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Abstract
We provide an introduction to Latin squares and quantum Latin squares, before studying

the recent quantum solution of Rather et al. to the classically impossible Euler’s 36
Officers problem. We then begin work on an open problem proposed by Życzkowski et al.
regarding the existence of genuinely quantum orthogonal Latin squares of size 3 that are

not locally classical-equivalent, by finding conditions for the block-wise rank of
classical-equivalent 2-unitary matrices.
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1 Introduction

Latin squares are combinatorial objects with applications across statistics and mathematics,
particularly in coding theory, as well as being related to sudoku and other board games.[6]
An example of a Latin square was first published by Choi Seok-jeong in 1700, although it
has been remarked that Latin squares date back to c.1200 with links to medieval Islam.[3]

The name “Latin square” originates from Leonhard Euler’s study of the objects and his
usage of the Roman alphabet for the set of symbols.[19] Pairs of orthogonal Latin squares
are also sometimes known as Euler squares, and Euler’s study of Latin squares is thought
to be the first development of a general theory of these objects. Our first chapter will be
an introduction to Latin squares, and an overview of the historical work of Euler and other
key figures.

As the field of quantum information theory grows, with Latin squares having applications
in classical coding theory, it is natural to consider quantum analogues of Latin squares.
The idea of a quantum Latin square was proposed by B. Musto and J. Vicary in 2015.[12]
These objects have since been shown to have relations to absolutely maximally entangled
(AME) states, [14] which have various applications in quantum information. [9] [16] We will
discuss in detail a recent result from Rather et al. [15] regarding the existence of a quantum
orthogonal Latin square of size 6× 6, an object for which no classical equivalent exists. [18]
An important open question is that of the existence of quantum orthogonal Latin squares
of any order that are in some sense not equivalent to known classical Latin squares. [21] We
will then begin work on this question for quantum orthogonal Latin squares of size 3× 3 by
considering computational and algebraic techniques.

2 Latin Squares and Orthogonality

We begin with a key definition:

Definition 2.1 A Latin square of order n is an n×n array L whose entries are taken from
a set S of n symbols such that each symbol from S occurs exactly once in each row and
column of L. [5]

For example, for n = 3 and S = {A,B,C}, one such Latin square is shown:A B C
C A B
B C A


An interesting method of generating Latin squares involves multiplication tables. For ex-
ample, observing the table for multiplication modulo 5:
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× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Removing the first row and first column (all zeros), we get the following Latin square:
1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1


Recalling the definition of a quasigroup, we can express this result more generally:

Definition 2.2 A quasigroup (Q, ·) is a non-empty set Q with binary operation · such that
for all a, b ∈ Q, there exists unique x, y ∈ Q such that a · x = b and y · a = b.

Theorem 2.3 Every multiplication table of a quasigroup is a latin square and conversely,
any bordered latin square is the multiplication table of a quasigroup. [6]

A notion of equivalence exists between Latin squares:

Definition 2.4 A pair of Latin squares are equivalent, or isotopic, if one can be obtained
from the other by row permutation, column permutation, or renaming of symbols. [5]

There is a concept of isotopy between quasigroups also:

Definition 2.5 For two quasigroups (G, ·) and (H, ∗), an ordered triple (θ, ϕ, ψ) of bijections
from G to H is called an isotopy of G upon H if θ(x) ∗ ϕ(y) = ψ(x · y). We then call G and
H isotopic.

By taking two Latin squares and their associated quasigroups, it can be shown that these
concepts are equivalent. In the above notation, when transformed into Latin squares/Cayley
tables, ψ permutes the elements inside the table (symbols of the Latin square), where as θ
and ϕ permute the table border (rows and columns of the Latin square). Isotopy forms an
equivalence relation, and gives the concept of an isotopy class.[6]

Finally, when constructing Latin squares, there is a helpful assumption that we can always
make:

Definition 2.6 A Latin square is said to be reduced, or in standard form, if the elements
of the first row and first column are in natural order. [6]

Lemma 2.7 Every Latin square is equivalent to a reduced Latin square.

Proof. Suppose we have a Latin square L with entries aij , for i, j ∈ S = {1, . . . , n}. Then
we can permute the columns of L such that the first row is in natural order, i.e. a1j = j.
We have already then that a11 = 1, thus we can permute rows 2, . . . , n such that the first
column is in natural order, i.e. ai1 = i, without affecting the first row. L is now in reduced
form.

A much stronger condition is that of a pair of orthogonal Latin squares:
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Definition 2.8 A pair of Latin squares L1 = ||aij || and L2 = ||bij || on n symbols are said
to be orthogonal if every ordered pair of symbols occurs exactly once among the n2 pairs
(aij , bij), where i, j ∈ {1, · · · , n} [6]

For example, L1 and L2 below are orthogonal:

L1 =

2 3 1
1 2 3
3 1 2

 , L2 =

2 1 3
1 3 2
3 2 1

 =⇒ L1 ⊙ L2 =

(2, 2) (3, 1) (1, 3)
(1, 1) (2, 3) (3, 2)
(3, 3) (1, 2) (2, 1)


Similar to single Latin squares, two pairs of orthogonal Latin squares are equivalent under
row or column permutation, and renaming of symbols within the constituent single Latin
squares.[5]

Recalling Theorem 2.3, we have the following results:

Theorem 2.9 The multiplication table of any group of odd order forms a Latin square
which possesses an orthogonal mate.[6]

Corollary 2.10 There exist pairs of orthogonal Latin squares of every odd order.

Euler was able to construct orthogonal Latin squares for every order divisible by four, but
not for any order of the form 4k + 2, which led him to conjecture that no orthogonal Latin
squares exist for any oddly even order. [7] It is straightforward to see that no orthogonal
Latin square of order 2 exists. Notice that there is no way of completing the Latin square
below that maintains orthogonality:[

A B
B A

]
⊙
[
1 2
? ?

]
=

[
(A, 1) (B, 2)
(B, ?) (A, ?)

]
An example of an orthogonal Latin square of order 3 has been given above. The following
are examples for orders 4 and 5:

A B C D
B A D C
C D A B
D C B A

⊙


1 3 4 2
2 4 3 1
3 1 2 4
4 2 1 3

 =


A1 B3 C4 D2
B2 A4 D3 C1
C3 D1 A2 B4
D4 C2 B1 A3



A B C D E
B C D E A
C D E A B
D E A B C
E A B C D

⊙


1 4 2 5 3
2 5 3 1 4
3 1 4 2 5
4 2 5 3 1
5 3 1 4 2

 =


A1 B4 C2 D5 E3
B2 C5 D3 E1 A4
C3 D1 E4 A2 B5
D4 E2 A5 B3 C1
E5 A3 B1 C4 D2


From now on, we will drop the bracket notation and write, for example, (A, 1) as A1. The
notation of the ⊙ symbol was chosen as it is commonly used to represent the similar-looking
Hadamard product for matrices.

So we have solved the problem of existence for orders 2 to 5. What about order n = 6?

“Six different regiments have six officers, each one belonging to different ranks. Can
these 36 officers be arranged in a square formation so that each row and column
contains one officer of each rank and one of each regiment?” - L. Euler
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This famous problem by Euler [7] is exactly the question of existence of an orthogonal Latin
square of order 6, by labeling the regiments and ranks with symbols. Notice that this is
the case for k = 1 for Euler’s 4k + 2 conjecture stated earlier. This problem was solved by
exhaustion by Gaston Tarry in 1900 [18], and later with a concise algebraic method by D.R.
Stinson in 1984 [17]:

Theorem 2.11 (Tarry, 1900) There does not exist an orthogonal Latin square of order 6.

However, Euler’s conjecture is not true. In 1959, R.C. Bose and S.S Shrikhande found a
counterexample by constructing an orthogonal Latin square of order 22. [1] Later in the
same year, Bose, Shrikhande and E.T. Parker proved the following theorem:

Theorem 2.12 (Bose, Shrikhande, Parker, 1959) There exists an orthogonal Latin square
for all all n ≡ 2 (mod 4), n ≥ 10. [2]

Connecting this result with earlier results of existence for multiples of 4 and odd orders:

Corollary 2.13 There exists an orthogonal Latin square for all orders n ̸= 2, 6.

3 Notation and Definitions

As the related literature is often focused on quantum theory and applications, we will require
some notation and definitions commonly used within physics, as well as some mathematical
tools. This section covers these requirements.

Throughout quantum theory, it is standard to write vectors and dual vectors in Dirac
notation, otherwise known as bra-ket notation. The following is a quick overview. Let V be
a complex inner product space.

• A vector v ∈ V is denoted as a ket, and is written as |v⟩.

• It is common to write basis vectors e1, e2, . . . , en as |1⟩, |2⟩, . . . , |n⟩. This basis is known
as the computational basis.

• A covector f ∈ V ∗ is denoted as a bra, and is written as ⟨f |.

• The inner product of u, v ∈ V is denoted as ⟨u|v⟩, and similarly the outer product is
denoted as |u⟩⟨v|. [4]

The following notes on Hilbert spaces and quantum states are based on Chapter 3 of Quan-
tum Algorithms via Linear Algebra: A Primer by Richard J. Lipton and Kenneth W. Regan.
[11]

Let H1 and H2 be m-dimensional and n-dimensional Hilbert spaces respectively. Then the
tensor product H1 ⊗H2 is the space of vectors of the form ak where 1 ≤ k ≤ mn. This has
a one-to-one correspondence with pairs (i, j) for 1 ≤ i ≤ m and 1 ≤ j ≤ n, so each ak can
be written as aij . Then the tensor product of two vectors a ∈ H1 and b ∈ H2 is the vector
c = a⊗ b where cij = aibj .

When working with quantum experiments, Hilbert spaces HA,HB represent two separate
systems, and the tensor product HA ⊗ HB is used to study them simultaneously. We will
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thus refer to HA and HB as the A and B subsystems respectively. The vectors of HA ⊗HB

are called quantum states.

The elements of the computational basis are known as basis states. The basis states for
HA ⊗HB are written as |ij⟩ where 1 ≤ i ≤ m and 1 ≤ j ≤ n as before. For example, where
ei ∈ HA and fj ∈ HB , e1 ⊗ f2 = |1⟩⟨2| := |12⟩, etc.

Definition 3.1 A pure quantum state is a state which can be described as a linear combi-
nation of basis states.

For our purposes, we will only deal with pure quantum states.

Definition 3.2 A vector representing a pure quantum state is separable if it is the tensor
product of two other vectors. Otherwise, it is called entangled.

For example, |11⟩ = |1⟩⟨1| and |22⟩ = |2⟩⟨2| are separable, but 1√
2
(|11⟩+ |22⟩) is entangled.

The computational basis elements of HA ⊗HB are separable by definition, but their linear
combinations are not necessarily.

Definition 3.3 A complex square matrix U is unitary if its conjugate transpose U† is its
inverse, i.e. UU† = I.

We will use unitary matrices to represent transformations on vectors within subsystems.

4 Quantum Latin Squares

As mentioned in the previous section, the space of states in quantum theory is described as
a complex vector space. In a quantum analogue of Latin squares, this will replace our set
of symbols S. The natural replacement for the concept of distinct set elements or symbols
is the concept of orthogonal vectors. The following definition was given by B. Musto and J.
Vicary in 2016 [12]:

Definition 4.1 A quantum Latin square of order d, or QLS(d) is an array of d2 states
|ψij⟩ ∈ Hd, such that each row and column forms an orthonormal basis.

Here Hd represents a d-dimensional Hilbert space. We will always use Cd as our choice of
space. Our classical notion of equivalence also has a quantum analogue:

Definition 4.2 A pair of quantum Latin squares are equivalent if one can be obtained from
the other by row permutation, column permutation, or by multiplying every element by
some unitary matrix U .

Here we replace the idea of relabeling of symbols by applying transformations upon the
states. Applying a fixed unitary transformation to every state maintains orthonormality.
The concept of equivalence allows us to categorise quantum Latin squares based on how
close to classical objects they are.

Definition 4.3 A quantum Latin square is classical if every element is an element of the
computational basis. [13]

For example, the quantum Latin square L below is classical.

L =

|1⟩ |2⟩ |3⟩
|2⟩ |3⟩ |1⟩
|3⟩ |1⟩ |2⟩

 ≈

1 2 3
2 3 1
3 1 2
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Definition 4.4 The cardinality, c, of a quantum Latin square is the number of distinct
elements in the array. [13]

Definition 4.5 A QLS(d) is genuinely quantum if c > d. Otherwise, c = d, and the
QLS(d) is apparently quantum. [13]

Apparently quantum Latin squares are unitarily equivalent to classical quantum Latin
squares. As d ≤ c ≤ d2, they have minimal cardinality.

We can ask the question of existence for genuinely quantum Latin squares. The following
was shown by J. Paczos et al. in 2021: [13]

Theorem 4.6 There exists no genuinely quantum Latin squares of orders 2 and 3.

However, the same paper constructs a quantum Latin square of order 4. This is thus the
smallest case where genuinely quantum solutions exist.

|1⟩ |2⟩ |3⟩ |4⟩
|3⟩+ |4⟩ |3⟩ − |4⟩ |1⟩ − |2⟩ |1⟩+ |2⟩

|2⟩+ 1√
2
(|3⟩ − |4⟩) |1⟩ − 1√

2
(|3⟩+ |4⟩) |1⟩+ |2⟩+

√
2|4⟩ |1⟩+ |2⟩+

√
2|3⟩

|2⟩ − 1√
2
(|3⟩ − |4⟩) |1⟩+ 1√

2
(|3⟩+ |4⟩) |1⟩+ |2⟩ −

√
2|4⟩ |1⟩+ |2⟩ −

√
2|3⟩


Note that in this form, the entries are not normalised; this is to improve legibility. The
above is in fact a transformation of the originally constructed QLS(4) to emphasise the
next fact.

Remark A quantum Latin square of any order can always be unitarily transformed so that
the first row (or column) consists of the computational basis in natural order.

To further understand the structure of a QLS(4), we show the following:

Lemma 4.7 Given a QLS(4) with one row consisting of the computational basis β in natural
order, each row must contain 0, 2, or 4 elements of β.

Proof. Assume that the first row consists of the computational basis β in natural order.
Then we have a row with 4 elements of β, in the following form:

|1⟩ |2⟩ |3⟩ |4⟩
|a21⟩ |a22⟩ |a23⟩ |a24⟩
|a31⟩ |a32⟩ |a33⟩ |a34⟩
|a41⟩ |a42⟩ |a43⟩ |a44⟩


If the second row contained 3 elements of β, then it must contain the fourth element, by
dimension, thus we can not have only 3. Also, the example above shows that it is possible
to have 0 elements in β. For the other cases, suppose there is at least one element of β in
the second row.

Assume |a21⟩ = |2⟩. Then, by orthogonality:

|a22⟩ = α1|1⟩+ α3|3⟩+ α4|4⟩
|a23⟩ = β1|1⟩+ β4|4⟩
|a24⟩ = γ1|1⟩+ γ3|3⟩

By ⟨a23|a24⟩ = β1γ1 = 0, we have two cases:
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• If β1 = 0, then |a23⟩ = |4⟩, so α4 = 0. Then:

|a22⟩ = α1|1⟩+ α3|3⟩ and |a24⟩ = γ1|1⟩+ γ3|3⟩
=⇒ α1γ1 + α3γ3 = 0

which does have complex solutions.

• If γ1 = 0, then |a24⟩ = |3⟩, so α3 = 0. Then:

|a22⟩ = α1|1⟩+ α4|4⟩ and |a23⟩ = β1|1⟩+ β4|4⟩
=⇒ α1β1 + α4β4 = 0

which also has complex solutions.

Notice that instead assuming |a21⟩ = 3 or |a21⟩ = 4 results in the same cases after permuta-
tion of columns. Thus it is possible to have exactly two elements of β in one row. However,
it is impossible to have only one element of β in the second row, as this would result in both
β1 ̸= 0 and γ1 ̸= 0, which is a contradiction. Thus we can have 0, 2, or 4 elements of β in
the second row. Note that this applies to all rows by row permutation.

Note however that this does not apply to columns, as it relies on the assumption that the
first row consists of the computational basis. If we instead assumed that the first column
consists of the computational basis, the result would apply to columns, but not rows.

5 Quantum Orthogonal Latin Squares

The definition of a classical orthogonal Latin square requires the constituent “subsquares”
to satisfy the conditions of being a Latin square. However, recalling definition 3.2, it may
not always be straightforward to separate a quantum state into its subsystems. Thus we
require the following definition:

Definition 5.1 Let M be a matrix of dimension dAdB , with M =MA ⊗MB . Then: [14]

TrB(M) = (Id ⊗ Tr)(MA ⊗MB) = Tr(MB)MA

is the partial trace over subsystem B of M . The partial trace over subsystem A is defined
similarly.

This partial trace function thus maps elements of HA⊗HB to HA or HB . By linearity of the
trace function, it is straightforward to define the partial trace for any element of HA ⊗HB ,
separable or entangled. We can now define the quantum analogue of a pair of orthogonal
Latin squares: [14]

Definition 5.2 A quantum orthogonal Latin square of order d, or QOLS(d), is a d × d
array of elements of Hd such that:

• All d2 states form an orthonormal basis.

• All rows satisfy

TrB

(
d−1∑
k=0

|ψik⟩⟨ψjk|

)
= δijId
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• All columns satisfy

TrB

(
d−1∑
k=0

|ψki⟩⟨ψkj |

)
= δijId

It is straightforward to see that the first condition is the quantum equivalent of each entry
being a different object, and that the set of every entry spans the entire space just as every
pair appears in the classical orthogonal Latin square. The other conditions represent the
idea of subsquares being Latin squares, by requiring orthonormality within the subsystems
for both rows and columns.

Our first question is of existence for quantum orthogonal Latin squares. Again, any classical
orthogonal Latin square can be turned into a QOLS of the same order using the computa-
tional basis. Recalling corollary 2.13, these do not however exist for d = 2, 6. But does a
quantum orthogonal Latin square exist for these sizes? The following definition is relevant:
[14]

Definition 5.3 An absolutely maximally entangled state, or AME state, is a pure quantum
state |ψ⟩, with reduced density matrices ρi = Tri(|ψ⟩⟨ψ|), such that the von Neumann
entropy S = −Tr(ρi ln(ρi)) is maximal in every subsystem i.

It can be shown that the existence of AME states for four subsystems of d dimension, or
AME(4, d) is equivalent to the existence of a QOLS(d). [14] Thus the following result from
A. Higuchi and A. Sudbery in 2000 is of interest here. [10]

Theorem 5.4 There does not exist an AME(4, 2) state.

Corollary 5.5 There does not exist a QOLS(2).

Each AME(4, d) state can be written in the following form:

|ψ⟩ = 1

d

d−1∑
i,j,k,l=0

Tijkl|i⟩A|j⟩B |k⟩C |l⟩D

where A,B,C,D are the four subsystems, and Tijkl is a four index tensor. This tensor Tijkl
can be reshaped into a unitary matrix U of size d2 in six different ways by bi-partitioning
the indices. As transposing unitary matrices maintains unitarity, we can consider only
three of these matrices. Thus the construction of an AME(4, d) state is equivalent to the
construction of three matrices U(ij)(kl), U(ik)(jl), U(ij)(lk). [8] We define these matrices as
follows:

Definition 5.6 Given a unitary matrix U , the reshuffle of U , denoted UR, is defined by
the index swap UR

ijkl = Uikjl.

Definition 5.7 Given a unitary matrix U , the partial transpose of U over the B subsystem,
denoted UΓB , is defined by the index swap UR

ijkl = Uijlk.

[14] The reshuffle of a size d2 matrix can be thought of as reshaping each d × d block into
row vectors and then placing these vectors on top of each other. The partial transpose of a
size d2 matrix over the B subsystem can be thought of as transposing each block.

U =
∑
i

Ai ⊗Bi =⇒ UΓB =
∑
i

Ai ⊗BT
i
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The partial transpose over the A subsystem is defined similarly, but we won’t use this. Note
also that (UΓA)T = UΓB .

The above definitions are gathered into the following condition: [14]

Definition 5.8 A matrix U is 2-unitary if U,UR, and UΓB are unitary.

The equivalence between 2-unitary matrices and AME states, as well as the equivalence
between AME states and quantum orthogonal Latin squares, allows us to state the following:

Theorem 5.9 The existence of a 2-unitary matrix of size d2 is equivalent to the existence
of a QOLS(d).

Thus the existence question for quantum orthogonal Latin squares can be solved by searching
for 2-unitary matrices of the respective size.

6 The 36 Entangled Officers

Recalling that no orthogonal Latin square of order 6 exists, we discuss the 2021 result from
Rather et al. [15] that proved the existence of a quantum orthogonal Latin square of order
6 by constructing an example. The paper uses the following algorithm to generate 2-unitary
matrices:

MΓR : U0 7→ UR
0 7→ (UR

0 )Γ = U1H 7→ U1

where R is the reshuffle, Γ is the partial transpose (over subsystem B), and U0 is an initial
unitary “seed” matrix. The final part of the map uses the polar decomposition, which
factorises a square matrix into a multiplication of a unitary matrix U1 and a positive semi-
definite Hermitian matrix H, to output a new unitary matrix U1. 2-unitary matrices are
period-3 orbits of this map, and seed matrices can be chosen such that the output of Mn

ΓR

is 2-unitary with high probability for large n.

By choosing a permutation matrix as an initial seed, a numerical solution was found by this
algorithm. Local unitary transformations (see definition 7.1) were applied to generate an
equivalent matrix solution with more zero entries. Then an analytical form was constructed
by hand by observing this numerical form, which was then verified. Thus a QOLS(6) exists
in analytical form. The full AME state will not be given here, but a visual representation
is given in Figure 1 on the next page.

7 Genuinely Quantum Solutions

As there does not exist a classical 6× 6 orthogonal Latin square, the Rather et al. result is
genuinely quantum, i.e. it is not equivalent to any classical solution. However, it is an open
question as to whether there exist quantum orthogonal Latin squares of other sizes that are
not equivalent to classical squares. We begin work on this question as stated in the paper
by Życzkowski et al. from 2022. [21]

Are there genuinely quantum OLS(d) for d = 3, 4, or 5, which are not locally
equivalent to a classical solution?
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Figure 1: A visual representation of the QOLS(6) solution. Chess pieces and colours rep-
resent symbols on each subsystem, with the number k ∈ {0, 1, . . . , 19} next to each figure
representing a complex phase exp(πik/10). [15]

We work only on the case of d = 3. First, let’s define what is meant by local equivalence.
[20]

Definition 7.1 LetM =
∑

iAi⊗Bi be a d
2×d2 2-unitary matrix representing a QOLS(d),

L, and let M ′ be a d2 × d2 2-unitary matrix representing a QOLS(d), L′. Then L and L′

are locally equivalent if M ′ = (U1 ⊗ U2)M(U3 ⊗ U4), for d× d unitary matrices Uj .

By expanding M as defined, we see the following:

M ′ = (U1 ⊗ U2)M(U3 ⊗ U4) =⇒ M ′ =
∑
i

U1AiU3 ⊗ U2BiU4

We can write this expansion in a way such that every Ai is a basis element of Hd⊗Hd. Then
U2, U4 correspond to multiplying each entry of the QOLS(d) by unitary transformations on
each side, while U1, U3 correspond to linear row and column operations. This is the natural
quantum analogue of equivalence of classical orthogonal Latin squares, allowing for possibly
complex linear combinations of rows and columns, rather than just permuting.

We can write classical orthogonal Latin squares as 2-unitary matrices also. For example,
take the following orthogonal Latin square of order 3 and its quantum equivalent:11 22 33

23 31 12
32 13 21

 =⇒

|11⟩ |22⟩ |33⟩
|23⟩ |31⟩ |12⟩
|32⟩ |13⟩ |21⟩
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By writing each entry as a 3× 3 block, we get the following permutation matrix:

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0


Note that every block is rank 1. Thus if a quantum orthogonal Latin square were equivalent
to a classical square, it would be possible to apply local unitary transformations as above
such that every block becomes rank 1. However, the following fact allows us to simplify the
task:

Lemma 7.2 Given a square matrix M , and unitary matrices U1, U2 of the same size,
rank(M) = rank(U1MU2).

In other words, applying unitary transformations on the blocks will not change their rank.
Recalling that the same unitary transformation is applied to every block, we find then that,
if at least one of the blocks has rank greater than 1, applying unitary transformations on
the B subsystem will not bring the solution any closer to being entirely classical. Thus a
classical equivalence would depend entirely on transformations on the A subsystem.

We provide the following result:

Theorem 7.3 Let M be a 9× 9 2-unitary matrix. If two or more of the 3× 3 blocks of M
are rank 1, M is equivalent to a classical solution.

Proof. Let n be the number of blocks assumed to be rank 1 in M , and label the remaining
blocks Ak. By performing unitary transformations on the B subsystem, we can always
assume that the rank 1 blocks are computational basis elements of C3×3. Here MΓB is
written as MΓ. We work with cases for choices of n:

• n = 9: M is a permutation matrix and thus is classical by definition.

• n = 8: As MR is unitary, the blocks of M are orthonormal, and so the ninth block is
forced to be rank 1.

• n = 7: As M and MΓ are unitary, a block A being in the same block row or block
column as a basis element |ij⟩ forces the i-th row and j-th column of A to be zero. As
every placement requires each Ak share either a block row or block column with two
basis elements, each of these Ak must be rank 1.

• n = 6: Again, every placement of six rank 1 blocks forces the other Ak to be rank 1.

• n = 5: Up to permutation, the only placement which doesn’t immediately collapse to
nine rank 1 blocks is below. By relabeling basis elements and permutation, without
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loss of generality, we can choose the following rank 1 elements:· · ·
· A1 A2

· A3 A4

 =⇒

|11⟩ |22⟩ |33⟩
|23⟩ A1 A2

|32⟩ A3 A4


By orthonormality of blocks, and sharing rows or columns with |22⟩ or |33⟩, and |23⟩:

A1 =

0 0 0
0 0 0
1 0 0

 , A2 =

0 1 0
0 0 0
0 0 0


Thus we have found six rank 1 blocks, so M is classical.

• n = 4: Any placement of four rank 1 blocks will collapse to either cases n = 5 or n = 6
above, as it must have either one full block row/column of rank 1 blocks, or 2 block
rows/columns of two rank 1 blocks.

• n = 3: We have three cases. Firstly, suppose each rank 1 block is in one row of M :

M =

|11⟩ |22⟩ |33⟩
A21 A22 A23

A31 A32 A33


By 2-unitarity, the blocks have the following structure:

A21 =

0 0 0
0 0 a
0 b 0

 A22 =

0 0 c
0 0 0
d 0 0

 A23 =

0 e 0
f 0 0
0 0 0


A31 =

0 0 0
0 0 g
0 h 0

 A32 =

0 0 k
0 0 0
l 0 0

 A33 =

0 m 0
n 0 0
0 0 0


By orthogonality of rows and orthogonality of blocks we get a list of equations, ex-
pressed here in matrix form:

a 0 0 0 0 f
0 b 0 d 0 0
0 0 c 0 e 0
a b 0 0 0 0
0 0 c d 0 0
0 0 0 0 e f





g

h

k

l
m
n

 =


0
0
0
0
0
0


Row-reducing gives the following solution set:

g

h

k

l
m
n

 = n


−f/a
f/b
f/c
−f/d
−f/e
1
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Also, by normality of rows, columns and blocks:

|a|2 + |f |2 = 1

|a|2 + |g|2 = 1

|a|2 + |b|2 = 1

=⇒ |f |2 = |g|2 = |b|2

Applying this to all rows, columns and blocks, we get the following:

|a|2 = |d|2 = |e|2 = |h|2 = |k|2 = |n|2

|b|2 = |c|2 = |f |2 = |g|2 = |l|2 = |m|2

Thus there are only two distinct moduli over all of the constants. They may still have
distinct complex phases however, so we relabel them, for α, β ∈ R:

a 7→ αeia, b 7→ βeib . . .

We then have the following relation between A21 and A31:

g = −nf/a
7→ −αeinβe−if/αe−ia

= −βei(n−f+a)

Thus the A subsystem row operation R2 7→ βR2 +αei(a−g)R3 results in A21 and thus
A31 being rank 1. Since we have now found five rank 1 blocks, we find that M is
classical.

Secondly, notice that if only two blocks are in one row/column, with the remaining
block in another row/column, we immediately have a fourth rank 1 block, and so M
is classical.

Finally, suppose that the rank 1 blocks are on the block diagonal of M . Then the
rank 1 blocks |ab⟩, |cd⟩, |ef⟩ must have a = c = e or b = d = f ; otherwise no solutions
exist. Assume M to be the first choice, as the second corresponds to MΓ.|11⟩ A12 A13

A22 |21⟩ A23

A31 A32 |31⟩


By 2-unitarity, we have the following structure:

A12 =

0 0 0
0 0 a
0 0 b

 A13 =

0 0 0
0 c 0
0 d 0

 A21 =

0 0 0
0 0 e
0 0 f


A23 =

0 0 0
g 0 0
h 0 0

 A31 =

0 0 0
0 k 0
0 l 0

 A32 =

 0 0 0
m 0 0
n 0 0
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which gives us the following list of equations by orthonormality:
a b 0 0 0 0
0 0 c d 0 0
0 0 0 0 g h
0 0 0 0 a b
g h 0 0 0 0

0 0 h g 0 0





e

f

k

l
m
n

 =


0
0
0
0
0
0


However, row-reducing shows that this has no non-zero solutions. Thus this case can
not result in a non-classical example either.

• n = 2: Firstly, notice that if both blocks were in the same row/column, it would
immediately result in a third block, which is classical as above. So assume that both
blocks are along the block diagonal again.|11⟩ A12 A13

A22 |21⟩ A23

A31 A32 A33


But then we have the following structure for A13, A23, A33:

A21 =

0 0 0
0 · ·
0 · ·

 A23 =

0 · ·
0 0 0
0 · ·

 A33 =

0 · ·
0 · ·
· · ·


But notice that the first columns of all of these blocks make up one column in M , so
by normality, A33 must be rank 1. Thus we have found a third rank 1 block, and so
M is classical.

This shows that a genuinely quantum orthogonal Latin square would have to consist of at
most one rank 1 entry, which may reduce the area of search for future study.

8 Computational Search

We conclude with a brief section on computational methods for finding quantum orthogonal
Latin squares. Using the map MΓR given in section 6, we were able to find numerical ex-
amples of 9×9 2-unitary matrices using Python. The algorithm used a randomly generated
unitary seed matrix. All of the examples generated consisted of nine rank 3 blocks, and sat-
isfied the conditions of 2-unitarity up to computational precision. However, we were unable
to find an analytical form of these matrices as in the case of the 6× 6 quantum orthogonal
Latin square. Inputting a seed with known analytical form, or with many zeroes, did not
help with producing a 2-unitary matrix of simpler analytical form, due to the numerical
technique of the computational polar decomposition. In contrast with the QOLS(6), the
order 3 examples generated elements all with distinct magnitudes. Furthermore, the classi-
cal equivalence of these matrices was not tested. So while the algorithm produced numerical
2-unitary matrices, it is inconclusive as to whether these examples have a useful analytical
form that can be claimed as non-classical.
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9 Conclusion

The result of Rather et al. has opened new quantum-related possibilities to the many
applications of combinatorial objects, specifically in the 6 × 6 case, and has produced new
quantum error-correcting codes. It has also highlighted the question of whether these objects
exist for other orders. This work begins to understand the complexity of properties of
genuinely quantum orthogonal Latin squares even for low orders, and reduces the search
area for examples of these objects by putting a restraint on the rank of the elements of the
array. Furthermore, it was found possible to generate numerical examples of QOLS(3) of
maximum element-wise rank using an existing algorithm, putting the focus of further study
on techniques of checking classical equivalence. We conclude with some questions for further
study:

• Does the existence of one rank 1 block in a 2-unitaryM result in classical equivalence?
In other words, can we extend the proof of theorem 7.3 to include n = 1? Techniques
similar to the n = 3 cases were attempted, however assuming only one rank 1 block
results in much fewer known zeroes. As a result of this, the number of equations
increases by a large amount, and we do not get the case of only two distinct moduli.

• Which 3-dimensional subspaces of 3× 3 complex matrices contain a matrix of rank 1?
Having a block row or column consisting of any basis of such a subspace would mean
that there is always a unitary transformation resulting in a rank 1 element in that
block row or column. This question, along with the previous one, would give further
requirements for a genuinely quantum object. However, it is possible to construct a
basis such that no linear combination is rank 1, so it is not every subspace.

• M. Ziman, 2001 [20] states eigenvalues are invariant under local unitary operations,
and gives a condition for local equivalence based on the eigenvalues of the reduced
density matrices of two states. Generally, can properties of the eigenvalues/vectors of
2-unitary matrices provide conditions for equivalence of QOLS(d)?
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