
Mathematical Modelling of Optimal Road

Cycling Strategies

Peter James Nee

10-08-2020

Contents

1 Abstract 1

2 Introduction 1

3 Reading in of data 2

4 Frenet-Serret Frame 2

5 Interpolation of data 3

6 Force balance equation 5

7 Centripetal Force 6

8 Numerical Solution to ODE 6

9 Simulations 7

10 Dynamical optimal control trajectory 10

11 Next Steps 12

12 Conclusion 12

13 Acknowledgements 12

1 Abstract

We study the strategies and theory behind long-distance cycling, and build a
model to describe the motion of an athlete moving along some of a range of
tracks employing a variety of strategies. The objective is to compare different
strategies along these routes, and determine optimal pedalling strategies that
should be used given a certain track. We consider pedalling and breaking, road
geometry, and forces that arise when in motion. We compare simulations from
in-house code with the DynOpt toolbox.

2 Introduction

Long distance road cycling is typically performed on complex routes, consisting
of bends, curves and hills. Typical racing strategies employed by athletes to-
day consist of constant pedalling/power output, or constant speed. Anecdotal
advice such as “entering a turn slowly so you can leave it faster” gives a qual-
itative strategy but lacks a quantitative component based on speed and local
route gradient and curvature. The reasoning behind this is the centripetal force
required to take bends (which we will define analytically later) has a square
proportionality with the speed that the bend is taken at, and as such athletes
are required to slow down to cope with this.

Many races take places on routes of length up to 300km, and as such are
performed by teams. Teams are groups of 6-9 cyclists that specialise in certain
parts of the race (i.e. climbing, descending, sprints). This often comes down to
the athlete’s physiology, as we will see later with some of the forces we identify,
eg. different masses and power outputs will cater to different parts of the race
more effectively.

These teams will often travel in what’s referred to as a “peleton”, where
they will bunch together as they move along the race. The reasoning is that
the wake behind the lead rider will create a slipstream, and as such the riders
behind will experience a much smaller amount of drag. This in turn means less
power output to stay with the group, and avoid the effects of fatigue too early
in the race.

We simplify the problem to one of pedalling strategies that should be em-
ployed. We do not consider positioning on the road, or delve too deeply into the
physiology and fatigue of an athlete. Such considerations have been considered
by others, in the breakout strategies employed in road cycling [1], along with
position for taking turns in a velodrome [2]. As such, our model assumes the
athlete has already chosen (whether optimally or not) the line they will trace
out along the route.

Our goal, first, is to identify an appropriate frame of reference in which
to solve a force-balance equation, and secondly to develop a code to convert
our data into that frame. Following this we identify forces considered integral
to our problem, and determine their representations in our frame. Finally,
we develop a program to run simulations along these routes, given a specific

1

pedalling strategy, and compare a number of different strategies.

3 Reading in of data

One of the main aspects of this project was to not only analyse strategies along
idealised parametrised routes such as sine and Gaussian curves, but also look at
cycling along more complicated, real-world routes. We use simplified routes to
test our models before applying them to more complex routes. For a real route,
we must read in a GPX file for different routes and convert these to Cartesian
co-ordinates.

GPX files typically consist of 3 columns of data: the latitude, longitude and
elevation of certain points along the road. We convert the latitude and longitude
for each point into a set of x and y co-ordinates, and take the elevation to be
the z co-ordinate for these points. Although in doing this we are essentially
mapping a curved plane onto a flat, 2 dimensional plane. Due to the scale of
these routes the error incurred is negligible.

We convert our latitude, longitude and elevation to Universal Transverse
Mercator (UTM) co-ordinates, which are composed of an x and y direction,
along with a zone that describes a global (ellipsoid) correspondence [5]. There
are 60 such zones, however we shall ignore this component of the system as it
is unnecessary for our calculations. The details of this calculation are omitted.

4 Frenet-Serret Frame

The Frenet-Serret formulas are a commonly used set of formulas in differen-
tial geometry and vector calculus. The frame is used to completely describe
the kinematic properties of a particle moving along a continuous, differentiable
curve in a Euclidean space R3. It is made up of 3 orthonormal vector-valued
functions T , N , and T , as well as two scalar functions τ and κ. While these
may be functions of any subset of the real numbers, a common convenient pa-
rameterisation is as functions of arc-length s. The Frenet-Serret Frame is only
valid for non-degenerate curves (non-zero curvature), and is described by:

α′(s) = T (s)

T ′(s) = κ(s)N(s)

T (s)×N(s) = B(s)

|B′(s)| = −τ(s)

Here we have that:

• T is the unit vector tangent, and points in the direction of motion

• N is the normal unit vector, and points in the direction that the curve is
curving in

2

• B is the binomial unit vector, the cross-product of T and N

• κ is the curvature, which describes how much the curve is curving in the
plane spanned by T and N , and only takes positive values

• τ is the torsion, and measures how much the curve is twisting out of the
aforementioned plane. (positive torsion is in the direction of B, negative
in the opposite.)

Figure 1: Diagram demonstrating T, N, and B moving along the curve [3].

These vectors move along with the curve, as is demonstrated in Figure 1.
By the fundamental theorem of space curves the two scalar functions, κ and τ ,
completely determine the shape of the regular curve, with the vectors T , N ,
and B determining the orientation of the curve. The position of said curve is
arbitrary: for parametrised curves we tend to start near the origin, while for
routes we read in we will take the positions after converting from latitude and
longitude to an x-y plane.

5 Interpolation of data

We require a continuous representation for all of the functions in Section 4.
However, GPX files only provide discrete values along any route. As such,

3

we must interpolate our data along the route. In the interpolation process,
we suppress any oscillations that may arise due to describing the route as a
piecewise polynomial. We use cubic Hermite splines.

On a unit interval (xk, xk+1), we build a piecewise cubic polynomial Pk(x)
to approximate f with the requirements that:

• Pk(xk) = f(xk) and Pk(xk+1) = f(xk+1)

• P′k(xk) = f ′(xk) and P′k(xk+1) = f ′(xk+1)

This procedure ensures that our polynomial en-captures the position of the
road that we have specified, is differentiable and preserves the shape of the road.
This suppresses any oscillations that may normally occur (such as in Figure 2),
respecting the monotonicity that the route typically exhibits.

Figure 2: Illustration of different interpolation techniques on a simple function
[4].

However we do not necessarily have the exact gradients of the road at each
(or in fact any) of the points along the road. As such, we use Newton’s divided-
difference to approximate derivatives at each point. This will provide reasonable
approximations along straighter parts of the route, however may cause some
errors in very sharp, short turns. If such issues arise, natural cubic spline
interpolation (with natural or clamped ends) may be more appropriate, and
as such our model may easily adapted to use this method instead. We find
cubic Hermite splines appropriate in the cases we consider.

While the interpolated function may only be C2, we perform this interpola-
tion on each function (and component of each function). This ensures that each
function generated in the Frenet-Serret frame is differentiable.

4

6 Force balance equation

We consider the four dominant forces present in our model. For an athlete of
mass (inclusive of their equipment) m, moving in direction T = (x, y, z):

• A number of models for the pedalling Force may be applied, such as con-
stant pedalling and linear change with a maximum speed Vmax

Pedalling =

{
Pf (constant)

Pf · Vmax−v
Vmax

·H(Vmax − v) (linear change)

where Pf is a constant power, v the velocity, and H the Heaviside function

• The gravitational force is given by

Gravity = m · g · (T · (0, 0,−1))

where g is the usual gravity constant. The dot product extracts the vertical
component of T in the direction of gravity.

• The aerodynamic drag force is given by

Drag = −0.5 · Cd ·A · v2,

where Cd is the drag coefficient, typically 0.3 for an athlete, A is the
surface area in the direction of motion, and v is the speed of the athlete.
This always opposes the direction of motion.

• The friction force due to the bicycle tyres in contact with the road is given
by

Friction = −µ ·m · g · T · (x, y, 0)

|(x, y, 0)|
,

where µ is the coefficient of friction, and g is as described as above. As
the gradient changes, the normal force varies from m · g when flat to a
theoretical 0 for a vertical road. As such, we need to calculate what angle
our incline makes with the x-y plane. Here we make use of vector calculus
results to determine the angle between two vectors, where our two vectors
are the tangent and a projection of our tangent to the x-y plane.

Figure 3: Illustration of the direction of the forces acting on the athlete [1]

5

We can see in Figure 3 that all our forces, save gravity, act in the tangent
direction T . We extract the gravity component in that direction. We solve
Newton’s second law for acceleration (v̇), with the above forces on the right
hand side:

m·v̇ = “Pedalling”+m·g·(T ·(0, 0,−1))−0.5·Cd ·A·v2−µ·m·g ·
T · (x, y, 0)

|(x, y, 0)|
(1)

While we solve (Eq. 1) equation for v, the arc-length s = dv
dt determines our

position along the curve, and hence determines the input tangent vector T on
traversing the route. This creates a coupled system.

7 Centripetal Force

In the Frenet-Serret frame, acceleration is given in the T and N directions:

a(t) = v̇(t)T (t) + κ(t)[v(t)]2N(t)

Eq (1) is the T component balance in Newton’s second law. However, we
must consider the centripetal acceleration in the N direction. Speed and cur-
vature combine to direct the motion out of the curve. We aim to keep this
acceleration below a certain threshold, determined by how much force the cy-
clist can withstand/output.

8 Numerical Solution to ODE

The motion along a route depends on the position, ascribed to the arclength s,
with T = T (s). The work done, W , is the total pedalling power exerted by the
cyclist. The full coupled system reads:

ds

dt
= v,

dv

dt
=

“Pedalling” +m · g · (T · (0, 0,−1))− 0.5 · Cd ·A · v2 − µ ·m · g · T ·(x,y,0)|(x,y,0)|

m
,

dW

dt
= “Pedalling”.

Due to the non-linearity of our governing equations and route, we must
solve the system numerically. We use Matlab’s in-built ode45, which employs
a Runge-Kutta method. Note that the system is non-stiff (there is no rapid
change in our solution for any set real-world pairings of our state variables).

We need to chose numerical parameter values for our constant parameters
and systematic pedalling strategies. In our simulations we use either constant
pedalling forces or one that varies linearly with a maximum speed. We also set
conditions to free wheel (no pedalling) at certain speeds and input a braking
force (if the centripetal force described earlier ever became too large).

6

9 Simulations

We consider several pedalling strategies employed across different routes (some
parametrised, while some read in and interpolated as described previously). The
first example we present is a sinusoidal route: a straight line in the x-y plane,
but 2 periods of a sine curve with varying amplitude in the z direction,

t ∈ [0, 100],

x = t,

y = 1,

z = 15 + 15 · sin

(
2 · π · x

L
2

)
,

shown in Figure 4. We applied a constant pedalling force, but if the centripetal
force, κ(s)[v(s)]2, ever becomes too large, we cease pedalling and apply a braking
force.

Figure 4: Rendering of sinusoidal route.

7

Figure 5: The athletes run along the route.

As expected, we see in Figure 5 that when the athlete is about to reach the
valley, they experience too much centripetal force from descending the hill and
as such will not be able to cope with the force on the bend. So the athlete starts
breaking, and the speed immediately decreases.

Let’s consider a more complicated route, such as the Alpe d’Heuz, a popular
climb in France. This climb is notorious for its steep slope, paired along with
the constant winding and bending as we ascend the climb. In Figure 6 and
Figure 7 we have our rendering and analysis of the route:

Figure 6: Our rendering of the Alpe d’Heuz.

8

Figure 7: Graphs of the curvature and torsion along the Alpe d’Heuz.

We model an athlete along this route with two strategies: (1) a constant
pedalling strategy for Figure 8, and (2) a linear change model with a maximum
speed in Figure 9. This is run over a set period of time (as such, neither athlete
will finish the race but we may still gleam some results).

Figure 8: Constant pedalling along the Alpe d’Heuz.

9

Figure 9: Linear change in pedalling along the Alpe d’Heuz.

Our models are:

• Constant = Pf1

• Linear change = Pf2 · Vmax−v
Vmax

· heaviside(v)

Here Pf1 < Pf2, so that we can keep our average speed consistent. We
can see in Figure 8 that constant pedalling model takes longer to accelerate.
However, the maximum speed attained is greater such that roughly the same
distance is covered as the second case, in the same time span. The notable piece
is that we can see in Figure 9 that the linear change model makes it further,
while the constant pedalling model uses a bit more work to not make it as far.
We also note in Figure 9 that the linear change model fluctuates more in speed.
We believe this is due to a slow reaction from the athlete.

It is important to note that while many of the parameters reflect real world
cycling, some of the speeds and power outputs are not representative. As such,
velocities and work done may reflect larger or smaller numbers that we would
expect.

10 Dynamical optimal control trajectory

While the previous process works well, it has limitations. We may only compare
strategies one at a time, and may only compare ones that we come up with. This
can be quite timely, and it is not clear if we have found an optimal pedalling
strategy. As such, we seek a method for comparing many different strategies at
once.

DynOpt (MATLAB Dynamic Optimisation Code) is a toolbox developed to
determine an optimal control trajectory, based on the descriptions of the system,
a cost function to be minimised, and subject to different inequality and equality
constraints. It uses an orthogonal collocation on finite element methods. Over

10

many iterations, a fitness is determined for each trajectory, until a convergence
occurs and we are left with an optimal control trajectory.

In this problem, our system is a set of three differential equations:

ds

dt
= v

dv

dt
=

“Pedalling” · u+m · g · (T · (0, 0,−1))− 0.5 · Cd ·A · v2 − µ ·m · g · T ·(x,y,0)|(x,y,0)|

m
,

dW

dt
= “Pedalling” · u

Here we treat T as a function of position arclength (s), and u is our control
parameter. DynOpt computes different trajectories for this parameter, until
it finds one with proper fitness. This is determined by the selection of a cost
function, which we usually take to be work done, time taken or a weighted mix.
For constraints, we have a few we most commonly use:

• s(tf) = l, where l is the length of the route. Essentially, this ensures we
only consider the athlete along the original route.

• κ(t)[v(t)]2 ≤ ε, where ε is some constant. This makes sure that the athlete
does not take any bend too quickly (as described previously).

Along with many other settings, we also provide the partial derivatives of
each of the equations and inequalities with respect to each parameter, state
variable and control parameter.

We test this optimisation toolbox with our system along a few simple paths.
One of the more interesting results is when we run the program over the first
half of a scaled sine curve (running 100m in the x direction, and 30m in the z
direction). We set the cost function to be the work done, and run the program
over 1000 iterations. The result achieved is displayed in Figure 10.

Figure 10: Pedalling strategy chosen by DynOpt after 1000 iterations.

11

Here u ∈ [0, 1], and represents how much pedalling is being done (1 is ped-
alling as hard as possible, 0 being coasting). This result is realistic, as we would
expect to pedal just hard enough to get over the crest of the hill, and then to
ride the hill down the other end.

The interesting part is that it decides the best course of action is to pedal
as hard as possible, for as short a period of time as possible. This is chosen as
opposed to a strategy of exerting less effort over a longer period of time. As no
analytical solution is available, it is difficult to determine the validity of this,
however this was tested over several runs with different initial values for the
control parameter, and was consistent in this strategy.

11 Next Steps

Our immediate next goal is to develop the optimisation software. While it works
quite well along some routes, we have had some issues along more complicated
routes, and also with the implementation of the restriction on the speed with
which turns can be taken.

On top of this the programme still runs quite slowly. This is most likely
due to the complexity of the process and its gradients, and as such we need to
re-evaluate how we define the gradients to see if it can be streamlined.

We also need to look more at our interpolation procedure, as we still have
some oscillations along tight turns that may cause issues with the curvature
function κ.

And finally I want to look more into the representation of the data we do
achieve. I would like to be able to analyse the effect a change in mass or pedalling
capabilities might have, as well as a way of breaking down some of the current
data we have efficiently. More time still needs to be put into some of the values
for the parameters to try and accurately match real-life examples, and more
work could be done to make the data more clear.

12 Conclusion

We successfully created a model for an athletes run along different long-distance
cycling routes. These routes can either be parametrised or fed in via GPX file,
and much of the data regarding the shape of the route can also be extracted.
We also studied the centripetal force required to take different turns/bends,
and its relation to the speed with which it’s taken at. While our work with
the optimising toolbox is not fully finished, we have been able to produce some
clear results with it.

13 Acknowledgements

First I would like to thank the School of Mathematics UCD for allowing me
the opportunity to undertake this research. It has been a fantastic opportunity

12

to gain more insight into the realm of research and mathematical modelling.
However most importantly I would like to give my utmost thanks to Dr. James
Herterich, for his supervision, guidance and input throughout the entirety of
this project. It has been a huge honour to work with you.

References

[1] L. H. Gaul Optimizing the breakaway position in cycle races Using mathe-
matical modelling 2018.

[2] GP Benham Brachistochrone on a velodrome 2020.

[3] A. Havens Curvature, Natural Frames, and Acceleration for Plane and Space
Curves 2017.

[4] Matlab https://www.mathworks.com/help/matlab/ref/pchip.html 2020.

[5] Rafael Palacios Conversion of lat/lon vectors to UTM vectors 2007.

13

