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The Pigeonhole Principle: If n + 1 objects are placed into n

boxes, then some box contains at least 2 objects.

Proof: Suppose that each box contains at most one object. Then
there must be at most n objects in all. But this is false, since there

are n + 1 objects. Thus some box must contain at least 2 objects.

This combinatorial principle was first used explicitly by Dirichlet
(1805-1859). Even though it is extremely simple, it can be used
in many situations, and often in unexpected situations. Note that
the principle asserts the existence of a box with more than one ob-

ject, but does not tell us anything about which box this might be.

In problem solving, the difficulty of applying the pigeonhole principle
consists in figuring out which are the ‘objects’ and which are the

‘boxes’.
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Problem 1. Prove that among 13 people, there are two born in
the same month.

Solution. There are n = 12 months (‘boxes’), but we have n+1 =
13 people (‘objects'). Therefore two people were born in the same

month.

Problem 2. Prove that if we are given 5 points in the plane with
integer coordinates, we can choose two of them so that the midpoint
also has integer coordinates.

Solution. Note that the midpoint of (z;,y) and (z, w) is (52, £22).

We can label the coordinates of the points as being either (even,
even), (even, odd), (odd, even), or (odd, odd). By the pigeonhole
principle, two of the points (say P = (x,y) and @ = (z,w)) have

the same label.
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But then x + 2z and y + w are both even, so the midpoint of P()

has integer coordinates.

Exercise 1. How many people do you need to be able to say with

certainty that two have the same birthday?



6

Problem 3. Seven points lie inside a hexagon of side length 1.

Show that two of the points whose distance apart is at most 1.

Solution. Partition the hexagon into six parts as shown below.
Now there are six parts (boxes), into which seven points (objects)
are distributed. So some part contains at least 2 points. These

points must be within distance 1 of each other.

Exercise 2. Six points lie inside a rectangle of dimensions 3 x 4.

Show that two of the points are at most a distance /5 apart.
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Problem 4. Show that given a set S of 10 positive integers each
having two digits, there are two disjoint nonempty subsets A and B
of S that have the same sum of elements. [Note: “disjoint” means

having no elements in common]

Solution. The two-digit numbers must lie between 10 and 99 in-
clusive. The possible sums range from 10 to 90 +91 + --- + 99 =
10-90+ (1+24---49) =900+ (9-10)/2 = 945. So there are

936 possible sums.

On the other hand, there are 2! — 1 = 1023 nonempty subsets of

the 10 numbers.

Since there are 1023 nonempty subsets and 936 possible sums, by
the pigeonhole principle, there must be two distinct subsets A and

B with the same sum.

If A and B are disjoint, then we are finished. If not, we can simply
remove the common elements from sets A and B and we produce
two disjoint subsets A’ = A — (AN B)and B =B — (AN B)

having the same sum.

Note that the new subsets A" and B’ are also nonempty, because if
A=ANBor B=ANDB, then one of A and B is a subset of the

other, but this is not possible since they have the same sum.
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Problem 5. Let n be a positive integer that is not divisible by 2 or
5. Prove that there is a multiple of n whose decimal representation

consists entirely of ones.

Solution. Make a list of n numbers 1, 11, 111, 1111, ..., 11111...111,
where the final number in the list has n ones. Now, consider the

remainders when each of these numbers is divided by n.
If one of these remainders is 0, then we are finished.

If this does not happen, then we will have n numbers but only n — 1
possible remainders. It follows by the pigeonhole principle that two
of the numbers in our list give the same remainder when divided by

n.

But this means that their difference, which is a number of the form
m = 1111...10000...0 is divisible by n. We can get rid of the
trailing zeros by dividing m by 10%, where & is the number of trailing
zeros, to get a number ¢ which consists entirely of ones. We will

now show that ¢ is the number we are looking for.

Since n divides into m = 10%q = 2¥5¥¢, but n is not divisible by 2

or 5, n must divide into q.
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Problem 6. Suppose we have 27 distinct odd positive integers all
less than 100. [‘Distinct’ means that no two numbers are equall.
Show that there is a pair of numbers whose sum is 102. What if

there were only 26 odd positive integers?

Solution. There are 50 positive odd numbers less than 100:
{1,3,5,---,99} .
We can partition these into subsets as follows:

{1},{3,99}, {5,97},{7,95}, {9,93}, - - - , {49, 53}, {51}.

Note that the sets of size 2 have elements which add to 102. There
are 26 subsets (boxes) and 27 odd numbers (objects). So at least
two numbers (in fact, exactly two numbers) must lie in the same

subset, and therefore these add to 102.
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Note on the pigeonhole principle: What if n objects are placed
in 1 boxes? Well, then we cannot assert that some box contains at
least 2 objects. But note that the only way this can be avoided is if

all of the boxes contain exactly one object.

o] [of [of [©

The “Generalized” Pigeonhole Principle: If kn + 1 objects

are placed in n boxes, then some box contains at least &£+ 1 objects.

Proof: Suppose that each box contains at most k objects. Then
there must be at most kn objects in all. But this is false, since
there are kn + 1 objects. Thus some box must contain at least

k + 1 objects.

Problem 7. Show that in a group of 15 people, at least three were

born on the same day of the week.

Solution. We have 15 = 2(7)+ 1 people (objects), and 7 weekdays
(boxes). Here k = 2, n = 7. Therefore three people were born in

the same day of the week.
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Problem 8. 41 rooks are placed on a 10 x 10 chessboard. Prove
that you can choose 5 of them that do not attack each other. [Note:
we say that two rooks “attack each other” if they are both in the

same row or column of the chessboard.]

“Clunky but Nice” Solution: First, there are 10 rows of the
chessboard, and we are placing 41 rooks. Since 41 =4 - 10+ 1, by
the pigeonhole principle there must be one row among these 10 that

contains at least 5 rooks. Call this row R;.

Now, let's forget about row R; for the moment and consider the
other 9 rows. On the 9 rows, we must place at least 31 rooks. Since
31 = 3 -9+ 4, by the pigeonhole principle there must be one row

among these 9 that contains at least 4 rooks. Call this row Rs.

Now, let's forget about rows R; and Rs and consider the other
8 rows. On the 8 rows, we must place at least 21 rooks. Since
21 = 2 -8+ 5, by the pigeonhole principle there must be one row

among these 8 that contains at least 3 rooks. Call this row Rj.

Now, let's forget about rows R, Ry and R3, and consider the other
7 rows. On the 7 rows, we must place at least 11 rooks. By the
pigeonhole principle there must be one row among these 7 that

contains at least 2 rooks. Call this row Rjy.
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Finally, we observe that even if rows R;, Ry, R3 and R, are com-
pletely filled, we still have one more rook to place. So there must
be one row among the remaining 6 that contains at least 1 rook.

Call this row Rs.

Now, we work backwards to identify the 5 non-attacking rooks that

we want. Start by picking the rook in row Rj (call this X7).

Next, consider row R,. There are at least 2 rooks in this row, and
both of them cannot attack rook X;. So we choose the one that is
not attacking X7 (let's call this rook X5). If neither rook is attacking

X1, we have a free choice.

Next, consider row R3. There are at least 3 rooks in this row, and
so at least one of these three must be such that it does not attack

rooks X7 or X5. So we choose this rook and call it Xj5.

Next, consider row R5. There are at least 4 rooks in this row, and
so at least one of these four must be such that it does not attack

rooks X7, X5 or X3. So we choose this rook and call it X}.

Finally, consider row Ry. There are at least 5 rooks in this row, and
so at least one of these five must be such that it does not attack

rooks X1, Xo, X3 or X,. So we choose this rook and call it X5.
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By using this procedure, we have identified the required 5 non-

attacking rooks (X1, Xo, X3, X4, X5) and the result is proved.

“Slick” Solution: Label the 100 squares of the chessboard with

the numbers from 1 to 10 as follows:

012 3|4 |56 |7|8|°9

Each rook can also be considered to have a label, which is simply
the label of the square on which it is placed. Now we have 41 rooks
but only 10 different labels. So, by the pigeonhole principle (since
41 =4-10 + 1) there must be 5 rooks all of which have the same
label. But it is easy to see that these 5 rooks do not attack each

other, as they lie on a “diagonal” of the board.
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Note on the generalized pigeonhole principle: What if kn
objects are placed in n boxes? This means that we cannot assert
that some box contains at least k£ 4+ 1 objects. But note that the

only way this can be avoided is if all of the boxes contain exactly k

objects.

QOO
QOO
QOO
QOO
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Exercise 3. How many people need to be present in order to be

able to assert with certainty that three have the same birthday?

Exercise 4. Seven boys and five girls are seated (in an equally
spaced fashion) around a table with 12 chairs. Prove that there are

two boys sitting opposite each other.

Exercise 5. Each square of a 3 x 7 board is coloured black or
white. Prove that, for any such colouring, the board contains a

subrectangle whose four corners are the same colour.

Exercise 6. 342 points are selected inside a cube of side length 7.
Can you place a small cube with side length 1 inside the big cube
such that the interior of the small cube does not contain one of the

selected points?

Exercise 7. Prove that however one selects 55 distinct integers
1 <21 < 29 < 23 < ... <255 < 100, there will be a pair that
differ by 9, a pair that differ by 10, a pair that differ by 12, and a
pair that differ by 13. Show also that (surprisingly!) there need not

be a pair of numbers that differ by 11.
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Exercise 8. The digital sum of a number is defined as the sum of its

decimal digits. For example, the digital sum of 386 is 34+8+6 = 17.

(a): 35 two-digit numbers are selected. Prove that there are
three of them with the same digital sum.
(b): 168 three-digit numbers are selected. Prove that it is pos-

sible to find eight of them of them with the same digital sum.

Note that in the above, the first digit of a number is not allowed to

be 0.

Exercise 9. In a meeting, there are representatives of n countries
(n > 2) sitting at a round table. It is observed that for any two
representatives of the same country, their neighbours to their right
cannot belong to the same country. Find the largest possible number

of representatives at the meeting.

Exercise 10. Given a regular 2007-gon, find the smallest positive
integer k such that among any k vertices of the polygon there are
4 with the property that the convex quadrilateral they form shares

3 sides with the polygon.



