
A Model-Based Approach To Assess Epidemic Risk

Hugo Dolan

July 31, 2020

Abstract

In recent years, the extensive development of the transportation infrastructure has radically
changed how connected our world is. In today’s ”small-world” we can travel around the globe
in a matter of days, if not hours. This has important implications on international security,
especially in regard to the potential spread of pandemic diseases. The recent COVID-19 outbreak
has forced many countries to take drastic measures to contain and slow down the spread of the
virus. Due to the urgency of the situation, a number of countries have immediately reacted by
imposing lockdowns and closing borders. While these measures have been successful in temporarily
confining the epidemics, this immediate and chaotic response has blurred the actual role played by
the topology of the infrastructure network on the spread of the virus. The main goal of this paper
is to create a model-based framework that can inform decision making regarding flight connection
closures as a means to slowing down a potential pandemic without causing excessive economic
damage. In particular, we introduce a new framework to study networks of international flights
as potential vehicles for the spread of pandemic diseases. First, we propose an in-depth analysis
of the OpenFlights network dataset, which describes a large number of flight connections between
airports. Then, we use this real infrastructure network to create a model for the simulation of
epidemics. Our model combines existing graph di↵usion processes and SEIRS compartmental
models to study the e↵ect of international travel on the spread of a disease within communities,
both locally and globally. We run a number of simulations to characterise possible real scenarios,
and to test the sensitivity of our model. Finally, we use our framework to explore several mitigation
strategies on the network, and employ genetic algorithms to optimise one such strategy in order
to minimise the spread of disease whilst preserving global commerce.

1 Introduction

In recent years, the extensive development of the air transportation infrastructure has radically
changed how connected our world is. In today’s ”small-world” we can travel around the globe in a
matter of days, if not hours. This has important implications on international security, especially
in regard to the potential spread of pandemic diseases. The recent 2019-nCov outbreak has forced
many countries to take drastic measures to contain and slow down the spread of the virus. Due to
the urgency of the situation, several countries have immediately reacted by quarantining infected in-
dividuals / regions and cancelling flights. It may be argued that these preventive measures are often
taken without full awareness of the e↵ective pandemic risk, or without a formal modelling framework.

The goal of this project is to study a network of international flight routes and how its topology
may play a role in the spread of disease. An essential aspect of this project is the development of
a statistical network model that can take into account the flight routes data and the distribution
of the infected population. The outcome of the project is to give a model-based quantification of
pandemic risk, and to identify e↵ective interventions within the network. Due to the large size of the
dataset (3425 Nodes) and due to the complexity of the data (37,594 Edges), the project will involve
extensive numerical simulation and optimisation approaches.

1

Figure 1: Open Flights Network Degree Distribution & Visualisation.

In Section 2 we first examine the topology of the Open Flights network via a selection of summary
statistics to identify which nodes may be important to the network’s connectivity. Furthermore we
fit a Block Stochastic Model to the network in order identify latent community structures. Finally
we employ a Percolation Algorithm to ascertain the resilience of the network. These probes of the
network topology will highlight the key challenges in devising subsequent mitigation strategies. In
Section 3 on completion of our exploratory analysis we then seek to model the evolution of the
epidemic through the flight network by combining a network di↵usion model (from the domain of
applied mathematics) and SEIRS model (from epidemiology) to create a hybrid model capable of
capturing the propagation of the virus through the network as well as the dynamics of local commu-
nity spread. Finally we discuss the key parameters and assumptions of the model. In Section 4 our
initial approach is to visualise the unmitigated spread of a virus through the network, given param-
eters estimated from real world data in addition to several heuristics. Subsequently we explore the
evolution of the unmitigated spread over time and perform a sensitivity analysis on key parameters of
the simulation. We then proceed to select metrics which capture the overall behaviour of the system.
Having done so we then implement and test several mitigation strategies and utilise chosen metrics
to assess the impact of the proposed strategies on the spread of the virus. Using these findings we
create then utilise a Genetic Algorithm to find the near optimal choice of parameters for the chosen
mitigation strategy. Finally we examine the behaviour of this strategy when employed on theoretical
epidemics with di↵erent origins across the globe.

2 Network Topology

In this analysis we utilise the Open Flights dataset, it contains information on 3425 airports glob-
ally, including a database of 37,594 routes between airports aggregated by airline. The dataset is
transformed into an adjacency matrix with nodes representing airports and edges representing routes
between them. In Figure 1 we present the network visually and on initial inspection it is clear that
the network exhibits extremely high degree of connectivity, with the plot of degree distribution indi-
cating that over 20% of nodes with degree greater than 10.

Identifying airports which have are important to the overall connectivity of the network is crucial
in gaining a better understanding of the network’s topology. We consider several metrics for impor-
tance including PageRank, Betweenness, Coreness as well as the In and Out Degree of nodes, and
present a table of the 20 most important airports according to by Page Rank (Table 1). Airports
with high Page Rank are also major international destinations and extremely well connected with

2

Table 1: Summary Statistics for Top 20 Airports

a coreness of over 60, meaning that they are members of a set of airports in which every airport is
connected to at least 60 others in the set! It is interesting to note that airports with high betweenness
(Charles De Gaulle, Dubai, Beijing, Amsterdam, Los Angeles, Toronto, Frankfurt) are also major
connecting flight hubs, with the having degrees of over 200. Whilst there are some discrepancies
between in and out degree, this is likely due to missing data, as most airlines today operate return
flights, with only a few exceptions.

To identify community structure within the network we employ a Stochastic Block Model, utilis-
ing the e�cient inference method described by Daudin et al, 2008 [1]. It is clear that the communities
found by the model represent geographic clusters (Figure 2a). This is quite surprising as this infor-
mation is not encoded explicitly in the data provided to the algorithm. This would strongly suggest
a high degree of connectivity of airports not only globally but also within regions. We also note from
the dot plot in Figure 2b that the majority of connections are within relatively large communities
representing the geographic clustering observed in Figure 2a, but also towards the lower right corner
there is significant disassortative behaviour, likely these nodes are large international hubs such as
the small community of London, Frankfurt, Amsterdam, Charles De Gaulle which share connections
to many cities across the world.

3

Figure 3: Percolation of Airports Networks via a variety of ranking criteria (Results average over
100 trials)

(a) Visualisation of Block Stochastic Communities

(b) Adjacency Matrix Dot Plot with 48 Communities

We percolate the Airport network both randomly and by degree thresholding to simulate the
removal of airports from the network (Fig 3). The network is highly resilient to random attacks
required the removal of almost all nodes to break network connectivity in the Giant Component.
However the network is moderately more vulnerable to targeted (degree based) attacks, yet would
still require more than half of all airports to be removed for connectivity to be broken. Similarly
percolation is performed by other ranking factors (PageRank, Betweenness, Coreness), note that
these procedures are also averaged over many trials to account for the removal of vertices of equal
rankings in di↵erent orders, however the results are very quite similar to percolation by degree.

In conclusion the Open Flights network summary statistics show that airports which are large
regional destinations or hubs for connecting flights tend to have high importance to network con-
nectivity. Furthermore it is observed that nodes in the network are extremely well connected, both
at regional and global level with significant geographical community structure. The network is also
highly resilient to the most forms of percolation. Given these initial findings, it is rather unsurprising
that a virus such as 2019-nCov could spread globally in a matter of months. The poor handling of
this recent crisis by governments globally and potential for future similar outbreaks or resurgences
illustrates the need for a model-based approach. This will aid in the evaluation of potential interven-
tions, so that policy makers can make, e↵ective and justifiable decisions to best protect their citizens

4

and economies from catastrophic damage.

3 Model Specification

3.1 Theoretical Underpinnings

Before we develop the main model of this report we must first introduce two existing models which
can be found in the domains of applied mathematics and epidemiology. Firstly we specify the graph
di↵usion model which describes the flow of a fluid across a network, driven by pressure di↵erences
between adjacent nodes. This can be expressed as a vector of di↵erential equations denoting changes
of fluid volumes at each node and time step (Equation 1). We use the notation to represent the
vector of fluid volumes at every node, A to denote the adjacency matrix of the network and D to
denote a diagonal matrix of containing the degrees of every node. A full derivation of this can be
found in [3].

d

dt
= c(A � D)

Additionally we introduce the SEIRS Compartmental epidemiology model. Each letter of the
model name denotes a compartment of the system (Susceptible (S), Exposed (E), Infectious (I) and
Recovered (R)), in which some number of individuals from the total population (M) reside. Figure
4. illustrates the direction of progression from state to state, whilst equation 2 indicates the exact
rates at which the population in each compartment changes. The greek letters are constants of the
system which can be fitted to match the characteristics of some observed epidemic. Whilst the sys-
tem cannot be solved analytically, we can find a numerical approximation to the solution, which is
su�cient for our simulation purposes.

dS

dt
= �R �

S�I

M

dE

dt
=

S�I

M
� ✏E

dI

dt
= ✏E � �I

dR

dt
= �I � �R

Figure 4: SEIRS Compartmental Flow Diagram

5

3.2 Model Definition

In order to model the transmission of disease through international flight networks we opt to use the
SEIRS model combined with a Graph Di↵usion model as described in the previous section. We will
refer to the airports adjacency matrix as A and denote airport nodes as vj ; j = 1, . . . , N. The total
number of node in the network is N and the associated population at each node is Mj . Let us define
the local epidemic state vector as ✓j(t) = (Sj Ej Ij Rj)

T , which represent the compartments of the
SEIRS model for airport population at any given time. A condition of the SEIRS model constrains
the total population of all compartments to equal the total population:

Sj(t) + Ej(t) + Ij(t) + Rj(t) = Mj

We assume that the local population is fully mixed (ie. everyone has equal chance of being
infected), as this is a standard assumption of compartmental epidemic models, however we assume
this only to be true at individual airport level and not for the entire global system. Additionally let ↵j

be the proportion of the population which can a↵ord to travel and c be probability that an individual
departs from an airport on any given day. Thus we define an additional variable j(t) = ↵j✓j(t)
and refer to this as the mobile epidemic state. We can define at high level our simulation procedure:

1. Update the local epidemic state ✓ by performing one step of the SEIRS model for every airport.
This describes the spread of the virus within the community surrounding the airport.

2. Take this new local epidemic state ✓⇤ and split it into the base population ✓B who are perma-
nent residents to the local area and ✓T , the transient population who are temporary visitors
(eg. on business / holidays)

3. Compute the proportions of ✓T and ✓T who can a↵ord to fly

4. Using our di↵usion model compute the changes to ✓B and ✓T at each airport. The exact value
of these changes is based on several factors including, the di↵erences between outbound and
returning passengers at every connected airport, the relative importance of the airports in the
network and the node’s degree)

5. Recombine updated values of ✓B and ✓T into ✓ and loop for as many iterations of simulation
as required.

For completeness we include both a diagrammatic form of the algorithm (Figure 5) as well as
a the full algorithm (Table 2) which reflects the high level overview above. For a full derivation
visit the appendix. For those who are happy with understanding our algorithm at a high level, we
have mapped the steps above to the algorithm below (in the right hand margin). The algorithm
described above has been vectorised so that ✓ is now 4xN a matrix containing the states for all
airports ✓(t) = (✓1(t)...✓N (t)) , and similarly for ⇤

+, ⇤
� which represent the states of outbound

and returning travellers respectively. The matrix 1/D is a diagonal matrix with entries that are
1/deg(vj), this normalises outflows from airports preventing more passengers from leaving a node
than exist at the given node (This fix is necessary due to simultaneous outflows in a vectorised
algorithm). The matrix B is an operator encoding the di↵erential equations of the SEIRS model for
vectorised application to many airports simultaneously, whilst is a modified version of ✓ to enable
B be applied as a linear operator. Finally C is a weighted version of adjacency matrix A, so that
the outflows from vertices reflect the relative importance of adjacent airports. The above should
provide an intuition, however we reiterate that there is a far more comprehensive derivation of the
mathematics required in the appendix, accompanied a Python implementation.

6

Table 2: Simulation Psuedocode

Figure 5: Diagram of Epidemic Di↵usion Model Steps

3.3 Key Parameters

Now that we have discussed our approach to epidemic modelling on networks we now proceed to
summarise the model’s parameters in Table 3 for convenience.

7

Table 3: Model Parameters [*] necessary conditions for epidemic behaviour

3.4 Parameter Estimation

In order to create realistic simulations of epidemics, we obtain as many parameter estimates as
possible from transformations of high quality data sources, which will proceed to discuss in Table 4.

8

Table 4: Estimation Methods

9

Figure 6: Population Grid (X
1
4 Scale) on Left. Cumulative airports in radial distance on Right

3.5 Modelling Assumptions

Below we provide a comprehensive list of model assumptions.

1. Fully Mixed Local Populations: Within any given node every member of the population
has equal chance of contact and thus passing on disease.

2. Fully Mixed Wealth: The proportion of population which may fly is distributed the same
at node / airport level as at country level.

3. Maximal Travel Distance: We assume the maximum distance someone will travel is 240km
to get to an airport, and thus anyone who exists outside of all airport radius is assume to be
socially isolated and may be excluded for modelling purposes.

4. Air Transit Only: We assume the only way for the disease to spread between nodes is via
air routes and that spread via other means eg. boat & road links are negligible.

5. No Permanent Immigration: Assume all individuals will return to their home country by
the end of the business week. (Implicit assumption of A = AT , although small deviations from
this won’t have a massive impact on model behaviour)

6. No Seasonality: We assume that all parameters of the model are constant throughout the
duration of simulation.

7. Universal Rates: We assume that the parameters of the SEIRS model are universal and do
not vary significantly between countries.

4 Results

4.1 Visualisation of Unmitigated Spread

Now that we have outlined the theory and processes to develop our model we proceed to visualise
and instance of an unmitigated epidemic (ie. no measures to decrease �). Let ✏ = 0.14 , � =

1
730 ,

� = 0.048 and � = 0.4, where these parameters where obtained from a study by Hou et al [2],
with the additional parameter � which is set conservatively as we do not know the duration of which
people will remain immune to 2019-nCov. We also setup the model such that the first cases occur in
Wuhan for results with similarity to 2019-nCov outbreak [4]. We proceed to aggregate the time series
data for S,E,I,R compartments to community levels (Utilising geographic region labels as discovered
by the Block Stochastic Model) and consider the progression of the epidemic with regards to the
most relevant states; Exposed (E) and Infected (I).

10

Figure 7: Exposed (Asymptomatic) and Infected (Symptomatic) Local Epidemic States for Key
Communities derived from Block Stochastic Model. (Y-Axis scales not comparable, for illustration

only)

Figure 8: Illustrative Sketch of spread based o↵ sequencing of epidemic spread provided by Figure
7)

The labelling choices are somewhat arbitrary but the main purpose of these plots in Figure 7 is
to illustrate the network e↵ect results in a somewhat staggered epidemic across di↵erent geographic
communities. There is evidence of a gradual dispersion of the virus across the world starting in
China, moving onward into South East Asia, Japan, Russia, India, South Africa, Middle East etc.
Some of the last places to be infected being the Americas, Nordic Countries, Alaska and Turkey.
Figure 8 is an illustrative sketch of one possible spread through the network which could be derived
from the spread sequence in Figure 7. In reality the spread of the virus is far more complex due to
the highly robust and connected nature of the network as we reported previously.

11

4.2 Sensitivity Analysis of Key Parameters

Where possible we have utilised data to obtain estimates for parameters and where not available we
have elected to make some simplifying assumptions regarding travel behaviour. We consider data
regarding rates of disease spread to be quite biased due to the nature of data collection, as has been
well publicised in the recent 2019-nCov outbreak. Thus in order to obtain a better understanding
of the impact of these spread parameters on our model we proceed to conduct a sensitivity analysis.
Whilst we can be reasonably confident that reported rates of recovery are reliable, this is perhaps
less true for infection and exposure rates. Thus we let � = k� (infection rate) and ✏ = s�
(exposed to infectious rate) where we assume � (recovery rate) is known. It is clear that k > 1

otherwise � < � and the epidemic quickly vanishes, similarly let k > s > 1 to ensure valid
parametrisation of the model. We will not consider varying � (loss of immunity rate) as we will
confine our analysis exclusively to the first wave of the epidemic. Let k 2 {1.1, 1.5, 2, 2.5, 3, 4, 5}
, and s 2 {1.05, 1.25, 1.75, 2, 2.5, 3} with � =

1
16 . We choose a smaller range for s as medical

research suggests that people remain in the exposed state for around 1 week for 2019-nCov virus.

Figure 9: Sensitivity Analysis conducted on 3 Major Airports (�) indicates � < � (+) indicates
time exceeded 500 days.)

We see from Figure 9. that the model behaves as expected. As s increases the maximum number
of infections decreases and time until peak infections increases. This makes sense in the context

12

of Figure 4, as when s approaches k, the rate of change in the exposure compartment approaches
zero. Similarly as k increases the maximum number of infections increase and the time to reach peak
infections decreases, which make sense in the context of the converse of the previous argument. It
is also interesting to note that time for the epidemic to return below 1000 infections is often greater
than 500 days except for when k is very large. Similarly a larger value of s will also prolong the
epidemic due to the slower rate of change in the exposed compartment. It is clear from Figure 9.
that the values of s and k can vary the peak number of infections quite drastically often on the order
of millions of cases, even with only a 0.25 change in parameter values. Thus we suggest that in the
absence of reliable estimates of �, �, ✏ the reader should treat any numerical conclusions presented
as stylised versions of reality, which convey general trends but not precise predictions. Finally we
have included a Benchmark case in which the world average city population is located in a single
airport - essentially a global SEIRS model. The benchmark is provided for comparison but also to
highlight how this global approximation is grossly inadequate for modelling a networked system. The
benchmark typically underestimates the time until peak infections and the peak number of infections.

4.3 Mitigation Strategies

The following section will examine potential mitigation strategies in the context of epidemics on
international flight networks. In order to evaluate these strategies we must first select some per-
formance metrics. We decide to select metrics which are easily interpretable by policy makers and
the general public, whilst also being useful in the context of managing hospital ICU capacity and
overall impact of the epidemic. Specifically we will measure the Peak Number of Infections and the
Total Number of Cases of the disease, as these are transparent and can easily be measured from our
simulations.

Figure 10: Impact of Worldwide Permanent Airport Closures from Nth Day since first Infection

Nth Day Rule As the first mitigation strategy we test we consider the e↵ect of permanent
closure of air routes from the Nth day after the initial outbreak (with s = 2 and k = 5). Our sim-
ulations in Figure 10 demonstrate that closing routes earlier reduces the peak number of infections,
but does not significantly reduce the total number of cases, unless all airports are closed by the end

13

of Day 2. This demonstrates the high level of connectivity within the network with cases of infections
proliferated across every continent within the first 3 Days of the outbreak. It is quite remarkable that
the impact of these infections only becomes noticeable after around 50 days, which would explain
how the recent 2019-nCov virus spread across the world unnoticed for months before a pandemic was
declared. We note that closing airports immediately after Day 1 would have a significant impact,
reducing the total number of cases by almost 80%. In theory this would be impossible to implement,
since we assume that the infected individuals remain asymptomatic for 7 days on average! However
in practice it is unlikely that the first infected individuals are also boarding a flight on Day 0, some-
thing that our model implicitly assumes due to the ‘fully mixed population’ assumption. Thus their
may be more leeway on airport closures than our simulations predict. It is also known that the use
of Natural Language Processing techniques (NLP) applied on news and social media sites were able
to predict the outbreak of 2019-nCov and thus the existence of such techniques also improves the
ability of governments to act early on closing their air links to a↵ected countries.

Extending on the previous result we determine whether reducing the rate of infection whilst
bringing forward airport closures have a joint e↵ect on the peak / total number of cases. We already
know that reducing the rate of infection reduces the speed at which the disease spreads (Figure 9).
Thus a combination of early closures which prevent international spread and measures such as social
distancing & quarantines which reduce community spread could potentially have a joint global im-
pact on our metrics. After controlling for the reduction in infection rate, we find that an additional
reduction of 4 - 5% in peak cases is unexplained (Figure 11), relative to a placebo experiment in which
airport closures are implemented after 500 days for k = 5 and k = 3 respectively. Similarly we
find an additional unexplained reduction of 4 - 5% in total cases when both early closure and social
distancing / other community spread measures are employed. However the benefit of employing both
measures seems to become less significant when closures happen in Day 1 or Day 2, as we approach
a somewhat saturated state of reduction in peak and total cases. Whilst an interaction may still be
present at later delays than Day 5 we do not consider this as the reduction in total number of cases
becomes trivial after 5 days.

Figure 11: Comparison of k = 5 and k = 3 on relative reduction. * Cell value is computed as:
1 � max(Infections—Day N Closure)

max(Infections—Day 500 Closure) and similarly for total cases / recoveries **

Interaction E↵ect = k3Row � k5Row

Threshold Infected Rule A further modification to the previous results involves dynamically
closing airports whenever the the total number of cases exceeds 1 in every 10X people within the
local population. This di↵ers from the previous method in which we implemented blanket global
closures.The results of this experiment shown in Figure 12 indicate that this ‘wait and see’ strategy
is totally ine↵ective for mitigation of an epidemic, despite this it has been the dominant strategy
followed in some shape or form by most governments in the recent 2019-nCov epidemic! Even

14

considering a highly unrealistic version of this strategy in where we suppose it is possible to detect
cases up to a fineness of 1 in every 10 Million people, it is already too late to close airports, providing
little more than a 8% reduction in peak infections and almost no change in the total number of
cases (albeit when the rate of infection is reduced there is somewhat of an improvement for higher
detection sensitivities). It is clear that any of our previously proposed strategies vastly exceed the
performance of this strategy. It also illustrates that strategies which involve waiting until members
of the local community become infected before taking action are bound to fail.

Figure 12: Figure 14 Comparison of k = 5 versus k = 3 on relative reduction. * Cell value is
computed as: 1 � max(Infections—1 in 10N threshold)

max(Infections—1 in 100 threshold)

Limited Nth Day Rule In the previous section we realise that it is far more e↵ective to close
airports preemptively than it is to wait on some threshold level on infections to be achieved within
the local population. However one could argue that it is impractical to close all airports globally,
both from a economic and political point of view. Thus we proceed to examine what performance we
can achieve by only closing a subset of key airports, which we rank by several metrics; Population,
PageRank and betweenness. Its quite interesting to see that even with only the top 1% of airports
closed we still obtained significantly greater reductions than the Threshold Rule (Figure 13a). This
further emphasises the point that early intervention is far more important in the network than
attempting to detect when certain infection thresholds have been breached. Its also quite interesting
to see that the fallo↵ in the strategies performance is quite non linear both down the columns and
across the rows. In Figure 13b, we present the same experiment but with the ranking of airports
provided by Page Rank, we notice that the reductions in peak infections are drastically superior to
that of Population ranking, suggesting that closing airports by their centrality within the network
structure is more important for epidemic mitigation than the size of the population. Finally we
apply the same methodology to ranking airports by Betweenness. In Figure 13c, we see the results
are somewhat mixed, with the strategy performing better than with previous metrics at the 5% level,
and marginally worse at other levels.

15

(a) (Airports sorted by Population

(b) Airports sorted by PageRank

(c) Airports sorted by Betweeness

Figure 13: Relative Reductions on 500 Day Closure Scenario for percentages of airport closures.

16

5 Strategy Optimisation

6 Genetic Algorithm

In section 4 we explored several mitigation strategies, ultimately finding greatest flexibility and
reductions in the Limited Nth Day Rule. Whilst the rule was reasonably successful in according to
our key metrics, it is highly unlikely that the metrics we selected as ranking factors are in anyway
close to optimal, given the complexity of the network and simulation processes. Instead we employ a
genetic algorithm (GA) to search for the optimal combination of airport closures in order to maximise
the utility of the Nth Day Rule. Genetic algorithms in their simplest form operate on binary strings
called chromosomes which are an encoding of the parameters of interest, commonly referred to as
genes. Any particular instance of a chromosome has a genotype which refers to a specific string of bits
each with values 1 or 0 representing a particular gene’s allele. Once the problem can be formulated
within this framework the procedure followed by genetic algorithms is the following:

1. Define a fitness function F(X) which evaluates the optimality of a given genotype

2. Initialise a population of chromosomes with randomly assigned genotypes

3. Evaluate the fitness of all members of the population. Individuals will then be selected for
breeding at a frequency proportional to their fitness. (Survival of the fittest)

4. In a process known as crossover pairs of selected genotypes are split uniformly at some locus
along the chromosome and then recombined, to form new chromosomes.

5. Mutations are then applied at random to alleles of the the recombined chromosomes (simply
by bit flipping) in order to prevent irrevocable loss of any characteristic

6. The process (3 - 5) is then repeated until convergence of the fitness of the fittest member of
the population.

For a more detailed explanation of the entire process see Genetic Algorithms, Search, Optimisa-
tion and Machine Learning (David E Goldberg). We opt to use a genetic algorithm for this problem
as our problem can be easily represented as a binary string and is ill suited to classical optimisation
methods such as Gradient Descent, as it is not possible to analytically compute gradients and our
search space is too large for approximation methods. Additionally a fitness function can be easily
defined from the metrics we have described previously. In the Table 14 we identify the key informa-
tion required to formulate our problem within the genetic framework.

In order to evaluate the fitness function, we must compute the values of T and P (Computing
A is trivial). This clearly involves inputting the parameters encoded in the chromosomes genotype
into our simulation developed in previous sections. We perform this by first using a lookup table
to convert between the 195 bit country closures string specified in the genotype to a 3425 bit string
airport closures vector required by our model. Next we zero out the rows and columns of the closed
airports within the adjacency matrix at the appropriate time steps (to disconnect an airport from
the network). Finally we proceed to run the algorithm for su�cient iterations as for the first wave
of the epidemic to be completed. As our GA will run an entire simulation to evaluate the fitness of
a single genotype the optimisation process could take weeks to execute. Hence we perform extensive
optimisation to our simulation code in order to achieve a 20x speedup in computations, however
this is still insu�cient for reasonable runtime and thus we run our simulation with � = 30 which
reduces the number of required simulation iterations by a factor of 8 (by speeding up the spread of
the disease). Whilst this high level of infection is unrealistic we find that the rules learned by the
genetic algorithm generalise very well to typical values of �.

17

Figure 14: Defining key components of our problem in Genetic Framework

18

7 Optimisation Results

The results of the algorithm in Figure 15 are presented in the usual format for consistency, however
each row now represents a di↵erent GA optimised for metrics on of Days 1 to 5 respectively, with
the corresponding quantities optimised bolded in the table.

Figure 15: Relative Reductions on 500 Day Closure Scenario for percentages of airport closures.
(Airports sorted by Genetic Algorithm), bolded number indicate is the day for which the row

was optimised by GA

The results are quite remarkable, but better visualised in Figure 16 for the Day 3 Closure scenario.
Not only does the GA outperform our previous ranking methods (with an equivalent % of airport
closures), it also improves on the close all airports strategy by 15 - 20%! Whilst this is counter-
intuitive, the GA leverages hidden structure within the network to flatten the curve over 50 days
earlier, whilst also reducing peak and total infections when compared with Page Rank, All Closed
and unmitigated strategies, as seen in Figure 17.

Figure 16: Day 3 Comparison of Strategy Performance

19

Figure 17: Day 3 Comparison of Strategy Performance

This suggests that the GA learns to leverage the network structure via closures in such a way
as to accelerate the initial infection rate but achieving a lower point of equilibrium. To gain further
intuition into the GA behaviour it is best to look at Figure 18 which exhibits the evolution of the GA
strategy as we alter the Day at which closures occur. What we observe is that it is initially optimal
to close China and certain other countries such as France which are very well connected to China
via air routes. However as governments delay closures up to Day 5 we find that the GA shifts focus
away from China and starts to establish ‘firebreaks’ in other surrounding countries such as India,
Kazakstan and Russia, whilst also selective targeting certain several African and South American
countries.

Figure 18: Genetic Algorithm: The Optimal Countries To Close Starting From Nth Day (Dark
Blue indicates closed)

Returning our focus back to the Day 3 strategy learned by the GA in Figure 19, we examine the
percentage change in peak infections and total cases under the GA strategy compared with the All

20

Closed and Unmitigated strategies. Despite only 33% of airports being closed under the GA strategy
73% of countries see a reduction in Peak Infections relative to an unmitigated case, whilst 60% see
a reduction in peak infections relative to the all closed case. Similarly we see that 67% of countries
see a reduction in total cases relative to the unmitigated case and 69% see a reduction in total cases
relative to the All Closed scenario. This provides overwhelming evidence of the e↵ectiveness of the
genetic algorithm strategy over naive propositions of worldwide closures of airports and highlights
how a machine learning approach to solving such a problem can provide significant added value over
simple intuitive strategies such as closing by population or network centrality.

(a) Genetic Relative to All Closed
(b) Genetic Relative to Unmitigated

Figure 19: A comparison of Genetic Optimsation Strategy Versus Naive Strategies and Total
Inaction

8 Conclusion

Flight networks are highly complex and connected. When applying dynamical simulation of epidemics
through network we see the frightening speed at which they may spread undetected. We performed
a sensitivity analysis to show that the parameters of our model are robust to perturbation before
proceeding to examine some naive mitigation strategies based on various properties of the network
such as population and centrality. Our findings suggest that the first week of dispersion of the disease
through the network is a critical time period for e↵ective intervention, however interventions in the
network such as airport closures still provide some reductions to peak infections and total cases up
to 3 months into the simulation. Furthermore we show that policies which reduce community spread
can be combined with our proposed airport closure strategies to provide greater benefits than if

21

either policy had been used separately. Finally we explore the application of machine learning based
optimisation to identify optimal airport closures within the critical first week of disease spread, in
order to reduce the global impact of the epidemic whilst keeping as many airports open as possible
(to preserve international commerce). Whilst the optimisation function which we select is quite
arbitrary and the potential of genetic algorithms in this application have not been explored fully we
find that the algorithm learns strategies which are far superior to the naive ranking based strategies
explored earlier in the paper. Due to the black box nature of genetic algorithms it is not clear
what strategy has been learned, however visualisation of the e↵ects of the strategy suggest that the
algorithm has leveraged the complex structure of the network to place strategic ’fire breaks’ which
drastically reduce peak infections and total cases. Despite ’sacrificing’ some countries for the greater
good our analysis that the majority of countries are far better o↵ under this strategy, compared to
other strategies proposed and also compared with an unmitigated scenario. This study highlights
the potential of machine learning methods in the mitigation of global epidemics through complex
networks.

22

References

[1] J-J Daudin, Franck Picard, and Stéphane Robin. “A mixture model for random graphs”. In:
Statistics and computing 18.2 (2008), pp. 173–183.

[2] Can Hou et al. “The e↵ectiveness of quarantine of Wuhan city against the Corona Virus Disease
2019 (COVID-19): A well-mixed SEIR model analysis”. In: Journal of medical virology (2020).

[3] Mark Newman. Networks. OUP Oxford, Mar. 2010. doi: 9780191500701.

[4] Muhammad Adnan Shereen et al. “COVID-19 infection: Origin, transmission, and characteristics
of human coronaviruses”. In: Journal of Advanced Research (2020).

9 Appendix

9.1 Algorithm Derivation

In our review of theoretical underpinnings (Section 3.1) we discussed the graph di↵usion model.
Where there is an amount of fluid j at nodes j = 1 . . . N . Thus fluid flows from node i to node j
at a rate proportional to the di↵erence in the amount of fluid at each node c(i� j) where c is the
constant of proportionality or more commonly referred to as the di↵usion constant. We note however
that fluid can only flow between nodes if they are adjacent in graph G with adjacency matrix A.
Thus the total instantaneous change in fluid volume at node j is given by the following equation.

d j

dt
= c

NX

i=1

(i � j)Aij

Following from thus we can easily proceed to vectorise this equation for all vertices as follows,
where = (1 ... N) T and D = diag(deg(v1), . . . , deg(vN)).

d j

dt
= c

NX

i=1

 iAij � c j deg(vj)

d

dt
= c(A � D)

d

dt
= �c(D � A)

In the basic implementation described above we consider there to be only a single fluid, however
we will require 4 di↵erent fluids for the 4 states of our SEIRS model. Thus we let ✓j = (Sj Ej Ij Rj)

T

represent the number of people in the airport / node population which are in the Susceptible, Exposed,
Infectious and Recovered states and j = ↵j✓j be the proportion of people available for travel.
Hence 2 R4xN is now a matrix and thus we must modify the ordering of our equation to correct
for this.

d

dt
= �c (D � AT

) 2 R4xN

Breaking this down, the components of the original definition are reconfigured such that
PN

i=1 iAij

becomes AT
= (

PN
j=1 A1j j ...

PN
j=1 ANj j) 2 R4xN and j deg(vj) becomes D 2 R4xN . As a

final simplification we assume that A = AT which is appropriate in the case of flight routes which
are almost always operated in both directions.

d

dt
= �c (D � A) 2 R4xN

23

This equation provides a simple model for the di↵usion / travel of people through the international
flight network. Thus we can now define a simple update algorithm which enables travel through the
network and updating of the sizes of the local populations.

1. Repeat for t = 1 . . . T

(a) Compute = ✓↵ where ↵ = diag(↵1, . . . ,↵N).

(b) Update the local populations due international travel ✓ = ✓ +
d
dt .

However there are some obvious issues with this simplistic model, namely that ✓i typically con-
verge to some equilibrium value ✓(0) 6= ✓(eq), which does not represent the reality that people trav-
elling on holidays or business will typically return to their home country. Secondly there are some
technical issues which arise from implementation, such as for vertices of large degree simultaneous
outflows may exceed the total population at the node (this is an artefact of vectorization). Finally
the flows to other vertices are not influenced by how central the airport is to the network, which is
obviously important as travellers are more likely to visit major tourist / business destinations and
this information is not necessarily reflected in the population (eg. Ethiopia has a very large popula-
tion but it is not as important in the network as France or the UK).

The first of these 3 issues is quite easy to address, we can simply split the population ✓ into a
base population ✓B who live permanently in the local area and ✓T being the transient population
in a given node on holidays / business. Refactoring our algorithm to incorporate this change is
relatively simple.

1. Repeat for t = 1 . . . T

(a) Compute + = ✓B↵+ and � = ✓T↵� where + represents outbound travellers from
the local base population and � represents returning transient travellers to their home
countries.

(b) We then compute
d +

dt = �c+ +(D � A) and
d +

dt = �c� +(D � A) respectively

(c) Finally we now have two update equations for international travel

i. ✓B = ✓B + min(
d +

dt , 0) + max(
d �
dt , 0) where we subtract the outbound base

populations and add the arriving travellers.

ii. ✓T = ✓T + max(
d +

dt , 0) + min(
d �
dt , 0), where we add the returning base popu-

lations and subtract the departing travellers. Note that we have chosen the wording
outbound, arriving, departing, returning carefully to reflect the sequence of steps all
travellers pass through in order. This is crucial to ensure logical behaviour of travellers
and also to prevent leakage of fluid / people from the network.

To address the second issue we can simply divide i by the degree of the node which ensures that
the outflows computed to every other node will be at most i. This modification we will denote by
 i
D but it is understood that this represents i

Dii
element wise and will be implemented by Numpy

broadcasting operation in Python.

To Address the final issue we replace the adjacency matrix A with a weighted matrix C to
encourage flows to more central airports, where C is defined as follows, where Pj is the page rank
centrality of node vj .

AijPj
PN

j=1 AijPj

24

We then translate this back into our original formulation, with A replaced by C and D replaced
by I, the identity matrix (it is trivial to check by a similar derivation to previously that since C is
row stochastic D may be replaced by the identity matrix). Similarly this generalises to the more
complex models addressing the other issues with the original graph di↵usion model.

d

dt
= �c (I � C) 2 R4xN

Next we addition another the SEIRS model which models the changes in ✓ due to community
spread of the disease (rather than due to international travel). As in Section 3.1 we define the
following di↵erential equations which define the SEIRS model.

dS

dt
= �R �

S�I

M

dE

dt
=

S�I

M
� ✏E

dI

dt
= ✏E � �I

dR

dt
= �I � �R

These changes represent the spread of disease within a single community, but for e�ciency we will
define an operatorB which acts on a modified ✓̃ which enables application of the linear transformation
to obtain the updated community state.

B =

0

BB@

�� 0 0 �
� �✏ 0 0

0 ✏ �� 0

0 0 � ��

1

CCA

✓̃j = (
SjIj
Mj

,Ej ,Ij ,Rj)

Note that the community spread occurs prior to the splitting of the population theta into ✓B
and ✓T as it is assumed that travellers and the local community are fully mixed. Thus the final
implementation of the algorithm may be described in table 5, where we include one final step of
splitting ✓ into ✓B and ✓T according to the prior populations k✓Bk and k✓Tk respectively.

Table 5: Simulation Psuedocode

25

9.2 Algorithm Python Code

The code provided involves an EpidemicEnvironment Object which must be set with the relevant
parameters. To use this code input the parameters and then call the step method as many times as
necessary (and call reset to revert the state of the environment to its starting state). The history of
each step is recorded in the stateHistory Numpy array for each airport state in format (niters x 4 x
N). Note that this implementation resembles the algorithm in Table 5, but has been highly optimised
for performance so several intensive computations have been migrated to separate functions which
are recomputed infrequently.

"""MIT License

Copyright (c) [2020] [Hugo Dolan]

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE."""

import numpy as np
import pandas as pd
import random
from collections import namedtuple

ActionSpace = namedtuple(’ActionSpace’, [’n’,’sample’])
ObservationSpace = namedtuple(’ObservationSpace’, [’n’])

class EpidemicEnvironment:
def __init__(self, adj_matrix, population_vector, agent_idx, community, infected_idx =

0,
alpha_plus = 0.3, alphas_plus = None, c_plus = 0.1,
c_minus = 1, beta = 57/160 + 1/7, beta_reduced = 25/160 + 1/7, gamma =

1/16, delta = 1/(2*365),
epsilon = 1/7, centrality = None,p=1, lmbda = 1.2, mu = 0.2,

lockdown_threshold = -1):
"""
SEIRS Network Epidemic Model Environment
- Currently designed only for a single agent!
:param adj_matrix: Adjacency Matrix (A)ij indicates edge from i to j (NxN)
:param population_vector: Nx1 Vector of populations for each node
:param agent_idx: Airport index associated with the agent
:param community: A list of airport indexes of airports in the same community
:param alpha_plus: Percentage of base population which can fly

26

:param alpha_plus: Percentage of base population which can fly (Specifed as an Nx1
vector)

:param c_plus: Percentage of flying population who can embark on any day
:param c_minus: Percentage of flying population who can return on any day
:param beta: Rate of infection
:param beta_reduced: Rate of infection for when agent is locked down
:param gamma: Rate of recovery
:param delta: Rate of immunity loss
:param epsilon: Rate at which people move from the exposed to infected stage

(syptomatic)
:param p: base economic penalty for lockdowns or infections
:param lmbda: rate at which penalty for infections in unmitigated state should be

applied > 1
:param mu: rate at which penalty for infections in lockdown state should be

applied < 1
:param lockdown_threshold: within (0,1) defining pct of population in any node

which can get infected before a lockdown
"""

Initialisation
self.A = adj_matrix # Adjacency Matrix
self.A_ones = np.ones_like(self.A) # Array of ones (for efficiency its computed

only once)
self.population_vector = population_vector
self.N = self.A.shape[0] # Number of airports
self.ID = np.eye(self.N)
self.agent_idx = agent_idx
self.c_plus = c_plus
self.c_minus = c_minus

if type(alphas_plus) == type(None):
self.alphas_plus = np.diag(np.repeat(alpha_plus,self.N)) # Airport Vector

proportion of populations
else:

self.alphas_plus = np.diag(alphas_plus.reshape(-1,))

self.D = self.A.sum(axis=1) # Degrees of airports
self.D_inv = np.array([1 / deg if deg > 0 else 0 for deg in self.D])
self.infected_idx = infected_idx

Differential Equation Matrix
self.B = np.array([[-1*beta, 0, 0, delta],[beta, -1*epsilon, 0,0],[0,epsilon,

-1*gamma, 0],[0, 0, gamma, -1*delta]])
self.B_reduced = np.array([[-1*beta_reduced, 0, 0, delta],[beta_reduced,

-1*epsilon, 0,0],[0,epsilon, -1*gamma, 0],[0, 0, gamma, -1*delta]])

Centrality Matrix (N x N)
We will refer to it as the ’Diffusion Matrix’
since we use a captial C (like the lower case c_plus/minus for diffusion coeff)
Used to weight the distribution of flows on the network
So that important airports get more traffic

self.use_centrality = type(centrality) != type(None)

if self.use_centrality:
C = self.A * centrality.T

27

C_norms = np.array([1 / norm if norm > 0 else 0 for norm in
C.sum(axis=1)]).reshape((-1,1))

self.C = C * C_norms # Normalised Centrality

Initialise temporal state
self.reset()

State And Action Spaces
Vector observation space V[0] = Local State, V[1] = Community State, V[2] =

Global State
With state categores (-1,0,1) = (Decreased Infections, Static, Increased

Infections)
self.observation_space = ObservationSpace(27)

Either 0 = Open , 1 = Lockdown
self.action_space = ActionSpace(2, lambda: random.choice([0,1]))

Reward parameters
self.lmbda = lmbda
self.mu = mu
self.p = p

State Parameters
self.community = community

For simple automatic rules (rather than RL)
self.lockdown_threshold = lockdown_threshold

def reset(self):
For most populations in the network they will start disease free
s_init, e_init, i_init, r_init = 1, 0, 0, 0

Selecting the inital infected population
i_exposed = 1e-5

Population Proportions (s, e, i , r)
theta_prop_init = np.array([s_init, e_init, i_init, r_init],

dtype=np.float64).reshape((-1,1))
theta_prop_infected = np.array([1 - i_exposed, i_exposed, 0, 0], dtype=np.float64)

Compute the population (S,E,I,R) values
theta_props = np.repeat(theta_prop_init, self.N, axis=1)
theta_props[:,self.infected_idx] = theta_prop_infected

self.thetas_B = theta_props * self.population_vector.T # Dimension 3 x N
self.thetas_T = np.zeros(self.thetas_B.shape) # Dimension 3 x N - No initial

people currently abroad

self.state_history = []
self.t = 0
self.total_population = self.population_vector.sum()
self.population_vector_flat = self.population_vector.reshape((-1,))

Infection States
self.last_S_t_global = 0

28

self.last_S_t_community = 0
self.last_S_t_local = 0

self.set_disabled_airports()

Starting State
return self.state_to_idx(np.array([0, 0, 0]))

def corrected(self, A,action):
"""
If a airport is locked down it disables it. WARNING: Currently designed for a

single agent only.
"""
if action == 1:

mask = np.ones_like(A)
mask[:,self.agent_idx] = 0
mask[self.agent_idx,:] = 0

return A * mask
else:

return A

def corrected_multiple(self, A, actions):
agent_idxs = actions == 1

mask = self.A_ones
mask[:,agent_idxs] = 0
mask[agent_idxs,:] = 0
masked_A = A * mask

return masked_A

def corrected_degree(self, D, A_corrected, action):
if action == 1:

return A_corrected.sum(axis=1)
else:

return D

@property
def stateHistory(self):

return np.array(self.state_history)

def transform_state(self, current, last):
if current > last:

return 1 # Increase
if current == last:

return 0 # Static
else:

return -1 # Decrease

def state_to_idx(self, state):
State[i] has -1,0,1 options
We want to simplify by starting with 1-indexing

idx1 = 2 + state[0]
idx2 = 2 + state[1]

29

idx3 = 2 + state[2]

flattened_idx = idx1 + 3 * (idx2 - 1) + 9 * (idx3 - 1)

return flattened_idx - 1 # Zero indexed

def set_disabled_airports(self, disable_airports = None):
Note we have now depreceated individual actions
self.disable_airports = disable_airports

if type(disable_airports) != type(None):
if self.use_centrality:

self.C_c = self.corrected_multiple(self.C, disable_airports)
self.ID_c = self.corrected_degree(self.ID, self.C_c, 1)

else:
self.A_c = self.corrected_multiple(self.A, disable_airports)
self.D_c = self.corrected_degree(self.D, self.C_c, 1)

else:
if self.use_centrality:

self.C_c = self.C.copy()
self.ID_c = np.ones((self.ID.shape[0],))

else:
self.A_c = self.A.copy()
self.D_c = self.D.copy()

row, col = np.diag_indices(self.C_c.shape[0])
if self.use_centrality:

self.C_c[row, col] = self.C_c[row, col] - self.ID_c
self.outer_faster = -1 * self.C_c # ID_c - C_c

else:
self.A_c[row, col] = self.A_c[row, col] - self.D_c
self.outer_faster = -1 * self.A_c # ID_c - C_c

RK4
def ODE_solve(self, f_prime, y_0, step_size = 1):

y = y_0

Slightly more complicated again step method
k1 = step_size * f_prime(y)
k2 = step_size * f_prime(y + 0.5 * k1)
k3 = step_size * f_prime(y + 0.5 * k2)
k4 = step_size * f_prime(y + k3)
y = y + (1/6) * (k1 + 2*k2 + 2*k3 + k4)

return y

def step(self, action, disable_travel=False):
"""
WARNING: Action is no longer implemented
:param action: 0 = Open; 1 = Lockdown -> leads to beta_reduced being utilised for

the agents airport & No travel in or out permitted
:param disable_travel: Disables all travel
:param disable_airports: Disable all travel for selected airports (N Binary Vector)
:return: (State, Reward)
"""

30

Populations
thetas = self.thetas_B + self.thetas_T
thetas_B_populations = self.thetas_B.sum(axis=0)
thetas_T_populations = self.thetas_T.sum(axis=0)
thetas_populations = thetas_B_populations + thetas_T_populations

Epidemic model
def SIRS_coupled_ode(thetas):

Creates the vectors [(S_i * I_i/ M_i, I_i, R_i)^T,]
diff_vector = np.ones((4,self.N))
diff_vector[0,:] = (thetas[0,:]) * (thetas[2,:]) * (1/thetas.sum(axis=0)) # S
diff_vector[1,:] = (thetas[1,:]) # E
diff_vector[2,:] = (thetas[2,:]) # I
diff_vector[3,:] = (thetas[3,:]) # R

Computes differential equation (4x4) @ (4,N) => (4,N)
d_thetas = self.B @ diff_vector

if self.lockdown_threshold >= 0:
pct_infections = thetas[2,:] / self.population_vector_flat
actions = pct_infections > self.lockdown_threshold
d_thetas[:, actions] = self.B_reduced @ diff_vector[:,

actions].reshape(d_thetas.shape[0],actions.sum())
elif type(self.disable_airports) != type(None):

d_thetas[:, self.disable_airports] = self.B_reduced @ diff_vector[:,
self.disable_airports].reshape(d_thetas.shape[0],self.disable_airports.sum())

return d_thetas

Updating community sizes
Community Spread (Immediately before diffusion)
#thetas_star = thetas + d_thetas # Airport Community States
thetas_star = self.ODE_solve(SIRS_coupled_ode, thetas)

thetas_B_ratio = thetas_B_populations / thetas_populations
thetas_T_ratio = thetas_T_populations / thetas_populations

thetas_B_star = thetas_B_ratio * thetas_star
thetas_T_star = thetas_T_ratio * thetas_star

Travelling populations
omegas_plus_star = thetas_B_star @ self.alphas_plus # Departures
omegas_minus_star = thetas_T_star # Arrivals (we got rid of alpha minus as it is

redundant)

International Spread / Diffusion (1/D prevents simultaneous changes exceeding
the supply)

Note we did the derivation and it turns out we can replace D with identity and A
with C

This now successfully weights passenger destinations according to centrality

if self.use_centrality:
if self.lockdown_threshold >= 0:

pct_infections = thetas_star[2,:] / self.population_vector_flat
actions = pct_infections > self.lockdown_threshold
row, col = np.diag_indices(self.C_c.shape[0])

31

self.C_c = self.corrected_multiple(self.C, actions)
self.ID_c = self.corrected_degree(self.ID, self.C_c, 1)
self.C_c[row, col] = self.C_c[row, col] - self.ID_c
self.outer_faster = -1 * self.C_c

d_omegas_plus = -1 * self.c_plus * ((omegas_plus_star * self.D_inv) @
self.outer_faster)

if self.t % 5 == 0:
Faster implementation:
d_omegas_minus = -1 * self.c_minus * ((omegas_minus_star * self.D_inv) @

(self.outer_faster))
d_omegas_minus = -1 * self.c_minus * ((omegas_minus_star * self.D_inv) @

(ID_c - C_c))
else:

d_omegas_minus = np.zeros(omegas_minus_star.shape)

if self.lockdown_threshold >= 0:
pct_infections = thetas_star[2,:] / self.population_vector_flat
actions = pct_infections > self.lockdown_threshold

else:
if self.lockdown_threshold >= 0:

pct_infections = thetas_star[2,:] / self.population_vector_flat
actions = pct_infections > self.lockdown_threshold
row, col = np.diag_indices(self.C_c.shape[0])
self.A_c = self.corrected_multiple(self.A, actions)
self.D_c = self.corrected_degree(self.D, self.A_c, 1)
self.A_c[row, col] = self.A_c[row, col] - self.D_c
self.outer_faster = -1 * self.A_c # ID_c - C_c

d_omegas_plus = -1 * self.c_plus * ((omegas_plus_star * self.D_inv) @
(self.outer_faster))

if self.t % 5 == 0:
d_omegas_minus = -1 * self.c_minus * ((omegas_minus_star * self.D_inv) @

(self.outer_faster))
else:

d_omegas_minus = np.zeros(omegas_minus_star.shape)

Net change in Community States
if disable_travel:

self.thetas_B = thetas_B_star
self.thetas_T = thetas_T_star

else:
self.thetas_B = thetas_B_star + np.minimum(d_omegas_plus,0) +

np.maximum(d_omegas_minus,0) # Base population recieves returning travellers
self.thetas_T = thetas_T_star + np.maximum(d_omegas_plus,0) +

np.minimum(d_omegas_minus,0) # Transient population recieves travellers who
have left their home country

Record state
thetas = self.thetas_B + self.thetas_T
thetas_populations = thetas.sum(axis=0)
self.state_history.append(thetas)
self.t += 1

32

Compute The State and Reward from last action for the agent
S_t = thetas[2,self.agent_idx] # Number infected
M_j = thetas_populations[self.agent_idx] # Current Population we will assume

transient individuals count

reward_unmitigated = S_t * self.lmbda * self.p / M_j
reward_lockdown = (S_t * self.mu * self.p / M_j) + self.p
reward = - 1 * (reward_unmitigated * (1 - action) + reward_lockdown * action)

Agent State
S_t_local = S_t
discrete_state_local = self.transform_state(S_t_local, self.last_S_t_local)

Community State
S_t_community = thetas[2,self.community].sum()
discrete_state_community = self.transform_state(S_t_community,

self.last_S_t_community)

Global State
S_t_global = thetas[2,:].sum()
discrete_state_global = self.transform_state(S_t_global, self.last_S_t_global)

self.last_S_t_local = S_t_local
self.last_S_t_community = S_t_community
self.last_S_t_global = S_t_global
current_state = self.state_to_idx(np.array([discrete_state_local,

discrete_state_community, discrete_state_global]))

return current_state, reward

33

