5.14 Czech Pale Lager New Zealand
Tomahawk 223 14.79 Brown IPA United States
Saphir 214 3.94 Festbier Germany
Jarrylo 201 14.84 Rye IPA United States
Topaz 199 15.76 White IPA Australia
Southern Cross 194 12.74 Old Ale New Zealand
Greenbullet 188 11.71 Red IPA New Zealand
Pilgrim 184 10.26 British Golden Ale United Kingdom
Kohatu 163 6.62 Belgian IPA New Zealand
Progress 159 6.29 Best Bitter United Kingdom
Southern Star 158 11.28 British Golden Ale South Africa
Dr.Rudi 156 11.43 Berliner Weisse New Zealand
Summer 155 6.10 Fruit Lambic Australia
Polaris 152 19.19 Brown IPA Germany
Pekko 144 15.09 Irish Extra Stout United States
Enigma 143 15.77 Fruit Lambic Australia
Eureka 139 16.82 British Golden Ale United States
Riwaka 138 5.28 Belgian IPA New Zealand
Phoenix 135 10.52 Irish Extra Stout United Kingdom
Millennium 132 15.67 English Barleywine United States
Celeia 116 3.57 Trappist Single Slovenia
Strata 116 12.77 New England IPA United States
Vanguard 114 5.12 Vienna Lager United States
Spalterselect 110 4.36 Festbier Germany
Medusa 104 3.96 New England IPA United States
Pride of Ringwood 103 9.76 American Lager Australia
Bullion 98 8.36 Scottish Heavy United Kingdom
Columbia 91 10.38 Traditional Bock United States
Moutere 85 17.72 Belgian IPA New Zealand
African Queen 84 12.14 British Golden Ale South Africa
Bru1 84 14.41 New England IPA United States
Santiam 79 6.62 Gose United States
Southern Promise 77 11.46 Brown IPA Slovenia
Aramis 76 7.17 Saison France
Bobek 76 4.84 Belgian Tripel Slovenia
Opal 74 6.88 Gueuze Germany
Taiheke 68 7.16 British Strong Ale New Zealand
Archer 66 4.43 Old Ale United Kingdom
Premiant 64 8.91 Czech Pale Lager Czech Republic
Lublin 63 4.39 Roggenbier Poland
Meridian 63 7.00 Red IPA United States
Kazbek 62 6.00 Munich Dunkel Czech Republic
Marynka 62 8.53 Belgian IPA Poland
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Sladek 61 6.40 Czech Premium Pale Lager Czech Republic
Newport 60 13.44 Scottish Light United States
Jester 59 8.57 British Golden Ale United Kingdom
Styrian Wolf 52 12.66 English Barleywine Slovenia
Sovereign 51 5.42 British Golden Ale United Kingdom
Pioneer 47 8.87 British Golden Ale United Kingdom
Callista 45 3.79 Weizenbock Germany
Hallertauer 42 4.56 Festbier Germany
Superalpha 42 12.75 English IPA New Zealand
Triskel 41 4.86 Fruit Lambic France
Ariana 38 10.60 Belgian Specialty Ale Germany
Mount Rainier 38 6.18 Munich Dunkel United States
HBC472 37 9.65 Cream Ale United States
Zappa 37 6.38 New England IPA United States
Sticklebract 31 11.76 American Light Lager New Zealand
Superpride 31 13.80 British Golden Ale Australia
Pahto 30 17.07 Belgian Specialty Ale United States
Helga 29 5.93 Gose Australia
Sonnet 29 5.22 Strong Scotch Ale United States
Boadicea 28 7.01 British Golden Ale United Kingdom
HBC438 27 15.66 White IPA United States
Olicana 27 7.89 English IPA United Kingdom
Dana 26 11.81 Old Ale Slovenia
Endeavour 26 9.07 Mild United Kingdom
HBC342 26 11.94 Imperial IPA United States
Julius 26 7.36 English IPA United States
Smaragd 25 5.67 Weizenbock Germany
Ultra 25 5.09 American Lager United States
Caliente 24 14.22 American Barleywine United States
Legacy 24 7.75 British Golden Ale United States
Minstrel 23 6.05 Weizenbock United Kingdom
Delta 22 6.39 British Strong Ale United States
Sybilla 20 5.67 Fruit Lambic Poland
Merkur 19 12.85 Schwarzbier Germany
Michigan Copper 19 9.32 Rye IPA United States
Tahoma 19 6.69 Trappist Single United States
Triplepearl 19 9.55 Helles Bock United States
Hallertauer Taurus 17 15.50 Altbier Germany
Monroe 17 3.36 American Strong Ale Germany
Lubelska 16 4.39 Belgian Specialty Ale Poland
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Figure 2: Example Networks

(A) American IPA

Nodes Density Diameter Clustering Avg. Degree

321 0.34 1.20 0.54 108

(B) Kölsch

Nodes Density Diameter Clustering Avg. Degree

175 0.13 1.50 0.39 23
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Figure 3: Eigenvector Centrality Distribution within Styles

(A) American IPA (B) Kölsch

Note: These plots are the eigenvector centrality distributions for every ingredient in the
American IPA and Kölsch networks. The x-axis lists ingredients ranked by centrality score.
The y-axis is the eigenvector centrality score. We measure centrality according to the
eigenvector formula developed by Bonacich (1972). We normalize centrality scores be-
tween one and zero, such that the most central node always has a centrality score of
one.
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Figure 4: Stress Test - American IPA

(A) Targeted Attacks

(B) Random Attacks

Note: Both panels depict the impact of removing 40%, 60% or 80% of the nodes from
the American IPA network. Panel 4A shows the effect of targeted deletion according to
eigenvector centrality. Panel 4B shows a random attack where we nodes are deleted in
random order.
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Figure 5: Resiliency Against Random Removal

(A) Net Density (B) Net Diameter

(C) Avg. Clustering Coefficient (D) Avg. Degree

Note: These figures plot the probability density distribution of the effect of deleting 50
nodes from the American IPA network. The y-axis is the probability density scaled be-
tween 0 and 1, such that the most frequent effect is equal to 1. The x-axis is the absolute
value of the percentage change of a given network statistic. Density refers to the number
of edges out of total possible links. Net Diameter is the maximum shortest path. Cluster-
ing coefficient is the fraction of total three-way connections out all possible ones. Average
degree is the average number of edges each node has. A network is no longer connected
when Average Degree falls below one. The dashed black line is the average effect of
10,000 random deletions. The dashed red is the effect of targeted deletion according to
eigenvector centrality.
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Figure 6: Resiliency vs. Unrelated Variety and Related Variety

(A) Unrelated variety (B) Related Variety

Note: These plots show the correlation between resiliency and either unrelated variety or
related variety. The y-axis is resiliency, which we measure as the percentage of nodes a
network can lose before fragmenting into many unconnected components. The x-axis is
either unrelated variety or average relatedness. We calculate unrelated variety using the
Shannon Entropy formula following (Frenken et al., 2007). We calculate related variety
following (Kogler et al., 2013). Points are colored according to the country of origin of the
beer style.
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Figure 7: Eigenvector Centrality Distribution across Styles

(A) Citra (B) Pilsner

Note: These plots show the probability density function of the eigenvector centrality for
two ingredients prevalent in many beer styles: Citra hops and Pilsner malt. The x-axis
is the eigenvector centrality of the nodes computed for every style in our sample. The
y-axis is the probability density of the centrality score. Both axes are scaled between one
and zero such that when an ingredient is the most influential in a network, it will have a
centrality score of one. A probability density of one means this is the most frequent cen-
trality score of the ingredient among the beer styles. We measure eigenvector centrality
according to Bonacich (1972).

47



Figure 8: Eigenvector Centrality of Ingredients by Styles

(A) American IPA vs. English IPA

(B) Kölsch vs. Munich Helles

Note: These figures plot the eigenvector centrality of the five most central malts and hops
in four style networks: American IPA, English IPA, Kölsch, and Munich Helles. Eigenvec-
tor centrality measures the importance of each ingredient to a style, which we compute
according to Bonacich (1972). Panel 8A shows the comparison between two styles of the
same family (IPA) across different countries: the United States and England. Panel 8B
compares the centrality scores for two styles of different families, pale ale and pale lager,
within the same country of origin: Germany. We arrange the ingredients in Panel 8A ac-
cording to their centrality scores for American IPA. In Panel 8B, we arrange the ingredients
according to their centrality score for Kölsch.
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Figure 9: Top Ten Similar Styles

(A) American IPA (B) Kölsch

Note: These plots show the ten styles most similar to American IPA and Kölsch, ranked
by correlation coefficient. The x-axis is the correlation coefficient. The y-axis displays the
names of the most similar styles, with style family and country of origin in parenthesis.
We calculate the correlation coefficient as product-moment correlations between any two
styles’ adjacency matrices.
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Figure A: An Abridged Sample BeerXML File

1 <?xml version=" 1.0 " encoding="UTF−8 " ?>
2 <RECIPE>
3 <NAME>Avg . Per fec t Northeast IPA (NEIPA) < /NAME>
4 <VERSION>1< /VERSION>
5 <TYPE> A l l Grain< /TYPE>
6 . . .
7 <FERMENTABLES>
8 <FERMENTABLE>
9 <NAME>Pale 2−Row< /NAME>

10 <TYPE>Grain< /TYPE>
11 <AMOUNT>4.8761179775< /AMOUNT>
12 <YIELD>80.43< / YIELD>
13 <COLOR>1.8< /COLOR>
14 < /FERMENTABLE>
15 . . .
16 < /FERMENTABLES>
17 <HOPS>
18 <HOP>
19 <NAME> C i t r a < /NAME>
20 <ALPHA>12.6< /ALPHA>
21 <AMOUNT>0.0283495231< /AMOUNT>
22 <USE> B o i l < /USE>
23 <USER_HOP_USE> B o i l < /USER_HOP_USE>
24 <TIME>10< / TIME>
25 <FORM> P e l l e t < /FORM>
26 < /HOP>
27 . . .
28 < /HOPS>
29 <MISCS>
30 <MISC>
31 <NAME> I r i s h Moss< /NAME>
32 <TYPE>F in ing< /TYPE>
33 <USE> B o i l < /USE>
34 <TIME>15< / TIME>
35 <AMOUNT>0.00246446< /AMOUNT>
36 < / MISC>
37 . . .
38 < /MISCS>
39 . . .
40 <STYLE>
41 <NAME>Spec ia l t y IPA: New England IPA< /NAME>
42 <CATEGORY>IPA< /CATEGORY>
43 <CATEGORY_NUMBER>21< /CATEGORY_NUMBER>
44 <STYLE_LETTER>B< /STYLE_LETTER>
45 <STYLE_GUIDE>BJCP< /STYLE_GUIDE>
46 <TYPE>Ale< /TYPE>
47 . . .
48 < /STYLE>
49 < / RECIPE>
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Figure B: Stress Test - Kölsch

(A) Targeted Attacks

(B) Random Attacks

Note: Both panels depict the impact of removing 40%, 60% or 80% of the nodes from the
Kölsch network. Panel BA shows the effect of targeted deletion according to eigenvector
centrality. Panel BB shows a random attack where nodes are deleted in random order.
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Figure C: Resiliency Against Random Removal - Kölsch

(A) Net Density (B) Net Diameter

(C) Avg. Clustering Coefficient (D) Avg. Degree
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Figure D: Example Networks

(A) English IPA

Nodes Density Diameter Clustering Avg. Degree

263 0.19 1.16 0.45 49

(B) Munich Helles

Nodes Density Diameter Clustering Avg. Degree

98 0.16 1.85 0.42 15.39
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Figure E: Network Correlations
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