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Abstract

The OJ 287 system is a celestial object which exhibits quasi-periodic variations in its

historically observed light curve. Previous attempts to model the system have achieved the best

success using a supermassive binary black hole, or SMBBH model. The physical parameters of

this system have previously been investigated, however there still exist opportunities to explore

different methods of estimating these parameters and their uncertainties. In this project, we

approach this problem using methods of Bayesian inference. This is achieved by first modelling

the secondary black hole’s trajectory with Kerr geodesic equations. Then, the accretion disk is

modelled using the Shakura-Sunyaev/α disk model, however with the disk parameter α being a

stochastically varying quantity, meaning that that the times of the observed flares in the light

curve are random and taken to follow log-normal distributions. Finally, a parameter estimation

algorithm is devised to estimate parameter values and uncertainties, through a combination of

posterior optimisation and sampling. These parameter estimates allow us to compare the results

of our model to previously observed optical outbursts of the system and also to make predictions

for when the next flares in the light curve will be observed.

1 Introduction

Astronomical observations of the OJ 287 sys-

tem exist for over a hundred years, having been

captured on photographic plates as far back as

1887 [1]. The light curve of this celestial object,

which graphs the light intensity over time, ex-

hibits quasi-periodic variations over a period of

about 12 years and also a longer period of about

60 years, as seen in Figure 1. Each outburst flare,

or spike in intensity, exhibits a double-peaking

behaviour, consisting of two peaks narrowly sep-

arated only by a year or two. The light from the

system is redshifted by a factor of z = 0.306 [2],

placing an estimate on the distance to the sys-

tem at about 3.5 billion light years away from

Earth. This also means that the observed period

of the light variations in the Earth frame of about

12 years translates to about 9 years in the rest

frame of the system.

The quasi-periodic, double peaked structure of

the OJ 287 light curve inspired Sillanpää et al. in
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Figure 1: The historical light curve of OJ 287.
Each point is a three day average [3].

1988 [4] to model the system as a supermassive

black hole binary pair. This approach differed

from previous models including those of a pre-

cessing relativistic jet or even a precessing accre-

tion disk [5], which inaccurately predicted flare

outburst times and failed to match the histori-

cal light curve. In the supermassive binary black

hole model proposed by Sillanpää et al., an ac-

cretion disk surrounds a rotating supermassive

primary black hole while a much less massive

secondary black orbits the primary. When the

secondary impacts the accretion disk, particles

in the accretion disk are tidally perturbed from

their orbits and thrown into the primary black

hole which results in a flare. In this model, the

12 year quasi-period corresponds to the orbital

period while the longer 60 year quasi-period cor-

responds to half of the full precession of the or-

bit around the orbital plane. This 60 year period

corresponds to the semi-major axis of the orbit

precessing from being, for example, perpendicu-

lar to the accretion disk through being parallel

and then returning to being perpendicular to the

accretion disk, this time however oriented in a

direction directly opposite to its original orienta-

tion. Therefore the full precessional period would

be estimated to be 120 years. The secondary also

impacts the accretion disk twice per orbit, and

due to the high eccentricity, this corresponds to

the observed double peaked outbursts as the or-

bit comes close to the primary black hole.

Observed Outbursts

1912.98
1947.28
1957.01
1972.94
1982.96
1984.13
1995.84
2005.75
2007.69
2015.88
2019.57

Table 1: The outburst times of 11 well recorded
observations of the OJ 287 system in Julian
years. It is worth noting that the 2019 outburst
was not directly observed, however its existence
was inferred using the observed light curve from
the 2015 outburst [1][6].

This model was further developed by Valto-

nen, with modern modelling from Dey, Valtonen

and others [7] with outburst predictions which

accurately matched the historical light curve [6],

giving good support to the supermassive binary

black hole model proposed by Sillanpää et al.

The process of the flare emissions is however now

different. When the secondary impacts the ac-

cretion disk, rather than particles being thrown

into the primary black hole and causing a flare,

plasma bubbles are formed which expand, cool

and become optically thin. Once optically thin,

the radiation inside the bubble escapes and is
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seen as a flare. An illustration of this process is

shown in Figure 2. The general outline of the

current model by Dey et al. is as follows.

Firstly, the equations of motion used to model

the trajectory of the secondary black hole are

post-Newtonian (PN) expansions, which aim to

add higher order general relativistic corrections

to Keplerian orbits stemming from Newtonian

gravity [8]. Then, in their model for the time

difference between impacts of the secondary with

the accretion disk and associated outbursts, a

time delay factor and a time advance factor

are introduced. The former is attributed to

the aforementioned formation and expansion of

plasma bubbles, while the latter attributed to

the bending of the accretion disk due to grav-

itational effects from the secondary black hole.

The parameters are then estimated by varying

them from some initial values and the equations

of motion integrated such that a calculated out-

burst lies within a certain range of an observed

outburst. This process is repeated until all calcu-

lated outbursts lie within a certain range of the

observed ones and the resulting parameters are

taken to be an “acceptable solution”.

Our goal in this report is to take a different

approach to modelling the OJ 287 system, allow-

ing us to use statistical techniques for the pa-

rameter estimation procedure. This is achieved

in three main sections. Firstly, the equations of

motion of the orbit of the secondary black hole

around the primary are described, then a model

for the accretion disk along with time delays be-

tween impacts and outbursts is made and finally

a parameter estimation algorithm is designed, in

order to give estimates along with uncertainties

for the parameters of the OJ 287 system by com-

paring predictions with observed data from Table

1.

(a) Generic view of the orbit.

(b) Side view of the orbit.

Figure 2: Views of the orbital model for the OJ
287 system. Plasma bubbles are created on im-
pact with the accretion disk, then expand and
become optically thin to cause a flare. Illustra-
tions not to scale.

2 Orbital Trajectory

2.1 Kerr Geodesics

The orbit of the secondary is assumed highly

eccentric, leading its trajectory into the strong

gravitational field of the primary black hole.

This suggests that equations of motion suited

to strong fields could be used instead of post-
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Newtonian expansions. Along with this point,

the assumed large mass ratio between the two

black holes in the context of this problem mo-

tivates the use of Kerr geodesics to model the

trajectory of the secondary. These equations de-

scribe the path of a test particle around a rotat-

ing black hole, thus providing a general mathe-

matical framework for the possible trajectory of

the secondary with which to work with (note that

the accretion disk is assumed not to affect the

trajectory of the secondary).

The Kerr geodesic equations of motion, in ge-

ometrised units where G = c = 1, are given as

[9] (
dr

dλ

)2

= (Eω̄2 − aLz)
2

−∆(µ2r2 + (Lz − aE)2 +Q)

≡ Vr(r; E ,Lz,Q) , (1)

(
dθ

dλ

)2

= Q−L2
z cot

2 θ − a2(µ2 − E2) cos2 θ

≡ Vθ(θ; E ,Lz,Q) , (2)

dt

dλ
= E

(
ω̄4

∆
− a2 sin2 θ

)
+ aLz

(
1− ω̄2

∆

)
≡ Vt(r, θ; E ,Lz,Q) , (3)

dϕ

dλ
= Lz csc

2 θ + aE
(
ω̄2

∆
− 1

)
− a2Lz

∆

≡ Vϕ(r, θ; E ,Lz,Q) , (4)

where ω̄2 = r2 + a2, Σ = r2 + a2 cos2 θ and ∆ =

r2 − 2Mr + a2, although we can take the total

mass M = 1 to simplify calculations.

The equations are parameterised with respect

to Mino time λ, defined through

dτ

dλ
= Σ , (5)

with τ denoting proper time. The advantage

of parameterising the equations of motion with

Mino time is that the equations for the radial

coordinate, r, and the polar angle coordinate, θ,

become decoupled. This means that each of these

two equations, Vr and Vθ, is only a function of the

respective coordinate itself, along with the three

constants of motion, the energy E , the axial an-

gular momentum Lz and Carter’s constant Q.

This makes finding solutions to the equations of

motion more tractable.

A convenient parameterisation for the orbital

constants of motion uses (p, e, θmin), where p de-

notes the semi-latus rectum of the orbit, e the

eccentricity and θmin the minimum polar angle

of the Kerr geodesic orbits. This parameterisa-

tion is the approach used in this investigation.

The relationship between these and the constants

(E ,Lz,Q) was first derived by Schmidt [10] and

is outlined in Appendix A. This allows the Kerr

geodesic equations to then be parameterised with

the more convenient (p, e, θmin).

The given equations of motion could be solved

numerically, however the separability given by

using Mino time allows analytic solutions for

bound Kerr geodesic equations to be found, orig-

inally derived by Fujita and Hikida [11]. These

solutions are organised into a compact form by

Van de Meent [12] and are used here to analyti-

cally calculate the orbits.

The analytical expressions characterising the

Kerr geodesics make heavy use of Jacobi elliptic

functions and integrals. This is, however, advan-

tageous since these functions and integrals can be
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computed very quickly using computational tools

such as Mathematica, where, for example, an

elliptic integral can be calculated on the order of

about O(10−6) seconds. This means that calcu-

lation of candidate orbits can be executed very

quickly in the parameter estimation algorithm

which will allow more trials to be performed.

The analytical expression from Van de Meent

governing the radial coordinate is given as

r(qr) =
r3(r1 − r2)sn

2(K(kr)
π

qr|kr)− r2(r1 − r3)

(r1 − r2)sn2(K(kr)
π

qr|kr)− (r1 − r3)
,

(6)

where sn is the Jacobi elliptic sine function, K

the complete elliptic integral of the first kind and

qr is the phasing of the radial coordinate, which

is a function of Mino time, λ, and is given as

qr(λ) = Υrλ+ qr,0 , (7)

with Υr the radial frequency in Mino time and

qr,0 the initial radial phase of the orbital trajec-

tory. This initial phase is a parameter which is

optimised for in the parameter estimation algo-

rithm, since we do not know beforehand what the

initial phase of the orbit is at the time of the first

impact.

The form of the solution for the coordinate

time t is given as

t(qt, qr, qz) = qt + tr(qr) + tz(qz) . (8)

We see that it is a function of the three phases,

qt, qr and qz, which are all in turn functions of

Mino time λ and of similar mathematical form

to Equation (7), such that

qt(λ) = Υtλ+ qt,0 , (9)

and

qz(λ) = Υzλ+ qz,0 , (10)

where z is a new coordinate introduced, defined

as

z := cos θ , (11)

and Υt and Υz are the Mino time frequencies in

the respective coordinates.

A full description of the analytical expressions

relevant to this project is given in the Appendix

B.

2.2 Calculating Impact Times

Assuming that the accretion disk lies along the

entire equatorial plane of the primary, impacts

of the secondary with the accretion disk are de-

fined to occur when the polar angle value of the

secondary black hole trajectory is θ = π/2, or

integer multiples thereof. The problem of calcu-

lating impact times then reduces to finding when

the polar angle value of the secondary, θ, is an

integer multiple of π/2, or equivalently when the

z phase, qz, is an integer multiple of π, since by

convention qz = 0 ⇒ z = 0 ⇒ θ = π/2, as out-

lined by Van de Meent [12] and since we assume

qz,0 = 0 in order to satisfy this requirement.

Another advantage of using Mino time to pa-

rameterise the equations of motion is that the

radial coordinate solution and the polar angle so-

lution are periodic in Mino time, such that

r(λ) = r(λ+nΛr) , θ(λ) = θ(λ+mΛθ) , (12)

where Λr, θ are the respective periodicities of the

radial and polar angle solutions and n and m

are integers. The periodicity of the polar angle,

and thus the z coordinate, can be used to effi-

ciently calculate the intersections with the accre-
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tion disk, corresponding to impact times.

Given that there are two impacts per orbit,

we can calculate the Mino times of all impacts

by taking integer multiples of half the polar pe-

riod in Mino time, Λθ/2, which corresponds to

taking integer multiples of π divided the z fre-

quency Υz, giving nπ/Υz, since the θ frequency

and z frequency are equivalent. This is described

mathematically as,∫ θ=nπ/2

θ=π/2

dλ ≡ nΛθ

2
=

nπ

Υz

. (13)

The corresponding coordinate times, t = t(λ),

of all impacts are then found using the integer

multiples of π/Υz as Mino times,

tI,n = t

(
nπ

Υz

)
, n ∈ Z , (14)

where tI,n is the coordinate time of the nth im-

pact.

There exists, however, the issue of choosing a

reference point which sets the initial coordinate

time at λ = 0. We wish to have the first im-

pact occur at λ = 0 so that integer multiples

of π/Υz would correspond to all later impacts.

However, we do not know a priori the coordi-

nate time of the first impact since it is not ob-

servable; only the outbursts are. Therefore we

choose t0 = t(0) to correspond to the time of the

first well recorded outburst and then introduce

a new time shift parameter, ts, in order to shift

our coordinate time at λ = 0 from the time of

the first outburst to the time of the first impact.

Once shifted back, integer multiples of the half

period can be taken to calculate all succeeding

impacts. Although an estimation for ts can be

made, it is one of the parameters which we opti-

mise for in the parameter estimation procedure.

In order to remove the need to give an estimate

for the initial temporal phase qt,0, the difference

between the nth impact and initial impact is

taken, along with subtracting the time shift. The

coordinate time of the nth impact is thus given

as

tI,n =

[
t

(
nπ

Υz

)
− t(0)

]
− ts , n ∈ Z . (15)

All radii of impact can then be calculated in a

similar fashion, by substituting integer multiples

of π/Υz into equation (6).

Note that the coordinate times given in equa-

tion (15) are given in geometrised units. The to-

tal mass of the system M is required to convert

these quantities to more transparent units, such

as years. Therefore the total mass is required

to predict the outburst times. This mass is one

of the parameters which is optimised for in the

parameter estimation algorithm.

2.3 Contrast and Justification

The use of Kerr geodesics to model the trajectory

of the secondary black hole differs from previous

efforts to model the OJ 287 system. Dey et al.

have made use of PN expansions which are gen-

eral relativistic corrections to Newtonian orbits

in powers of (v/c)2. The advantage of using PN

expressions is that the mass of the secondary can

be accounted and optimised for, along with radi-

ation reaction emissions and the spin of the sec-

ondary mass. The disadvantage, however, is that

PN expansions are not well suited to describe

strong field dynamics. The highly eccentric orbit

of the secondary black hole leads the trajectory

into the strong gravitational field of the primary,

suggesting that techniques which better account
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for strong field dynamics be used. Although the

geodesic equations do not account for the mass

nor the spin of the secondary black, they are fully

strong-field. The effect of the secondary mass on

the trajectory may also be neglected since we as-

sume a large mass ratio between the primary and

secondary. This means that the true orbit should

deviate only slightly from a geodesic.

We also believe that the inclusion of radiation-

reaction terms to account for the decay of the

orbital constants due to gravitational wave emis-

sion is not fully necessary to accurately describe

the orbit at this stage in its evolution and over

a span of ∼100 years. Previous estimates have

placed the merger of the two black holes to occur

in about 10, 000 years [7], which, even if slightly

inaccurate, should still be long enough to jus-

tify not accounting for the decay of the orbital

constants, although this may be a point worth

investigating further.

These points lead us to be confident that Kerr

geodesics can accurately model the trajectory of

the secondary black hole at this stage in its or-

bital evolution, over the given time-span of well

observed outbursts.

3 Accretion Disk and Time

Delays

3.1 Background

In this section, we examine how the accretion

disk and corresponding time delays can be incor-

porated in our model. This is included in the

work of Dey et al. via a formula derived in full

detail in [13]. The basic idea of the derivation

is that as the secondary black hole impacts the

accretion disk of the primary, it causes a bub-

ble of plasma to form that surrounds the radi-

ation released from the impact. By using var-

ious assumptions, such as the impact occurring

in the radiation pressure dominated region of the

disk and that the bubble expands at the speed of

sound in the disk, one can obtain an ODE in

terms of the radial expansion rate of the bubble

Ṙ, which can be solved to give the radial evo-

lution R(t). It is then claimed that the bubble

will become optically thin when it expands by a

factor τ 4/7, where τ is the effective optical depth

of the bubble, at which time the radiation will be

able to escape. Thus, by setting the expansion

factor R(t)/R0 equal to τ 4/7 and using the previ-

ously obtained solution for R(t), one obtains an

equation for the time delay between impact and

outburst, which has solution

td = d · h13/21n51/56r
355/168
imp (16)

where h is the disk semi - height at impact, n

is the disk number density at impact, rimp is the

radius of impact and d is a constant. Note that

the original equation in [13] contains a factor in-

volving the mass of the secondary, however as we

consider only the total mass of the system with-

out taking into account the individual masses of

the primary and secondary, we choose to absorb

this into the proportionality constant d.

3.2 Introducing Randomness

The starting point for our model is the equation

(16), which we develop further by choosing a par-

ticular model for the accretion disk. We opt for

the standard Shakura - Sunyaev/α disk model

([14]), which is characterised by a viscosity pa-

rameter α ranging between 0 and 1, that quanti-

7



fies the relationship between viscous stresses and

pressure in the disk;

τrθ = αP (17)

with τrθ the nonzero component of the viscous

stress tensor in the disk, and P the total pres-

sure. It is at this point we consider making a

modification to the model of Dey et al., by intro-

ducing an element of randomness into the sys-

tem, allowing us to use statistical methods for

the parameter estimation process. We introduce

this randomness in our model through the ac-

cretion disk. Accretion disks are known to be

highly complex objects, in which chaotic pro-

cesses such as turbulence contribute to seemingly

random variability in their observed spectra (see

[15], for a specific discussion of OJ 287 see [16]).

For the Shakura - Sunyaev disk, this variability

has been modelled in the literature through what

is known as the theory of propagating fluctua-

tions, first proposed by Lyubarskii in [17]. The

primary concept of this model is that the viscos-

ity parameter α is now treated as a stochasti-

cally varying quantity that induces randomness

in the disk properties such as luminosity L and

accretion rate ṁ ([18],[19]). We choose to adopt

this theory in our model in the following man-

ner; making the same assumption as the Dey et

al. model that the impacts happen in the radi-

ation pressure dominated region of the disk, we

obtain from the Shakura - Sunyaev model the

following expressions for h and n as functions of

the radius and disk properties;

h(r) ∼ ṁ(1− r−1/2) (18)

n(r) ∼ r3/2

αṁ2
(1− r−1/2)−2 (19)

Now if we incorporate the propagating fluctua-

tions model, the accretion rate ṁ becomes a ran-

dom variable Ṁ , which means both h and n, and

hence the time delay itself td will become random

variables H,N and Td, with

Td = d · r355/168imp H13/21N51/56 (20)

which, upon using the expressions from (18) and

(19), has expected value

E[Td] = C · r355/168imp [1− r
−1/2
imp ]13/21

× [r
3/2
imp(1− r

−1/2
imp )−2]51/56

(21)

where now C is a constant that absorbs the orig-

inal constant d along with constants arising from

the relationships in (18) and 19 and expectations

of various powers of α and Ṁ (assuming that

these are constant). This expression is conve-

nient as it allows us to determine the expected

value of each time delay purely from our orbit

solution (which provides rimp) up to the constant

C, which is to be included in the parameter esti-

mation process in later sections.

Note that, although we can straightforwardly

find an expression for the expectation of our time

delay random variable, the same cannot be said

for its variance. This must be taken as a some-

what free parameter in the model that quantifies

how much one wants to allow random fluctua-

tions in the accretion disk to affect the time de-

lay. We found taking Var[Td] ∼ 0.01 yr was both

a reasonable and effective assumption to make for

our model, as it leads to a standard deviation on

each time delay of order 1 month (about 10% of

the average expected time delay) and also ensures

that each observed outburst time lies within at

most 3 standard deviations of its expected value

using our best parameter estimates found in later
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sections. It is also worth noting that we do not

consider the time advance factor included in the

model of Dey et al., and assume that the domi-

nant contribution to the time difference between

impact and outburst is the time delay.

3.3 A Statistical Model

Having established the random nature of each

time delay using the propagating fluctuations

model, we now look to build a statistical model

for the observed outburst times that we can use

to perform statistical inference on the parameters

of the system. Central to this is the construction

of a likelihood function, which is a measure of

how likely our data set was to be observed as a

function of the model parameters. This requires

a probability density function for the time de-

lays, which means we must specify a probability

distribution that they follow. Now it is shown in

[18] and [19] that the quantities α and Ṁ can be

well modelled by what are known as log - normal

probability distributions, for which the probabil-

ity density function is

fX(x) =
1

x
√
2πσ2

exp

(
−1

2

[lnx− µ]2

σ2

)
(22)

where µ and σ are parameters of the distribution

defined by

µ = ln

(
E[X]2√

Var[X] + E[X]2

)
(23)

σ2 = ln

(
1 +

Var[X]

E[X]2

)
(24)

This parametrisation is the one generally used as

the definition of a log - normal variable is one

whose logarithm is normally distributed, thus it

is more convenient to parametrise by the mean

and variance of the underlying normal (µ and

σ2). Now taking these quantities to follow log

- normal distributions, and given the standard

result that products and powers of log - nor-

mal random variables are still log - normal, it

is clear that H, N , and hence Td will follow log

- normal distributions. Therefore, taking the ith

time delay to be log - normal, and using the fact

that T
(i)
d = T

(i)
O − t

(i)
I where T

(i)
O and t

(i)
I are the

ith (random) outburst and (deterministic) im-

pact respectively, we find the pdf of the ith out-

burst as a function of the model parameters θ

as

f
T

(i)
O
(t

(i)
O |θ) = 1

[t
(i)
O − t

(i)
I (θ)]

√
2πσ(i)(θ)2

× exp

(
−1

2

[ln[t
(i)
O − t

(i)
I (θ)]− µ(i)(θ)]2

σ(i)(θ)2

) (25)

Meaning the likelihood function for the 11 ob-

served outbursts is given by, assuming indepen-

dent time delays,

L(TO|θ) := fTO
(tO|θ)

=
11∏
i=1

f
T

(i)
O
(t

(i)
O |θ)

(26)

where the expression for the marginal densities is

as in (25) and TO is the vector of outburst times

(with realisation tO). A graphic illustrating the

concept of log - normally distributed time delays

is included in Figure 3.

At this point it is worth noting that although

there have been only 11 well observed outbursts

of the OJ 287 system (given in Table 1), the ap-

proximate 12 year periodicity of the lightcurve

in the better documented recent years suggests

that there were further, unobserved outbursts of
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Figure 3: Example of a log-normally distributed
time delay. Impact denoted by the blue line and
observation by the red line.

the system earlier in the 20th century that went

unnoticed for various reasons. Thus, any sensible

model for computing impact times will have im-

pacts in this time period that do not correspond

to any observed outburst. These are not to be

included in the likelihood function (26), as only

impacts corresponding to actual observed data

points make a contribution to the likelihood that

the given outbursts were observed. Thus, cer-

tain impact times must be removed from the list

tI . The correct impacts to remove were found by

computing a set of impact times with the initial

Keplerian/1PN estimates derived later in Section

5, and observing which elements in the list could

have corresponded to observed outbursts. It is

only these that are kept for use in the likelihood

function.

It is also worth noting that the expression

given for the likelihood function in equation (26)

is in similar form to that used in gravitational

wave parameter estimation, for example in [20],

the difference being that our model assumes log

- normally distributed observations, whereas for

gravitational waves observations are usually as-

sumed to be normally distributed.

4 Parameter Estimation

Having introduced a statistical model for our

system, we can now use it to perform in-

ference on our model parameters, the vector

θ = (p, e,M, qr,0, ts, C), where all quantities have

been defined in previous sections. Note that we

do not include the orbital parameters a (the spin

of the primary) and θmin (the minimum polar an-

gle of the orbit) in our parameter estimation algo-

rithm. This is because these terms can be shown

to have a sub - leading order effect on the dynam-

ics, and we choose only to include leading order

terms in our procedure in order to limit the di-

mension of parameter space for our estimation

algorithms. In reality however, these terms can

have a somewhat considerable effect on the or-

bit and so any in any potential future work it

would be desirable to include them as parame-

ters to be estimated. In this project, we took the

value of the spin estimated by Dey et al. in [7]

of a = 0.381, and, as in their work, the orbit to

be almost perpendicular to the accretion disk, so

θmin ∼ 5 deg.

Now we wish to use a Bayesian approach to

parameter estimation, deriving posterior densi-

ties π(θ) rather than point estimates for our pa-

rameters using Bayes’ theorem;

π(θ|TO) =
L(TO|θ)p(θ)

Z
(27)

where p(θ) is the prior distribution of our param-

eters, which expresses our initial beliefs about

their values, and Z is a normalisation factor

known as the ‘evidence’, required to ensure that∫
π(θ|TO)dθ = 1. Our parameter estimates

and associated uncertainties can then be found

by computing moments of the posterior distribu-

10



tion. Now for our problem, as is often the case

in Bayesian inference, it is not possible to ob-

tain the evidence in a closed form. Thus, rather

than obtaining the posterior directly, we must

use computational techniques to sample from it,

in order to approximate its distribution and mo-

ments. A further issue for our model is that the

posterior density itself is quite irregular as it only

has support on regions of parameter space that

give impact times occurring before the observed

outbursts (due to the log - normal distribution

of the time delay only having support on the

positive real line), meaning we will have to fol-

low a careful procedure to make sampling from it

tractable. This procedure consists of three main

steps;

1. Use astronomical observations along with

Keplerian/1PN formulae to obtain rough

initial guesses for our parameters

2. Use a numerical optimisation technique to

obtain the approximate dominant mode of

the posterior distribution

3. Implement a sampling algorithm (that does

not require knowledge of Z) initialised from

the posterior mode found in step 2. to com-

pute approximate moments of the posterior

for parameter estimation

(Note that steps 2. and 3. follow the procedure

suggested in [21] for sampling from a complicated

posterior). We now expound on each of these

steps in further detail.

4.1 Initial Keplerian/1PN Esti-

mates

As mentioned in previous sections, the light curve

of OJ 287 contains important information about

the system - perhaps most importantly, it gives

that the system exhibits an orbital (quasi) pe-

riod T of approximately 12 years, a precessional

period of approximately 120 years, and that the

eccentricity of the elliptical orbit must be about

0.7 ([1]). From this, one can glean a surpris-

ing amount of information about the system, as

shown in [1]. Firstly, the precessional period of

120 years means that the system exhibits a peri-

helion precession ∆ϕ of approximately 12 · 360
120

=

36 degrees per orbit. Next, if we combine Ke-

pler’s third law

T 2 =
4π2a3

GM
(28)

with the 1PN expression for perihelion precession

per orbit

∆ϕ =
6πGM

c2a(1− e2)
(29)

by eliminating the semi major axis a, we obtain

the following expression giving a rough estimate

for the total mass of the system;

M =
c3∆ϕ3/2(1− e2)3/2T

12
√
6Gπ5/2

(30)

(Note that (30) gives an overestimation of the

mass, as higher order PN terms cause additional

positive contributions to the right hand side of

(29)). From this estimate for the mass, we may

rearrange (28) to give an estimate for the semi

- major axis, which in turn provides us with an

initial estimate for the semi - latus rectum p via

the formula

p = a(1− e2) (31)

The solutions given in Section 2 are 2π periodic

in the radial phase qr, thus we constrain the ini-

tial radial phase qr,0 to range between 0 and 2π,

meaning the only requirement on an initial guess

11



for this parameter is that it lies in this interval.

We choose as our initial guess qr,0 = π, simply be-

cause it is the midpoint of this interval. We then

obtain an order of magnitude initial estimate for

the constant C by requiring the average expected

time delay to be of order ∼ 1 year, to be some-

what consistent with the previous work of Dey et

al. in, for example, [7] (where we have taken C to

be in units so that the expected time delay is in

years). This is done by averaging the expression

(21) from periapsis to apoapsis using integration

and finding the order of magnitude of C required

to make this time delay O(1) year. Finally, the

initial guess for the time shift ts is simply found

as the expected time delay for an impact occur-

ring at the initial radial coordinate r(0) using

(21). Thus, we have approximate initial guesses

for each of our model parameters, and may use

these as a starting point for the next step in our

parameter estimation algorithm.

4.2 Optimisation Step - Simulated

Annealing

4.2.1 Outline of the Algorithm

The next step in the process is to locate the domi-

nant posterior mode via a numerical optimisation

algorithm. The choice of algorithm here is crucial

as the expression for the posterior density is com-

plex, with many small, local maxima, and thus

an algorithm which simply uses local information

to flow to maxima such as gradient descent will

not be sufficient, as it will continually get stuck

in these local extrema.

What we need instead is an algorithm that can

perform a much wider search of the parameter

space, that won’t encounter this problem of get-

ting stuck locally, and will be able to find approx-

imate global maxima of the posterior. Thus, an

appropriate choice is the probabilistic optimisa-

tion metaheuristic known as simulated annealing,

first proposed by Kirkpatrick in [22]. This tech-

nique was originally inspired by the procedure of

annealing in metallurgy, where a metal is slowly

cooled in order to change its structural properties

such as ductility and hardness.

The key idea of the algorithm is that there

is an ‘energy’ function that one wants to min-

imise by randomly exploring different ‘states’ in

parameter space. Proposed states are accepted

or rejected based on a ‘temperature’ parameter,

that decreases as the algorithm runs, with the

probability of accepting a nonoptimal move be-

coming smaller and smaller as the temperature

decreases.

This is analogous to the physical process of

annealing - here the atoms in the metal want to

arrange themselves so as to minimise the total

energy of the system. At the beginning of the

process, when the temperature is high, the sys-

tem may accept moves to higher energy configu-

ration with some probability, but this probabil-

ity decreases with the temperature and so by the

end the system will only accept moves to lower

energy states. It is in this way that the total

energy of the system is minimised. Importantly,

from an optimisation perspective, this accepting

of nonoptimal moves prevents the algorithm from

becoming stuck in local minima, which allows a

greater exploration of the search space.

In more detail, the algorithm proceeds as fol-

lows;
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Simulated Annealing Algorithm

1. Begin with initial state θ0 with energy E.

2. Propose a new state θn with energy En

randomly via a Gaussian centred at the

current state.

3. Accept/reject θn if the temperature - de-

pendent probability

P (E,En, T ) =


1, (En < E)

exp(−En−E
T

), (En > E)

is greater than/less than a randomly

drawn number between 0 and 1.

4. Repeat for desired number of iterations,

decreasing the temperature each time.

4.2.2 A Toy Problem - the Weierstrass

Function

Having introduced the simulated annealing algo-

rithm and discussed its appropriateness for our

model, we now briefly consider a toy problem as

a demonstration of its efficacy. We examine max-

imising the truncated Weierstrass function, given

by

f(x) =
N∑

n=0

an cos (bnπx) (32)

We take N = 2, a = 0.7, and b = 5. Now this

function has many local maxima which are eas-

ily found, the problem lies in finding its global

maximum, located at x = 0. We can solve this

problem by applying simulated annealing, with

energy given by −f (so that we are maximising

f). Figure 4 shows how the algorithm zeroes in

on the global maximum by randomly exploring

Figure 4: Optimising the truncated Weierstrass
function using Simulated Annealing. The al-
gorithm explores the search space stochastically
and finds the approximate global maximum as
the temperature cools.

the search space, accepting nonoptimal moves at

higher temperatures to avoid getting stuck in one

of the many local maxima.

The details of how simulated annealing was

used to locate the posterior mode for our problem

is discussed in more detail in Section 5.

4.3 Sampling Step - Metropolis

Hastings

4.3.1 Outline of the Algorithm

We now consider the final step in the proce-

dure, sampling from the posterior distribution.

As mentioned already, we cannot obtain the pos-

terior distribution in closed form due to the nor-

malisation constant. Thus, we instead opt for

an algorithm that can sample from this distribu-

tion, allowing us to compute approximations to

its moments which we will use for parameter esti-

mation. One such family of algorithms is what is

known as Markov Chain Monte Carlo, or MCMC

methods.
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These techniques involve constructing a

Markov chain of samples whose stationary distri-

bution is the desired posterior distribution. One

can then compute estimations for the moments

using the Monte Carlo approximation ([23]).

Further, many MCMC algorithms do not require

knowledge of a normalisation factor to sample

from a distribution, and need only a function pro-

portional to the desired pdf. This makes them

ideally suited for our problem.

We choose one such algorithm, the simplest

and most widely used example of MCMC, known

as the Metropolis - Hastings algorithm, first de-

veloped in [24]. The general structure of the

algorithm is very similar to the previously dis-

cussed simulated annealing - in fact, Metropolis

- Hastings was essentially what inspired the de-

velopment of simulated annealing, with the latter

being a version of the former adapted to optimi-

sation problems rather than sampling.

As in simulated annealing, proposed states

are accepted/rejected based on a criteria that

always accepts optimal moves (in this case,

moves to regions of higher probability density)

but has a nonzero probability of accepting

nonoptimal ones to avoid getting stuck in local

maxima. The primary difference is that in

Metropolis - Hastings, each accepted state is

recorded and viewed as a sample from the

desired distribution, whereas in simulated an-

nealing, the only state that is recorded is the

one that best minimises the energy function.

In more detail, the algorithm proceeds as follows;

Metropolis - Hastings Algorithm

1. Begin with initial sample θ(0) and propose

θ′ via a multivariate Gaussian centred at

θ(0).

2. Accept or reject θ′ as new sample θ(1) if

the ratio

r = min

(
1,

π(θ′)

π(θ(0))

)
is greater than/less than a randomly

drawn number between 0 and 1.

3. Repeat for N iterations and approximate

moments using the Monte Carlo formula

Eπ[g(θ)] ≃
1

N

N∑
n=1

g(θ(n))

Note that, as the acceptance criteria depends

only on ratios of posterior densities, the normal-

isation constant completely cancels and so no

knowledge of it is needed to perform the sam-

pling. The formula in Step 3. is based on the

Monte Carlo principle that probability distribu-

tions and their associated moments can be well

approximated by repeated random sampling and

averaging over these samples. It is also worth

noting that usually these sums are not performed

over all samples, with a certain fraction of the ini-

tial samples ignored in what is known as a ‘burn -

in’ phase, to allow the algorithm time to explore

the posterior and locate regions of higher den-

sity. We essentially bypass the need for this burn

in time by our previously discussed optimisation

step, which immediately places the sampler in a

region of high posterior density.
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4.3.2 A Toy Problem - Sampling from an

N (0, 1) Distribution

We now briefly discuss another toy problem to

demonstrate the operation of the Metropolis -

Hastings algorithm. We consider the problem

of sampling from an N (0, 1) distribution with-

out knowledge of the normalisation constant - in

other words knowing only that

fX(x) ∝ exp

(
−1

2
x2

)
(33)

We also compute the Monte Carlo estimates for

the mean and variance of the distribution;

µ̂ =
1

N

N∑
n=1

xn

σ̂2 =
1

N

N∑
n=1

(xn − µ̂)2

(34)

where the xn are the samples drawn using the al-

gorithm. The results are included in Figure 5. It

can be seen that both the sampling distribution

and parameter estimates give reasonable approx-

imations that increase in accuracy as the number

of iterations N is increased.

Again, the details of how this algorithm is ap-

plied to our problem are discussed in the next

section.

It is worth noting that our sampling procedure

involves locating the posterior mode and explor-

ing the surrounding region using the Metropolis

- Hastings algorithm. This idea works well for

a unimodal posterior but in reality, our poste-

rior is highly irregular and is in fact multimodal

which may lead to doubts regarding the accuracy

of this procedure for sampling from it. Our claim

however is that, although there are many local

maxima of the distribution, there is one domi-

-3 -2 -1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

(a) 1000 iterations. µ̂ ≃ −0.14, σ̂2 ≃ 0.89.

-3 -2 -1 0 1 2 3
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(b) 5000 iterations. µ̂ ≃ −0.06, σ̂2 ≃ 1.03
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0.2

0.3

0.4

(c) 10000 iterations. µ̂ ≃ 0.04, σ̂2 ≃ 0.997.

Figure 5: Sampling from an N (0, 1) distribution
for sample sizes of 1, 000, 5, 000 and 10, 000. The
accuracy of the computed moments increases as
the sample size increases.

nant mode corresponding to a global maximum

where an overwhelming majority of the poste-

rior density resides (around the ‘true’ parameters

of the system). This claim is supported by re-

sults found by the simulated annealing algorithm

- there were many small, local maxima located

in parameter space but comparing to the global

maximum found, the ratio of densities in these
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regions was generally found to be ∼ O(10−4).

Thus, we believe that treating this distribution as

essentially unimodal offers a reasonable approx-

imation, with regions away from this mode con-

tributing very little to the integrals that give mo-

ments of the distribution. This means that the

resulting Monte Carlo approximations of the mo-

ments should give satisfactory estimates for the

parameters and their uncertainties. More work

is needed however to investigate the validity of

this approximation.

5 Results

In this section we present the results obtained

from the procedure discussed previously. All

code used to produce these results was imple-

mented in Mathematica.

The first aspect to consider is the Kepleri-

an/1PN initial parameter estimates. If we plug

T = 12yr, ∆ϕ = 36 deg, e = 0.7 into (30), we

obtain M ≃ 27 × 109M⊙. Recall however that

this is an overestimate of the mass, and we can-

not be sure of how much an overestimate this is.

Thus rather than taking this value to start our

optimisation step, we take a range of values of

the mass lower than this, and run our optimisa-

tion step from each one. We took three values,

M = 24, 25 and 26 × 109M⊙ which had corre-

sponding semi - latus rectums of approximately

p = 33, 32 and 31 respectively, calculated via

(31). We have stated already that the initial

guess for qr,0 was π, and the order of magnitude

estimate for C was found to be∼ 10−7. This gave

an initial guess for ts of approximately 1yr. Thus

we obtain three sets of rough initial parameter es-

timates, θ0 = (33/32/31, 0.7, 24/25/26, π, 1, 1),

which we use as starting points for our optimisa-

tion step (note that here and from now on, the

masses are taken to be in billions of solar masses

and C in units of 10−7).

With these values in mind, we take the prior

distributions on our parameters p, e, M , qr,0, ts

and C to be uniform on the intervals [31, 35],

[0, 1], [23, 27], [0, 2π], [0, 12] and [0, 10], respec-

tively. These ranges for p and M are chosen so

that they lie in the immediate regions above/be-

low the under/overestimates found above. The

ranges for e and qr,0 are so since they span the

full range of possible values for these parame-

ters. The range for ts is constrained by the 12

year orbital quasi-period, and C by its order of

magnitude estimate made previously.

Having found rough initial parameter esti-

mates, we run simulated annealing with these

as our initial state θ0, taking the energy to be

the negative of the numerator of the posterior

from (27). As mentioned previously, new states

in parameter space are proposed via a Gaussian

centred at the current state. At this stage, rather

than employing a multivariate Gaussian for this

purpose, a single element of the state is chosen

at random and a univariate Gaussian centred at

this element, with some user specified variance,

is used to propose a new state. The algorithm

was implemented by running 500 iterations from

the initial guesses, taking the output of this run,

and using this as a new initial state for another

500 iteration run, decreasing the variance of the

Gaussian proposal distribution to more narrowly

probe this region of parameter space. This pro-

cess was repeated until the algorithm no longer

improved on the initial guess, suggesting an ap-

proximation to the true global maximum of the

posterior had been found. The best values found

by this procedure (i.e. the ones that best min-
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imised the energy) were, to three significant fig-

ures, θ = (32.2, 0.688, 24.4, 2.38, 0.262, 1.95).

The posterior mode found by simulated an-

nealing can then be used to initialise the

Metropolis - Hastings sampling step. Here, we

modify our procedure for generating new sam-

ples. The proposal distribution is now taken to

be a multivariate Gaussian centred at the current

state. The covariance matrix of the proposal is

determined using a procedure suggested in [21]

- a short run of the Metropolis - Hastings algo-

rithm of about 500 iterations is performed with a

diagonal covariance matrix, and the covariance of

the resulting samples is calculated and taken to

be the new proposal covariance. This procedure

can be repeated until a covariance matrix that

gives a satisfactory acceptance rate is achieved,

and this will then be used for the full Metropo-

lis - Hastings run. Having found such a covari-

ance matrix through this procedure, we then ran

the algorithm for N = 10, 000 iterations to ob-

tain samples from the posterior distribution. We

took as our parameter estimates the Monte Carlo

means of these samples (approximating the min-

imum mean squared error, or MMSE estimator),

and as our uncertainties the Monte Carlo stan-

dard deviations;

θ̂ = Eπ[θ|TO]

≃ 1

N

N∑
n=1

θ(n)

σ̂ =
√

Eπ [(θ − Eπ[θ|TO]) |TO]

≃

√√√√ 1

N

N∑
n=1

(
θ(n) − θ̂

)2
(35)

The results are included in Table 2.

Parameter Estimates

p 32.1 ±0.06
e 0.687 ±0.001
M 24.4 ±0.1
qr,0 2.36 ±0.03
ts 0.32 ±0.07
C 2.2 ±0.3

Table 2: Estimates for the parameters with 1σ
uncertainties of OJ 287 from Metropolis - Hast-
ings.

It is worth noting that the mass in our es-

timates is measured as an observer on Earth,

whereas the estimates of Dey et al. are in the

frame of the OJ 287 system itself. To convert

our estimates for comparison, we must simply di-

vide by 1+z, where the redshift factor z = 0.306.

This gives our estimate as ∼ 18.7×109M⊙, while

the estimate of Dey et al. was ∼ 18.5× 109M⊙ -

which is within two of the computed standard de-

viations of our result, indicative of a reasonable

agreement.

Finally, we present the expected outburst

times as predicted by our model with the ob-

served data in Table 3, along with a visual rep-

resentation of the outbursts given in Figure 6,

where each vertical red line denotes an observed

outburst and blue an expected outburst as cal-

culated by our model. We emphasise that these

are expected outbursts predicted by our model,

when each of the time delay random variables

take their expected values. Our model however

gives that they can deviate from this due to ran-

dom processes in the accretion disk, which offers

some explanation for the disagreements in the

table.
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Outburst Times

Observed 1912.98 1947.28 1957.01 1972.94 1982.97 1984.13
Expected 1913.08 1947.29 1956.82 1972.8 1982.95 1984.03

Abs. Difference 0.1 0.01 0.19 0.14 0.02 0.1

Observed 1995.84 2005.75 2007.69 2015.88 2019.57

Expected 1995.78 2005.96 2007.66 2016.02 2019.58
Abs. Difference 0.06 0.21 0.03 0.14 0.01

Table 3: Observed and expected outburst times with their differences, starting from the year
1912.980. Recall that the standard deviation of the outbursts was taken to be 0.1 years.

Figure 6: Expected and observed outburst times, with expected in blue and observed in red. The
close overlap between the blue and red lines indicates good agreement of our model with observa-
tions. Recall that, for a variety of reasons, outbursts may not have been observed, corresponding
to blue lines with no accompanying red one.

6 Conclusion

In this project, we have developed a framework

for applying techniques of Bayesian inference to

estimate the parameters of the OJ 287 system.

We have approached this by modelling the mo-

tion of the SMBBH system using Kerr geodesics,

making use of the analytical solutions available

to find impact times of the secondary with the

accretion disk in a computationally efficient way.

We then introduced randomness into the system

through these impacts, taking the deterministic

time delay formula of previous models and treat-

ing this as an expected value of a log - normally

distributed random variable, which arises due to

stochastic processes in the accretion disk. This

allowed us to build a statistical model for the out-

burst times, to which we applied Bayesian meth-

ods to obtain estimates for the parameters along

with uncertainties. These parameters produced

a set of expected outburst times which we com-

pared to previous observations, and also to make

predictions about future outbursts from the sys-

tem. We found a reasonably good agreement be-

tween the expected results of our model and the

previously observed outbursts, with an average

absolute difference of approximately 1 month.

We also predict the next three outbursts to oc-

cur in 2022.7, 2031.47 and 2032.81. The first of

these corresponds to some time in August 2022,

however this is unlikely to be observed as the OJ

287 system is currently behind the Sun. There
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are, however, significant improvements that can

still be made to the model. Firstly, it would be

useful to investigate the impact of including mass

ratio terms and radiation reaction effects in the

equations of motion on the parameter estimates

and corresponding outburst times, and also com-

paring the motion of the secondary modelled by

geodesics to the PN formalism employed by Dey

et al.. Further, it would be of interest to inves-

tigate the effect of approximating the posterior

as unimodal by including MCMC runs initialised

at a number of different local maxima and seeing

the impact this had on the parameter estimates

and the associated uncertainties. Alternatively,

one could attempt to fit a different, more regular

distribution than a log - normal (for example a

normal) to the time delays which could mitigate

this issue by improving the regularity of the pos-

terior. Finally, a thorough examination of the

convergence of the Metropolis - Hastings algo-

rithm would be desirable to support the obtained

results and offer confirmation of the validity of

the method for this problem.

Appendix A: The Orbital

Constants of Motion

The geodesic equations are given in terms of the

parameters (E ,Lz,Q), corresponding to the en-

ergy, the axial angular momentum and Carter’s

constant, however, Schmidt derived the relation-

ship between these constants and the more con-

venient (p, e, θmin) [10]. The aim is to present

candidate orbits using the (p, e, θmin) parame-

terisation, then find the corresponding values of

(E ,Lz,Q) such that the Kerr geodesic equations

can be calculated.

It is worth noting that the values of E , Lz and

Q used in the geodesic equations are dimension-

less quantities. They are written without addi-

tional notation in order to keep the notation sim-

ple, however in this derivation a tilde is added to

the symbol to denote that it is dimensionless.

We can relate the dimensionful quantities to

their dimensionless counterparts with E = µẼ ,
Lz = µM L̃z and Q = (µM)2Q̃, where M is the

mass of the primary and µ the mass of the test

particle. Given a minimum orbital radius r1 and

a maximum radius r2, where r1 = p/(1 + e) and

r2 = p/(1− e), we can relate the constants with

the following equations. Note that D = sgnLz

and specifies whether the orbit is prograde or ret-

rograde, given D = +1 or D = −1 respectively.

Ẽ2 =
κρ+ 2ϵσ − 2D

√
σ(σϵ2 + ρϵκ− ηκ2)

ρ2 + 4ησ
,

(36)

L̃z = −g1Ẽ
h1

+D

√
g21Ẽ2

h2
1

+
f1Ẽ2 − d1

h1

, (37)

Q̃ = z−

(
β +

L̃2
z

1− z−

)
, (38)

where we define ã = a/M , z− = cos2 θmin and

β = ã2(1− Ẽ2), with the functions

∆̃(r̃) = r̃2 − 2r̃ + ã2 , (39)

d(r̃) = (r̃2 + z−ã
2)∆̃ , (40)

f(r̃) = r̃4 + ã2(r̃(r̃ + 2) + z−∆̃) , (41)

g(r̃) = 2ãr̃ , (42)

h(r̃) = r̃(r̃ − 2) +
z−∆̃

1− z−
, (43)
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and the determinants

κ = d1h1 − d2h1 , (44)

ϵ = d1g2 − d2g1 , (45)

ρ = f1h2 − f2h1 , (46)

η = f1g2 − f2g1 , (47)

σ = g1h2 − g2h1 . (48)

A subscript 1 or 2 means that the function

should be evaluated at the dimensionless radius

r̃1,2.

In the Kerr equations of motion the dimension-

less constants, Ẽ , L̃z and Q̃, are used, however the

tildes are removed for notational cleanliness.

Appendix B: Analytical Solu-

tion to Kerr Geodesic Equa-

tions

Organisation and Geodesic Equa-

tions

The Kerr geodesic equations of motion from Sec-

tion 2.1 were solved analytically, when parame-

terised with Mino time, by Fujita and Hikida [11].

The solutions were organised and presently more

compactly by Van de Meent [12] and are out-

lined in this appendix. The solutions are quite

long and are thus defined in pieces in the pursuit

of clarity. Although the full solutions to all the

coordinates are provided by Van de Meent, only

solutions to equations necessary to predict the

expected outbursts of OJ 287 are used, namely

the radial solution, r, and the coordinate time

solution, t. The following solutions are given in

geometrised units, where G = c = 1.

In first order form, the geodesic equations to

be solved from Section 2.1 can be written as(
dr

dλ

)2

= (1− E2)

× (r1 − r)(r − r2)(r − r3)(r − r4) ,

(49)(
dz

dλ

)2

= (z2 − z21)(a
2(1− E2)z2 − z22) , (50)(

dt

dλ

)
=

r2 + a2

r2 − 2r + a2
(E(r2 + a2)

− aLz)− a2E(1− z2) + aLz , (51)(
dϕ

dλ

)
=

a

r2 − 2r + a2
(E(r2 + a2)

− aLz) +
Lz

1− z2
− aE , (52)

where we have a new coordinate, z, defined as

z := cos(θ) (53)

which replaces the usual Boyer-Lindquist coordi-

nate θ.

Initial Definitions

The first order Kerr geodesic equations are writ-

ten in terms of roots of the r and z equations,

defined to be

r1 =
p

1− e
, (54)

r2 =
p

1 + e
, (55)

r3 =
1

1− E2
− r1 + r2

2

+

√(
r1 + r2

2
− 1

1− E2

)2

− a2Q
r1r2(1− E2)

,

(56)

r4 =
a2Q

r1r2r3(1− E2)
, (57)
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and the z roots given as

z1 = cos(θmin) , (58)

z2 =

√
a2(1− E2) +

L2
z

1− z21
. (59)

The inner and outer event horizons are located

at the radial coordinates

r± = 1±
√
1− a2. (60)

These definitions now allow the following rele-

vant quantities to be defined;

kr =
(r1 − r2)(r3 − r4)

(r1 − r3)(r2 − r4)
, (61)

kz = a2(1− E2)
z21
z22

, (62)

hr =
r1 − r2
r1 − r3

, (63)

h± = hr
r3 − r±
r2 − r±

. (64)

The Radial Solution

The solution to the radial equation is given as

r(qr) =
r3(r1 − r2)sn

2(K(kr)
π

qr|kr)− r2(r1 − r3)

(r1 − r2)sn2(K(kr)
π

qr|kr)− (r1 − r3)
,

(65)

where sn is the Jacobi elliptic sine function and

K is the complete Jacobi elliptic integral of the

first kind.

The quantity qr is the radial phase and is a sec-

ularly growing part of the solution which grows

with Mino time, defined as

qr(λ) = Υrλ+ qr,0 , (66)

where Υr is the radial frequency and qr,0 the ini-

tial radial phase. This gives the value of qr at

Mino time λ = 0 and corresponds to periapsis

(r = r2). Although an initial guess can be made

for qr,0, it is one of the parameters which is op-

timised for in the parameter searching algorithm

in this project, since we would not know a priori

what the initial radial phase of a trajectory is,

without setting it arbitrarily.

The radial frequency is given as

Υr =
π

2K(kr)

√
(1− E2)(r1 − r3)(r2 − r4) .

(67)

The Temporal Solution

Similarly, the solution to coordinate time is given

as

t(qt, qr, qz) = qt + tr(qr) + tz(qz) , (68)

which is a function of three phases, qt, qr and qz.

The radial phase, qr, has already been defined,

while the z phase is given as

qz = Υzλ+ qz,0 (69)

where qz,0 corresponds to the initial z phase

which is the value of qz at λ = 0. It is taken

as convention here that qz = 0 corresponds

to the up-going node of the polar motion, i.e.

z = 0, z′ > 0. It is thus assumed in this project

that this is the case and so qz,0 = 0.

The corresponding z frequency is given as

Υz =
πz2

2K(kz)
. (70)

Although not necessary in this project, the so-
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lution to the z is nonetheless given as

z(qz) = z1sn

(
K(kz)

2qz
π

|kz
)

. (71)

Once qr and qz can be calculated, they can

be substituted into the expressions for tr and tz,

given as

tr(qr) = t̃r

(
am
(
K(kr)

qr
π
|kr
))

− t̃r(π)

2π
qr , (72)

tz(qz) = t̃z

(
am

(
K(kz)

2qz
π

|kz
))

− t̃z(π)

π
qz ,

(73)

where

t̃r(ζr) =
E(r2 − r3)√

(1− E2)(r1 − r3)(r2 − r4)

× ((4 + r1 + r2 + r3 + r4)Π(hr; ζr|kr)

− 4

r+ − r−
(
r+(4− aLz/E)− 2a2

(r2 − r+)(r3 − r+)

× Π(h+; ζr|kr)− (+ ↔ −))

+
(r1 − r3)(r2 − r4)

r2 − r3

× (E(ζr|kr)− hr
sin ζr cos ζr

√
1− kr sin

2 ζr
1− hr sin

2 ζr
) ,

(74)

and

t̃z(ζz) = − E
1− E2

z2E(ζz|kz) , (75)

where E and Π are elliptic integrals of the second

and third kind, respectively. Also, the notation

(+ ↔ −) indicates that the previous term is to be

repeated again, however with the plus and minus

signs in the subscripts swapped around.

Finally, our attention can be turned to the

temporal phase, qt, given as

qt(λ) = Υtλ+ qt,0 . (76)

We can however take qt,0 = 0 since we can ab-

sorb its effects into our time shift parameter ts

and optimise for it in the parameter estimation

algorithm.

The associated frequency is given as

Υt = Υ̃t,r + Υ̃t,z . (77)

The relevant terms are defined as

Υ̃t,r = (4 + a2)E + E (
1

2
((4 + r1 + r2 + r3)r3

− r1r2 + (r1 − r3)(r2 − r4)
E(kr)

K(kr)

+ (4 + r1 + r2 + r3 + r4)(r2 − r3)
Π(hr|kr)
K(kr)

)

+
2

r+ − r−
(
(4− aLz/E)r+ − 2a2

r3 − r+

× (1− r2 − r3
r2 − r+

Π(h+|kr)
K(kr)

)− (+ ↔ −))) ,

(78)

and

Υ̃t,z = −a2E +
EQ

(1− E2)z21

(
1− E(kz)

K(kz)

)
. (79)

This thus completes the analytic solutions for

the r and t coordinates, with the solution for the

z coordinate also given. The solution to the ϕ

coordinate is not necessary for this project, how-

ever, can be found in Van de Meent’s paper [12].

Relation to Impact Times

With these equations, the intersections are thus

calculated as

tI,n =

[
t

(
nπ

Υz

)
− t(0)

]
− ts , n ∈ Z . (80)

where ts is the time shift parameter, fitted for in

the optimisation algorithm.
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Integer multiples of the half period Λz/2 =

π/Υz are calculated and correspond to the im-

pact times of the orbit with the accretion disk.

The periodicity of the Mino time solution is ex-

ploited here, allowing us to calculated merely a

discrete sequence of values rather than the entire

orbit. We are also justified in this approach since

the convention of the solutions states that qz = 0

corresponds to z = 0 meaning that when taking

qz,0 = 0, the value of qz at λ = 0 corresponds

to when z = cos θ = 0 ⇒ θ = π/2 which is the

plane that the accretion disk lies.
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