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What is Combinatorics?

Combinatorics is involved with:

• The enumeration (counting) of specified structures, some-

times referred to as arrangements or configurations, associ-

ated with finite systems,

• The existence of such structures that satisfy certain given

criteria,

• The construction of these structures, perhaps in many ways,

and

• Optimisation, finding the ‘best’ structure or solution among

several possibilities, be it the largest, smallest or satisfying

some other optimality criterion.
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Thinking about Possibilities

Question: (BMO 17/01/2001 Q3) A tetromino is a figure made

up of four unit squares connected by common edges.

(1) If we do not distinguish between possible rotations of a tetro-

mino within its plane, prove there are seven distinct tetromi-

noes.

(2) Prove or disprove the statement: It is possible to pack all

seven distinct tetrominoes into a 4×7 rectangle without over-

lapping.

Hint: Consider special cases according to the longest straight line

of squares.

Hint: Consider colouring the rectangle in black and white as a

chessboard
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Permutations and Combinations:

A permutation of the the numbers 1, 2, . . . n is a list of the same

numbers, without repeats, in some order.

The number of permutations is:

n! = 1× 2× . . .× n

Proof: To fill the first place in the list, we can choose from any of

the n numbers.

To fill the second place, we can choose any of the remaining n− 1

numbers, giving n(n− 1) choices for the first two places.

To fill the third place, we can choose any of the n − 2 numbers

not yet allocated, giving n(n− 1)(n− 2) choices for the first three

places.

An so the pattern continues until there is only one number left to

fill the last place. The total number of choices we have made is

n(n− 1)(n− 2) . . . 1 which is n!.

By convention, 0! = 1. We do not define n! for n < 0.
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Factors of n!

Problem: The number 30! ends in how many zeroes? (in decimal

notation)

Solution: Suppose 30! ends in k zeros. Then 10k | 30! but 10k+1 -

30!.

Equivalently, 2k | 30! and 5k | 30! but either 2k+1 - 30! or 5k+1 - 30!.

So let us count what power of 5 divides 30!. The product contains

6 multiples of 5 (ie 5, 10, 15, 20, 25, 30) but 25 is also multiple of

52. Thus, counting the powers in the products, 57 | 30! but 58 - 30!.

It is easy to see that 215 | 30! so the power of 2 is not a constraint

in determining what power of 10 divides 30!.

And therefore, based on the powers of 5, we deduce 107 | 30! and

108 - 30!. It follows that k = 7.
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Permutations with Duplicates

Problem: How many permutations are there of the letters in

‘MARY ROBINSON’?

Solution: If all the letters were distinct, there would be 12! =

479,001,600 permutations.

We note ‘MARY ROBINSON’ has 2 letter R’s, 2 letter O’s and 2

letter N’s. If for each pair of duplicate letters we colour one red and

one blue, then we still have 12! permutations.

If we do not distinguish red and blue letters, then the 12! counts

each permutation 8 = 2!× 2!× 2! times.

Therefore, the number of permutations of ‘MARY ROBINSON’ is:

12!

2!× 2!× 2!
= 59, 875, 200

Remark: BRAINY MORONS.
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Problem: Roisin, Seamus and Terry book seats on Ryanair flight

on which seating is allocated randomly. Ryanair uses Boeing 737-

800 aircraft. On the left of the plane there are 32 rows of three

seats each, while on the right there are 31 rows of three seats each.

What is the probability that all three friends are sat together in the

same row, on the same side?
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Solution: We calculate probabilities as proportions of permutations

satisfying a given condition.

Roisin can be allocated any of the 189 available seats. There are

two other seats in the same row. Let’s paint one red and one green.

All the others are blue.

There is a 1-in-188 chance that Seamus us allocated the red seat.

Following this, there is a 1-in-187 chance that Terry is allocated the

green seat, that is 1-in-35,156 that Seamus gets the red seat and

Terry the green seat.

But the friends would also be together if Seamus gets the green seat

and Terry gets the red seat.

So the total probability that Roisin, Seamus and Terry sit together

is:
1

35, 156
+

1

35, 156
=

1

17, 578
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Problem: (BMO 12/01/2000, Q5). The seven dwarfs decide to

form four teams to compete in the Millenium Quiz. Of course, the

sizes of the teams will not all be equal. For instance, one team might

consist of Doc alone, one of Dopey alone, one of Sleepy, Happy and

Grumpy, and one of Bashful and Sneezy. In how many ways can the

four teams be made up? (The order of the teams or of the dwarfs

within the teams does not matter, but each dwarf must be in exactly

one of the teams).

Hint: Label the teams red, yellow, green, blue. First count how

many ways we can make up these four teams when some of the

teams are empty.

The original problem required non-empty teams so work out how

many of those combinations have one or more empty teams.

Then divide the answer by 24 because we’re told the order of teams

does not matter.
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Number of Combinations

Suppose we have a set of n distinct objects, with n ≥ 2.

How many ways are there of choosing a subset of size r, for 1 ≤

r ≤ n− 1?

We can follow the same logic as constructing the permutations:

• Place the elements of the subset in some order.

• The first element of the subset can be chosen in n ways.

• The second element of the subset can be chosen n− 1 ways,

so there are n(n− 1) choices for the first two elements.

• ... and so on, until we have n − r + 1 choices for the rth

element of the subset. The number of ways of doing this is:

n(n− 1) . . . (n− r + 1) =
n(n− 1) . . . 2.1

(n− r)(n− r − 1) . . . 2.1
=

n!

(n− r)!
• But there were r! ways of choosing the order of the subset

elements, so we have counted each subset r! times.

• The number of distinct subsets, not distinguishing different

orders, is (
n

r

)
≡ n!

r!(n− r)!
This is called a binomial coefficient.
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Pascal’s Triangle. We can arrange binomial coefficients in a tri-

angular array: (
0
0

)(
1
0

) (
1
1

)(
2
0

) (
2
1

) (
2
2

)(
3
0

) (
3
1

) (
3
2

) (
3
3

)(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
Writing the numbers in, and adding a couple more rows, we have

the triangle:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1
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At the boundaries we have:(
n

0

)
=

(
n

n

)
= 1

In the interior of Pascal’s triangle, each coefficient is the sum of the

two elements above it:(
n− 1

r − 1

)
+

(
n− 1

r

)
=

(n− 1)!

(r − 1)!(n− r)!
+

(n− 1)!

r!(n− r − 1)!

=
r(n− 1)!

r!(n− r)!
+

(n− r)(n− 1)!

r!(n− r)!

=
(r + n− r)(n− 1)!

r!(n− r)!

=

(
n

r

)
The recurrence relation also has a combinatorial interpretation. Sup-

pose a set of n balls has n− 1 green balls and one red ball.

The subsets of size r consist of:

• Subsets containing the red ball. This involves choosing r− 1

more balls out of the green balls, which can be done in
(
n−1
r−1
)

ways.

• Subsets not containing the red ball, of which there are
(
n−1
r

)
.
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Problem: (BMO 01/12/2006 Q3) The number 916238457 is an

example of a nine-digit number which contains each of the digits 1

to 9 exactly once. It also has the property that the digits 1 to 5

occur in their natural order, while the digits 1 to 6 do not. How

many such numbers are there?

Solution 1: Let us first consider the problem ignoring the constraint

on the number 6, so we count the numbers for which 1,2,3,4,5 are

in their natural order.

We have 9 digits to place in 9 spaces. Let us place them in decreasing

order:

There are 9 spaces into which we can place the digit 9. There are 8

spaces into which we can place the digit 8. (because one is already

full). Theretal number of ways is 9× 8× 7× 6 = 3024.

Now consider instead a similar problem with the constraint that the

digits 1,2,3,4,5,6 be in natural order. By the same logic as the

previous case, the number of ways is 9× 8× 7 = 504.

Finally, for every case where 1,2,3,4,5 is in natural order (3024 are 7

spaces into which we can place the digit 7. There are 6 spaces into

which we can place the digit 6. There then remain 5 spaces into

which we can place the digits 1,2,3,4,5. We are told these must be

in increasing order to there is only one way of doing this. The to),
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either 1,2,3,4,5,6 are in natural order (504) or they are not (2520

cases). The answer to the problem is then 2520.

Solution 2: We start with the digits 1,2,3,4,5 and insert the re-

maining digits into the spaces between them.

To place the digit 6, there are 6 spaces around 1,2,3,4,5; that is,

one at each end and four between consecutive digits. However, as

1,2,3,4,5,6 cannot be in natural order, there are only 5 of these

spaces into which we can put the number 6.

For placing the number 7, we already placed 6 digits, so there are

now 7 spaces from which to choose.

For placing the number 8, we already placed 7 digits so there are

now 8 spaces from which to choose.

For placing the number 9, we already placed 8 digits, so there are

now 9 spaces from which to choose.

Therefore, multiplying the choice at each stage, the total number

of ways is 5× 7× 8 × 9 = 2520.
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Problem (IMO 1972, Q3): Let m and n be arbitrary non-

negative integers. Show that:

(2m)!(2n)!

m!n!(m + n)!

is an integer.

Solution. Let us write:

f (m,n) =
(2m)!(2n)!

m!n!(m + n)!

If n = 0 then

f (m, 0) =
(2m)!

(m!)2

This is a binomial coefficient so is an integer.
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For the remaining cases n ≥ 1, we see that the expression for

f (m,n) resembles a binomial coefficient so we try to guess a corre-

sponding recurrence relation. We note that:

f (m,n− 1) =
(2m)!(2n− 2)!

m!(n− 1)!(m + n− 1)!

= (m + n)
(2m)!(2n− 2)!

m!(n− 1)!(m + n)!

f (m + 1, n− 1) =
(2m + 2)!(2n− 2)!

(m + 1)!(n− 1)!(m + n)!

= 2(2m + 1)
(2m)!(2n− 2)!

(m)!(n− 1)!(m + n)!

f (m,n) =
(2m)!(2n)!

m!n!(m + n)!

= 2(2n− 1)
(2m)!(2n− 2)!

(m)!(n− 1)!(m + n)!

From this, as 2(2m + 1) + 2(2n− 1) = 4(m + n), we see that:

f (m + 1, n− 1) + f (m,n) = 4f (m,n− 1)

Inductively on n we may assume f (m+1, n−1) ∈ Z and f (m,n−

1) ∈ Z, from which it follows that f (m,n) ∈ Z, which is what we

had to prove.


