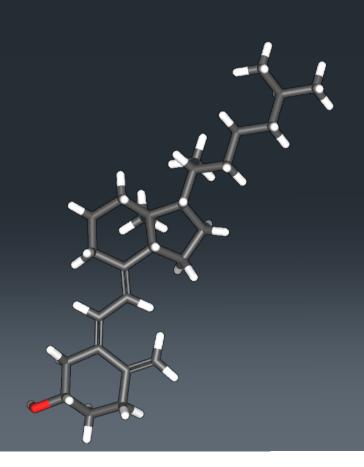


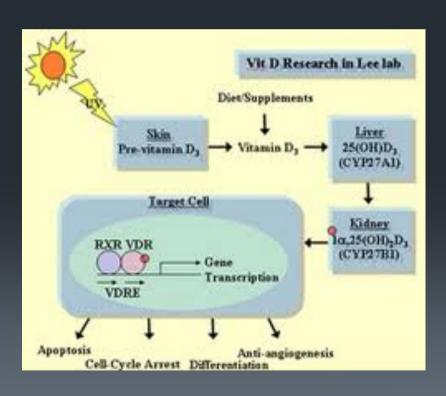
Vitamin D, Mood and the Mind

Experiences of the Tuda Study

Dr. Conal Cunningham Mercer's Institute for Research on Ageing St. James's Hospital, Dublin

Acknowledgement


- Doctoral thesis of Dr Kevin Mc Carroll
- Watts Fellow
- Mercer's Institute for Research on Ageing



Vitamin D

- A fat soluble steroid produced by action of sunlight on skin -1920s
- Dietary intake from oily fish, fortified foods or supplements

Vitamin D Receptor -1969

- Nuclear receptor found in many cells in the body
 - Bone
 - Muscle
 - Cancer cells
 - Central Nervous system
- Increases intestinal absorption of calcium
 - Numerous direct cellular effects – influences over 200 genes identified to date

Clinical effects of vitamin D

- Bone
 - Increases Bone Mineral Density
 - Reduces fractures
- Muscle
 - Increases muscle strength
- Cardiovascular disease
 - ?
- Cancer
 - ?
- Brain
 - ?

Vitamin D deficiency

- <25nmol/l Severe deficiency</p>
- 25-50nmol/l Deficiency
- 50-75 nmol/l "Insufficiency" (US Endo Soc) vs replete (US IOM)
- >75 nmol/l Replete
- 1 billion people Vitamin D deficient or insufficient
- US 50% Vit D deficient and 75% insufficient

Vitamin Deficiency in Ireland

Prevalence of Vitamin D deficiency (< 50 nmol/l) in Ireland							
Author	Size	Population	Prevalence (%)	Other Comments			
Cashman et al., 2013	1132	Adults aged ≥ 18 years	40.1	Year round figure			
Hill et al., 2008	1015	12-15 years old in Northern Ireland	36.0	Adolescent group			
Lardner et al., 2011	143	Community dwelling middle aged females	47.0	Not on supplements			
Hill et al.,2006	95	Healthy postmenopausal females (51-75 years)	48.0	In Winter, not on supplements			

Vitamin D and the Brain

- Vitamin D metabolites discovered in CSF of healthy adults (1984)
- Vitamin D receptor widely expressed in the brain
 - temporal, orbital and cingulated cortices, cerebellum, mesopontine area, thamalus, hypothalamus, in the accumbens nuclei, parts of the stria terminalis and amygdala and widely throughout the olfactory system (McCann et al., 2008)
- Multiple gene targets in the brain

Vitamin D Gene Products in the Brain

	1,25(OH) ₂ D	Gene Target Products in the Brain
	Effect	Role
Neurotrophins		
Nerve Growth Factor (NGF)	Up regulates	Important for growth and survival of many cells including cholinergic basal forebrain neurons.
Neurotrophin –3 (NT-3)	Up regulates	Increases transmission in hippocampal cells, also found in neocortex.
Glial Derived Nerve Growth Factor (GDNF)	Up regulates	Reduces oxidative stress in Parkinson's Disease.
Calcium Binding Proteins		
Calmodulin, Parvalbumin, Calretinin	Up regulates	Calcium signalling and homeostasis.
Enzymes		
Gama Glutamyl Transpeptidase	Up regulates	Enhances innate antioxidant pathways by increasing production of glutathione – protects integrity of nerve conduction pathways.
Nitric Oxide Synthetase	Down regulates	GENERATES NITRIC OXIDE WHICH CAN CAUSE DAMAGE TO NEURONS AT HIGH CONCENTRATIONS
Choline AcetyLtransferase	Up regulates	Responsible for neurotransmitter acetlycholine known to play a role in memory function.
Cell Signalling Proteins		
N-myc, c-myc, protein kinase C	Up regulates	CONTROL OF CELL CYCLE, DIFFERENTIATION AND PROLIFERATION.
L-Type Voltage Sensitive Channels	Up regulates	REGULATION OF NEURONAL CALCIUM -ROLE IN NEUROTRANSMISSION, NEUROGENESIS,, HIPPOCAMPAL CELL LOSS.
Cytokines (I1-b, Il- 2)	Down regulates	Mediates inflammation and neuronal damage.

Animal studies

- VDR Knockout Mice
 - Premature ageing, anxiety
- Vitamin D deficiency Mice
 - Normal working memory but disrupted attention
- Vitamin D supplementation of aged rats was found to increase βamyloid clearance and decrease amyloid burden (Briones et al., 2012).
- It also ameliorated the age related decline in learning and memory. In addition, a vitamin D enriched diet was correlated to a decrease in amyloid plaques and Aβ amyloid peptides in transgenic mice (Yu et al., 2011).

Cross sectional studies - Cognition

Cross Sectional Studies of 25(OH)D and Cognition								
Author	No.	Age	Test/ Measure	Association	Comme nt			
MeNant et a 1,,2012	463	78.0	MMSE,D SMTTMTA &B,T MTdiff,Bl ockDesignScore	Yes	Be low 50m ol /l re duc ed s core in T M T B &			
Seamans et a 1,,2010	188	76.2	CANT AB	Yes	Only infemales			
Ouds hoome tal,,2008	225	77.7	MMSE	Yes				
Petersone tal,,2012	159	85	CDR,M MSE	No	No a djustment for se ason			
Jorde etal, 2006	148		Trails A & B,m emory,l angua ge & e xe cutive te sts	N o	M ay ha ve be en unde rpow ere d			
Skalksa et a 1,,2012	138	79.6	AMT	Yes	Higherri skw hen 25(O H)D between (23.26 -			
					47.8 nm ol/l), no c on founds			
Lasaite et a L,2011	130	18 -26	DST,T MA & B	N o	No a djustm ent for e onfounds			
Brouw er-Bol sm a e t al., 2013	127	65+	Exec utive f unc tion	Yes				
Anweillere tal.2010	95	71.1	Mild Cognitive Impairment (Winbladetal.criteria)	Yes				
Wilkins et al.,2006	80	74.8	CDR,S BT,M MSE,L angua ge,M emory,E xe cutive tests	Yes	Onlywith SBT & CDR, Some subjects with			
					de ment ia			
Aunge tal,,2007	44	≥ 65	MMSE,CD T	No	No adjustment for confounds			
Przye lski e t al.,2007	32	79.5	MMSE	Yes	No a djustment for confounds			
Hansene ta 1_2011	25	34.6	N-Backtest, accuracy & reaction time	Yes	No a djustment for c onfounds			
			gitSymbol Matching Test, A MT - Abbreviated Mental Test, CD R - C					
Neurops ychological Testing Autor	m ated B	attery,M l	MSE – Mini Mental State Examination, SBT – Short Blessed Test, T	M A&B -Tr\ail n	naking A & B. [A ges quot ed a sra nge or m ean]			

15 of 22 cross sectional studies showed positive associations between vitamin D levels and cognition

Cohort Studies - Cognition

Longitudinal Studies of 25(OH)D and Cognition									
Author	No.	Age	Length (yrs)	Cognitive Outcome	Inverse Association	Comment			
Slinin et al. , 2012	6257	75.0	4	Modified MMSE, Trails B	Yes	Only with modified MMSE when 25(OH)D <25 or 25-49.9 nmol/l versus ≥ 75 nmol/l)			
Breitlin et al., 2012	1639	≥ 65	5	COGTEL	Yes	Yes			
Slinin et al., 2010	1604	74.6	4.6	Modified MMSE, Trails B	No	No			
Lewellyn et al., 2011	858	>75	<mark>3-6</mark>	MMSE, Trails A & B	Yes	Both tests, significant when comparing (<25 versus >75 nmol/l)			
Whitehouse et al., 2012	<mark>473</mark>	ł	5	Peabody Picture Vocabulary Test	Yes	Children of pregnant women at increased risk when 25(OH)D < 46 nmol/l vs. > 70 nmol/l at 16 weeks gestation			
Anweiller et al., 2011	<mark>49</mark>	76.4	7	Diagnosis of Dementia Alzheiemer's (AD) or Non -AlzheImer's (NAD)	Yes	Increased risk only with NAD when 25(OH)D< 25 nmol/I Small no. of cases of incident dementia			

5 of 6 longitudinal studies show greater decline in cognition in vitamin D deficient subjects

Randomised controlled trials Cognition

Randomised Controlled Trials of Vitamin D and Cognition										
Author	No.	Population	Length	Age (yrs)	Intervention	Cognitive Outcome	Result / Comment			
Rossom et al., 2012	4143	Community dwelling females	7.8 years	≥ 65	400 IU D3 /day + Calcium Placebo	Incident dementia & mild cognitive impairment	No effect Low vitamin D dose Poor compliance			
Lewellyn et al., 2011	120	Moderate dementia (MMSE 10-20) Not on dementia drugs	43 weeks	84.7	100,000 IU D3/ month + memantine Placebo/ month + memantine	MMSE, FAB, Trail making A&B, ADAS Cog	Positive effect			
Dean et al., 2011	128	Healthy adults in Queensland	6 weeks	21-22	5000 IU D3 /day	Visuospatial working memory (N-Black test) Mental flexibility	No effect High baseline 25(OH)D			
Stein et al. 2011	16	Community dwelling Mild /moderate AD (MMSE 12-24)	16 weeks	≥ 60	1000 IU D3/ day throughout and after 8 wks randomised to either; 1.7000 IU D3 + nasal insulin/day 2. Placebo + nasal insulin /day	ADAS-cog WMS logical memory Disability Assessment in Dementia	No effect			

MMSE - Mini Mental State Examination, FAB - Frontal Assessment Battery, ADAS Cog - Alzheimer's Disease Assessment Scale, WMS - Weschler Memory Scale, AD - Alzheimer's Disease

Vitamin D and Mood

- Depression has a seasonal variation
 - Higher in Winter when vitamin D levels are lower
- Summer sunlight has been found to increase brain serotonin levels at least twice as much as winter sunlight (Lambert et al., 2002)
- Vitamin D can regulate catecholamine levels (Eyles et al., 2013).

Cross sectional studies - Mood

Cross Sectional Studies of 25(OH)D and Mood								
Author	No	Measure	Risk	Comments				
Hoang et al., 2011	12594	CES-D (short form)	Yes	Not significant in those without prior history of depression				
Kjaergaard et al., 2011	10086	SCL-10	Yes	Stronger association in females				
Ganji et al., 2010	7970	DIS	Yes	Risk when 25(OH)D < 50 nmol/l				
Brandebarg	4101	CES-D	Yes	Pregnant women, risk when 25(OH)D < 74.5nmol/l				
Jaddou et al., 2011	4002	DASS21	Yes	Reduced risk significant when 25(OH)D >105 nmol/I				
Zhao et al., 2010	3916	PHQ-9	No	Negative only in fully adjusted model				
Lee et al., 2010	3369	BDI-II	Yes	Risk reduced with rising 25(OH)D from <39.0 to >78.4 nmol/				
Pan et al., 2009	3262	CES-D	No	Non significant only after adjusting for location				
Stewart et al, 2010	2070	GDS	Yes	Risk when 25(OH)D <25 nmol/l				
Hoogendik et al., 2008	1282	CES-D	Yes					
Chan et al., 2011	939	GDS	Yes	Risk comparing <63 nmol/l versus > 92nmol/l				
Nanri et al., 2009	527	CES-D	No					

CES-D Center for Epidemiological Studies Depression scale, SCL-10 – Symptom Checklist Depression Scale -10, DASS-21- Depression, Anxiety Stress Scale -21, BDI- Beck Depression Inventory, GDS – Geriatric Depression Scale, PHQ-9 - Patient Health Questionnaire –9.

Cross Sectional Studies of 25(OH)D and Mood								
Author	No	Measure	Risk	Comments				
Cassidy Bushrow, et al., 2012	178	CES-D	Yes	Pregnant women, results suggest that risk when 25(OH)D<50 nmol/l				
Eskandari et al, 2007	133	Psychiatric Assessment	Yes	Case control study				
Kwasky et al., 2012	139	BDI	No					
Brouwer Brolsma et al., 2012		GDS	No	No relationship when 25(OH)D rising forom <34 nmol/l to 52-152 nmol/l				
Bossola et al., 2010	80	BDI II (Italian version)	No	Subjects on dialysis				
Wilkins et al., 2006	80	DSI	Yes	Risk when 25(OH)D < 25 or 50 nmol/l				
Armstrong et al., 2007	<mark>75</mark>	HADS	Yes	Subjects with fibromyalgia – outcome was anxiety				
Jorde et al., 2006	84	BDI	Yes	Lower BDI when 25(OH)D below 50 nmol/l				
Sneider et al., 2000	<mark>60</mark>	Psychiatric Assessment	Yes	Case control study				
Knippenberg et al., 2013	59	HADS,	No	Subjects with multiple sclerosis, no association in full mdoel				
Michelson et al., 1996	48	Psychiatric Assessment	No	Case control study				
Herran et al., 2000	38	Psychiatric Assessment	No	Case control study				
CES D. Center for Enidemiology	Danraccion	Scale DDI Back Danracci	on Inventory	GDS Gariatric Danrassion Scala HADS Hasnital Anviety Danrassion Scala				

CES-D – Center for Epidemiology Depression Scale, BDI-Beck Depression Inventory, GDS – Geriatric Depression Scale, HADS – Hospital Anxiety Depression Scale, DSI – Depression Symptoms Inventory.

15/24 studies show inverse association between vitamin d levels and mood

Cohort Studies - Mood

Longitudinal Studies of 25(OH)D								
Author	No.	Age	Duration	Measure	Risk	Comments		
May et al., 2010	<mark>7538</mark>	73.1	1 yr	ICD-10	Yes	No adjustment for season		
Maddock et al., 2013	<mark>7401</mark>	45.0	5 yrs	MHI	Yes	Risk when <50 or 85 nmol/l.		
Tolapannen et al., 2012	2752	9.8*	4 yrs	MFQ	Yes	Outcome measure was only depressive symptoms		
Milaneschi et al., 2013	1596	18-65	2 yrs	DSM - IV	Yes	OR 0.90		
Milaneschi et al., 2010	<mark>954</mark>	75.0	3-6 yrs	$CES-D \ge 16$, $CES-D$.	Yes	Risk when < 50 nmol/l for both outcomes except in males at 6 yrs,		
Chan et al., 2011	629	> 65	4 yrs	GDS > 8	No	Small number of cases of incident depression		

MHI – Mental Health Inventory, MFQ – Mood & Feelings Questionnaire, CES-D – Center for EpidemiologIcal Studies Depression Scale, GDS – Geriatric Depression Scale, ICD-10 – International Classification of Diseases -10, DSM IV – Diagnostic Statistical Manual IV. [Age quoted as mean, range or median]

5/6 longitudinal studies showed an increased risk of developing depression when vitamin d levels were low

Randomised controlled trials Mood

			Intervention Trials involving ser	rum 25(OH)D and Mood		
Author	No.	Duration	Treatment	Measure	Effect	
Bertone-Jonhston et al., 2012	2263	2 years	400 IU D3 +1000 mg Ca /day*	Burnam Scale / Antidepressant use	No	Low dose of vitamin D
anders et al., 2011	2012	3-5 years	500,000 IU D3 stat /year	GHQ, SFHS, others	No	Few had 25(OH)D < 25 nmc
Drumville et al., 2006	912	6 months	800 IU D3 + 1000 mg Ca / day	MCS	No	
Yalamanchilli et al.,2012	<mark>489</mark>	3 years	$1,25(OH)_2D3 + HRT$	GDS	No	
orde et al., 2008	441	1 year	20,000 or 40,000 IU D2 / wk	BDI	Yes	Drop out rate 25%, small
						decrease in BDI
Harris et al., 1993	<mark>250</mark>	12 month	400 IU D2 + 337 mg Ca / day	PMQ	No	
Dean et al., 2011	128	6 weeks	5000 IU D3 /day	BDI, STAI	No	High baseline vitamin D
Vieth et al., 2004	82	6 months	4000 IU or 600 IU D3 / day	Well being score	Yes	No difference with higher do
Mozaffari-Khosravi et al., 2013	80	3 months	300,000 /100,000 IU D3 stat	BDI-II	Yes	Higher dose more effective
Kenny et al., 2003	<mark>65</mark>	6 months	1000 IU D3 + Ca / day	Health perception	No	
Hogberg et al., 2012	48	3 months		WHO wellbeing scale, MFQ-S	Yes	Improvement in several
						domains
Landsdowne et al.,1998	44	5 days	400 IU or 800 IU D3 / day	Self Report Measure of Affect	Yes	
Choraminya et al., 2013	<mark>40</mark>	8 weeks	800 IU D3 + Fluoxetine or placebo	HDRS, BDI	Yes	Vitamin D with SSRI better
Partonen et al., 1996	<mark>29</mark>	2 weeks	Bright light	Depressive Symptoms	No	
Gloth et al., 1999	15	1 month	100,000 IU D3 stat	HDS	Yes	
Shipowick et al., 2009	6	8 weeks	5000 IU D3 daily	BDI -II	Yes	

GHQ – General Health Questionnaire, SHFS- Short Form Health Survey, PGIIS –Patient Global Impression Improvement Scale, STAI – Strait Anxiety Inventory, HDRS – Hamilton Depression Rating Scale ,WHO –World Health Organisation.

Vitamin D vs Cognition & Mood

- Reasonable observational associations between low vitamin d levels low mood and impaired cognition
- Poor and limited evidence of effect of vitamin d supplementation
- Observational studies very heterogenous
 - Many populations not vitamin d deficient
 - Use of insensitive or limited measures
 - Dementia not always excluded
 - Inadequate controlling for confounds (sun exposure, supplement use)
 - Inadequate controlling for frailty (reverse causality)

Tuda Study

- Very large homogenous population (3 Irish community dwelling cohorts aged 60 or over - > 5,000 subjects)
- Disease specific cohorts allowing over representation of certain diseases
- Neuropsychological test battery very sensitive measure of cognitive impairment
- Dementia excluded early effects can be studied
- Diet, supplement use and solar radiation exposure all recorded

Tuda study

- Community dwelling patients > 60 years
- MMSE <16 or clinical dementia excluded</p>
- 3 cohorts
 - Mild Cognitive impairment
 - <1.5 sd in at least 1 cognitive domain on neuropsychological testing</p>
 - Osteopaenia
 - T score < 1 sd</p>
 - Hypertension
 - BP >140/90 and/or on anti-hypertensive meds

Tuda and Cognition

MMSE <24 excluded</p>

Hypertensive cohort 1568

Bone cohort 1330

Cognitive cohort 1199

 Significant interaction terms between vitamin d cognition and cohort (all p<0.0001) so cohort analysed separately

Tuda and Mood

- Mood assesses using Centre for Epidemiologic Studies Depression scale (CES-D)
- Mood analysed both continuously (CES-D score) and dichotomously (CES-D score ≥16 indicating major depression)
- MMSE <24 excluded</p>

Hypertensive cohort	1568
Bone cohort	1330
Cognitive cohort	1199

 Significant interaction terms between vitamin d CESD score and cohort (all p<0.0001) so cohort analysed separately

Vitamin D and Cognition/Mood

- Strong independent associations between vitamin d and specific cognitive domains seen in some but not all of the cohorts
- Strong independent associations between vitamin d and mood seen in some but not all of the cohorts

Implications

- Vitamin D associations are more complex than heretofore suspected.
- Vitamin D levels seem to be associated with mood and executive dysfunction in patients with intact cognition
- Associations were seen across all quintiles of Vitamin D level