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The Cauchy-Schwarz Inequality:

For any real numbers

a1, a2, . . . , an and b1, b2, . . . , bn

we have

(a21+ a22+ · · ·+ a2n)(b
2
1+ b22+ · · ·+ b2n) ≥ (a1b1+ a2b2+ . . . anbn)

2

with equality if and only if
a1
b1

=
a2
b2

= · · · = an
bn
.
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Proof. Consider the quantity

F (x) = (a1x−b1)
2+(a2x−b2)

2+· · ·+(anx−bn)
2 ≥ 0 for all x ∈ R.

Expanding the brackets we have

F (x) = (a21+a
2
2+· · ·+a2n)x2−2(a1b2+a2b2+. . . anbn)x+(b

2
1+b

2
2+· · ·+b2n),

that is,

F (x) = Ax2 − 2Bx + C ≥ 0 for all x ∈ R,

where
A = a21 + a22 + · · · + a2n,

B = a1b2 + a2b2 + . . . anbn,

C = b21 + b22 + · · · + b2n.

This implies that (2B)2− 4AC ≤ 0 which yields AC ≥ B2. Hence

(a21+ a22+ · · ·+ a2n)(b
2
1+ b22+ · · ·+ b2n) ≥ (a1b2+ a2b2+ . . . anbn)

2.

The equality holds when there exists x ∈ R such that F (x) = 0 so

a1x− b1 = a2x− b2 = · · · = anx− bn = 0,

which implies x =
a1
b1

=
a2
b2

= · · · = an
bn
.
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Problem 1. Prove that for any real numbers a1, a2, . . . , an we

have

n(a21 + a22 + · · · + a2n) ≥ (a1 + a2 + . . . an)
2.

Solution: Apply Cauchy-Schwarz inequality with b1 = b2 = · · · =

bn = 1.
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Problem 2. (Stanford Maths Tournament 2022)

Let x, y, z be real numbers such that x2 + 2y2 + 3z2 = 96. Find

the maximum and the minimum of x + 2y + 3z.

Solution: By the Cauchy-Schwarz inequality:

(a21 + a22 + a23)(b
2
1 + b22 + b23) ≥ (a1b1 + a2b2 + a3b3)

2

with equality if and only if
a1
b1

=
a2
b2

=
a3
b3
. We ask ourselves how to

apply the above inequality so as to get

( )(x2 + 2y2 + 3z2) ≥ (x + 2y + 3z)2.

We identify

(1 + 2 + 3)(x2 + 2y2 + 3z2) ≥ (x + 2y + 3z)2.

Hence

6× 96 ≥ (x + 2y + 3z)2 =⇒ (x + 2y + 3z)2 ≤ 242

Hence

|x + 2y + 3z)| ≤ 24 =⇒ −24 ≤ x + 2y + 3z ≤ 24.

The equality holds if

x2

1
=

2y2

2
=

3z2

3
=⇒ x2 = y2 = z2 =⇒ |x| = |y| = |z| = 4.

The maximum of x + 2y + 3z is 24 and occurs for x = y = z = 4.

The minimum of x+2y+3z is -24 and occurs for x = y = z = −4.
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Problem 3. (Dublin Area Selection Test 2015)

Let x, y, z, w > 0 and suppose that xyzw = 16. Show that

x2

x + y
+

y2

y + z
+

z2

z + w
+

w2

w + x
≥ 4

with equality only when x = y = z = w = 2.

Solution: The Cauchy inequality gives((
x√
x + y

)2

+

(
y√
y + z

)2

+

(
z√

z + w

)2

+

(
w√
w + x

)2
)

×(
(
√
x + y)2 + (

√
y + z)2 + (

√
z + w)2 + (

√
w + x)2

)
≥ (x + y + z + w)2,

with equality only when x = y = z = w. This simplifies to:(
x2

x + y
+

y2

y + z
+

z2

z + w
+

w2

w + x

)
·2(x+y+z+w) ≥ (x+y+z+w)2

and hence(
x2

x + y
+

y2

y + z
+

z2

z + w
+

w2

w + x

)
≥ x + y + z + w

2
.

Applying the AM-GM to the right-hand term gives(
x2

x + y
+

y2

y + z
+

z2

z + w
+

w2

w + x

)
≥ 2 4

√
xyzw

with equality only when x = y = z = w. Since xyzw = 16, the

result follows at once.
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Problem 3. Prove that for any real numbers a1, a2, . . . , an and for

any positive numbers x1, x2, . . . , xn we have

a21
x1

+
a22
x2

+ · · · + a2n
xn

≥ (a1 + a2 + · · · + an)
2

x1 + x2 + · · · + xn
.

Solution: Apply Cauchy-Schwarz inequality for a1, a2, . . . , an and

b1 =
√
x1, b2 =

√
x2, . . . , bn =

√
xn.

Note. We could also use Induction Principle over the number n ≥ 2

to prove this result.
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Problem 4. (IMO 1995)

Let a, b, c be three postive numbers such that abc = 1.

Prove that

1

a3(b + c)
+

1

b3(c + a)
+

1

c3(a + b)
≥ 3

2
.

Solution: Denote x = 1
a, y = 1

b and z = 1
c .

Since abc = 1 we have xyz = 1 and our inequality to prove becomes

1

1
x3

(
1
y +

1
z

) +
1

1
y3

(
1
z +

1
x

) +
1

1
z3

(
1
x +

1
y

) ≥ 3

2
,

That is (because xyz = 1)

x2

y + z
+

y2

z + x
+

z2

x + y
≥ 3

2
. (1)

Apply Cauchy-Schwarz inequality for

a1 =
x√
y + z

, a2 =
y√
z + x

, a3 =
z√
x + y

b1 =
√
y + z, b2 =

√
z + x, z =

√
x + y.

Thus,

(a21 + a22 + a23)(b
2
1 + b22 + b23) ≥ (a1b1 + a2b2 + a3b3)

2

becomes( x2

y + z
+

y2

z + x
+

z2

x + y

)
· 2(x + y + z) ≥ 3(x + y + z).

which simplifies to (1).
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Problem 5. (Iran Math Olympiad 1998)

Let x, y, z > 1 be such that 1
x +

1
y +

1
z = 2.

Prove that

√
x + y + z ≥

√
x− 1 +

√
y − 1 +

√
z − 1.

Solution: Note that
x− 1

x
+

y − 1

y
+

z − 1

z
= 1.

Apply Cauchy-Schwarz inequality for

a1 =

√
x− 1

x
, a2 =

√
y − 1

y
, a3 =

√
z − 1

z

b1 =
√
x, b2 =

√
y, b3 =

√
z.

Hence

(x+y+z)
(x− 1

x
+
y − 1

y
+
z − 1

z

)
≥
(√

x− 1+
√

y − 1+
√
z − 1

)2
,

so
√
x + y + z ≥

√
x− 1 +

√
y − 1 +

√
z − 1.
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Problem 6.

Let a, b, c > 0 be such that

1

a + b + 1
+

1

b + c + 1
+

1

c + a + 1
≥ 1.

Prove that

a + b + c ≥ ab + bc + ca.Solution: Apply Cauchy-Schwarz inequality for

a1 =
√
a, a2 =

√
b, a3 = 1

b1 =
√
a, b2 =

√
c, b3 = c.

We find

(a + b + 1)(a + b + c2) ≥ (a + b + c)2

that is, 1

a + b + 1
≤ a + b + c2

(a + b + c)2
.

Similarly,

1

b + c + 1
≤ a2 + b + c

(a + b + c)2
and

1

c + a + 1
≤ a + b2 + c

(a + b + c)2
.

Adding up these last three inequalities and using our hypothesis we

find

1 ≤ 1

a + b + 1
+

1

b + c + 1
+

1

c + a + 1
≤ a2 + b2 + c2 + 2(a + b + c)

(a + b + c)2
,

so

a2 + b2 + c2 + 2(a + b + c) ≥ (a + b + c)2,

which yields a + b + c ≥ ab + bc + ca.
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Problem 7. (German Math Olympiad)

Let n ≥ 2 and x1, x2, . . . , xn be positive numbers with sum S.

Prove that

x1
S − x1

+
x2

S − x2
+ · · · + xn

S − xn
≥ n

n− 1
.

Solution: Apply Cauchy-Schwarz inequality for

a1 =

√
x1

S − x1
, a2 =

√
x2

S − x2
, . . . , an =

√
xn

S − xn

b1 =
√

x1(S − x1), b2 =
√

x2(S − x2) , . . . , bn =
√
xn(S − xn).

Note that

a21 + a22 + · · · + a2n =
x1

S − x1
+

x2
S − x2

+ · · · + xn
S − xn

b21 + b22 + · · · + b2n = x1(S − x1) + x2(S − x2) + · · · + xn(S − xn)

= S(x1 + x2 + · · · + xn)− (x21 + x22 + · · · + x2n)

= S2 − T,

where T = x21 + x22 + · · · + x2n. Also, a1b1 + a2b2 + . . . anbn = S

Thus, by Cauchy-Schwarz inequality we find

(S2 − T )
( x1
S − x1

+
x2

S − x2
+ · · · + xn

S − xn

)
≥ S2

Hence

x1
S − x1

+
x2

S − x2
+ · · · + xn

S − xn
≥ S2

S2 − T
.
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It remains to prove that
S2

S2 − T
≥ n

n− 1
or even

nT ≥ S2 ⇐⇒ n(x21 + x22 + · · · + x2n) ≥ (x1 + x2 + · · · + xn)
2.

This last inequality follows again from the Cauchy-Schwarz ineq

applied to

a1 = x1, a2 = x2, . . . , an = xn

b1 = b2 = · · · = bn = 1.


