

NovaUCD

Technology Licensing Opportunity

3D Desktop Composite Process

- System for joining 3D printed polymer/composite layers to the surface of fibre composite materials

Opportunity:

Composite overmoulding is a process of moulding polymer features to the surface of composite materials using an injection moulding system. These specialised systems are costly and require a bespoke steel/aluminium mould be made for each design.

An invention by University College Dublin researchers comprising a novel method of joining 3D printed polymer/composite layers to the surface of fibre composite materials, resulting in a new process coined, 'over-printing'.

Technology Overview:

The over-printing system can print various polymers directly onto the surface of a composite panel. It requires no moulds and can be cost effective for a single production run. In addition, this process can use multiple polymers simultaneously to maximise the performance of the part, whereas conventional moulding is limited to a single polymer per moulding cycle. The bond strengths have been shown to reach 6Mpa in adhesion testing (ASTM 4541), and up to 44Mpa in interlaminar shear strength (ASTM 2344).

Key Features/Advantages:

- Enables single batch production at lower cost than conventional overmoulding techniques.
- · Does not require injection moulding equipment.
- Allows rapid prototyping and manufacturing without the need for moulds.
- Can design the composite/3D printed components to take advantage of their combined materials properties.

FUNDERS:

Value Proposition:

Low-cost way to build small scale batches of high-performance materials, with bond strength that match industry norms.

Markets:

Aerospace and automotive R&D design centers.

Lead Inventors:

Dr Andrew Dickson and Professor Denis Dowling, UCD School of Mechanical and Materials Engineering.

IP Status/Publication:

Trade-secret.

Contact:

Dr Hugh Hayden Technology Transfer Office Knowledge Transfer t: + 353 1 716 3725 e: hugh.hayden@ucd.ie

novaucd.ie August 2021