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Abstract

We study the Oriented Swap Process, and propose two conjectures relating to its
absorbing time. The first conjecture states that the absorbing time has fluctuations
of order n1/3, where n is the size of the system, and converges to the GOE Tracy-
Widom distribution. The second conjecture, which would be a first fundamental step
to prove the first one, relates the absorbing time to a certain line-to-line last-passage
percolation model. In support of our conjectures we present numerical evidence and
basic computations.

1 The Oriented Swap Process

The Oriented Swap Process (OSP), introduced by Angel, Holroyd and Romik [1] is a
continuous-time Markov process with state-space Sn, i.e. the symmetric group on n ob-
jects. The initial configuration of the model is the identity permutation, η0 = (1, . . . , n).
We will call each i, 1 ≤ i ≤ n, the i-th particle. Each particle has a clock that rings at
random times; each time interval between two consecutive rings of a given clock is an
exponential random variable of rate 1, and all of these variables are independent. Every
time a particle’s clock rings, it will attempt to swap position with the particle to its right.
If they are in increasing order, they swap, otherwise, they do not. For example, if the
clock of particle i rings first, then

(1, 2, . . . , i, i+ 1, . . . , n− 1, n)

swaps to

(1, 2, . . . , i+ 1, i, . . . , n− 1, n).

Define ηt ∈ Sn to be the random configuration of the process at time t, and conversely
η−1t (k) to be the position of particle k at time t. The absorbing time or total finishing
time, βn∗ of the process is the time when the model reaches the unique absorbing state

(n, n− 1, . . . , 2, 1).

When this state is reached, no more swaps are possible. The finishing time, βn(k), of
particle k is the last time that it moves. Since particle k finishes in position n − k + 1,
we have that

βn(k) := sup
{
t > 0 : η−1t (k) 6= n− k + 1

}
.
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Figure 1: An example of the first three steps in the 4-th TASEP for n = 7.

The absorbing time is
βn∗ := max

k=1,...,n
βn(k).

In order to describe the OSP, Angel, Holroyd and Romik [1] used a mapping to the
Totally Asymmetric Simple Exclusion Process (TASEP). The TASEP on a finite interval

[1, n] := {1, 2, . . . , n} ⊂ Z is a continuous-time Markov process on {0, 1}[1,n]. The 1’s
represent ‘particles’ in this case, while the 0’s represent ‘holes’. Each particle is given a
clock, where the time interval between two consecutive rings is an exponential random
variable of rate 1. All of these variables are independent. When a particle’s clock ‘rings’,
it will attempt to ‘jump’ to the right, succeeding only if the position to the right is not
occupied. The particles cannot leave the interval [1, n], and eventually will reach their
absorbing state, of the form (0, . . . , 0, 1, . . . , 1).

The Oriented Swap Process can be mapped to a family of coupled TASEPs as follows.
For k ∈ [1, n], the k-th TASEP represents the positions of the first k particles in the
Oriented Swap Process at any time:

T
(k)
t (x) :=

{
1 if ηt(x) ≤ k,
0 if ηt(x) > k.

(1)

Since η0 = (1, . . . , n), the initial configuration of the k-th TASEP will be

1{i≤k}.

We can thus find the position of any particle k in the OSP using the k-th and (k − 1)-th
TASEPs:

(T
(k)
t − T (k−1)

t )(x) =

{
1 if ηt(x) = k,

0 otherwise.
(2)

See Figure 1 for a possible example of one of these TASEPs. We also define the absorb-
ing time of the k-th TASEP, V n(k), as the last time that the k-th TASEP will change
configuration:

V n(k) = inf{t > 0 : T
(k)
t = 1[n−k+1,n]}. (3)

We therefore have that
βn(k) = V n(k) ∨ V n(k − 1).
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It turns out that V n(k) can be expressed as a last-passage percolation time on an array
W of exponential waiting times, as follows. The Last-Passage Percolation (LPP) time,
T (a, b; c, d), on an array W = (wij)i,j∈Z can be defined as:

T (a, b; c, d) := max
π:(a,b)→(c,d)

∑
(i,j)∈π

wij ,

where π is any sequence π = ((i1, j1), . . . , (il, jl)) such that (i1, j1) = (a, b), (il, jl) = (c, d)
and (ik+1, jk+1) − (ik, jk) ∈ {(1, 0), (0, 1)} for all k = 1, . . . , l − 1. The length of π is
l = (d − b) + (c − a) + 1 i.e. the number of indices (i, j) in π. We can interpret π as a
nearest neighbour path in Z, that starts from (a, b), ends at (c, d), and moves only in the
‘positive’ directions (0, 1) and (1, 0) - it is therefore called ‘oriented’. It is well-known
[3, 4] that if all (wij)i,j∈Z are i.i.d Exp(1) random variables, then:

V n(k − 1)
d
= T (1, k; k − 1, n). (4)

2 Asymptotics of Finishing Times

Angel, Holroyd and Romik [1] proved laws of large numbers for the finishing times of
individual particles in the ‘bulk’, and for the absorbing time of the OSP.

Theorem 1 (Laws of Large Numbers [1]). Let (kn)n be a sequence of integers such that
kn
n → y ∈ (0, 1), as n → ∞. Define γy = 1 + 2

√
y(1− y). Then the following limits in

probability hold:

βn(k)

n

P−→ γy as n→∞,

βn∗
n

P−→ max
y∈(0,1)

γy = γ1/2 = 2 as n→∞.

This theorem describes the finishing times of fixed-ratio particles. For example, if y = 1
2 ,

then k would always be (one of) the middle particles (e.g. k = 50 or 51 when n = 100).
Moreover, this result tells us that the absorbing time is asymptotically equal to the
finishing time of the middle-most particle, that is γ1/2n = 2n. Angel, Holroyd and Romik
[1] also proved the following ‘central limit theorem’ for the finishing times of the fixed
ratio particles.

Theorem 2 (Limiting distribution of the finishing times [1]). The following convergence
in distribution holds:

βn(k)− γyn

γ
2
3
y (y(1− y))−

1
6n

1
3

=⇒ F2,

where γy is defined as in Theorem 1 and F2 is the Tracy-Widom GUE distribution.

Here, the GUE Tracy-Widom Distribution F2 is the limiting distribution of the scaled
maximum eigenvalue of the Gaussian Unitary Ensemble. This refers to Hermitian matri-
ces with independent complex Gaussian entries{

Aii = Xi for 1 ≤ i ≤ N,
Aij = Aji =

Yij+iZij√
2

for 1 ≤ i < j ≤ N,
(5)
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Figure 2: Tracy-Widom GUE distribution and scaled distribution of the finishing time of
the middle particle in the OSP, with 2,140 data points.

where Xi, Yij , Zij are independent standard real Gaussian variables. In Figure 2, we have
represented a histogram of the simulated finishing time of the middle particle, which, after
rescaling, matches the GUE Tracy-Widom distribution. Theorem 2 has been proven using
the coupling with TASEPs and LPPs, as explained in Section 1, along with a classical
result of Johansson, i.e. Theorem 1.6 in [4]:

Theorem 3 (Johansson [4]). Let T (1, 1;M,N) be the last-passage percolation time (see
Section 1) from (1, 1) to (M,N) on an array of Exp(1) independent random variables.
Then for γ ≥ 1, we have the following convergence in distribution:

T (1, 1; γn, n)− (1 +
√
γ)2n

γ−
1
6 (1 +

√
γ)

4
3n

1
3

=⇒ F2 as n→∞. (6)

As a consequence of the latter theorem, the absorbing times of both the k-th and (k−1)-
th TASEP, V n(k) and V n(k − 1), converge to the Tracy-Widom GUE distribution if
k
n → y as n → ∞. Angel, Holroyd and Romik deduced from this fact that also βn(k) =
V n(k) ∨ V n(k − 1) has the same distributional limit under the same scaling. However,
this method does not work to find the absorbing time βn∗ .
Indeed, Angel, Holroyd and Romik [1] stated an open question on the absorbing time βn∗ ,
which became the inspiration for this project. The following is an extract from Section 8
of [1]:

Limiting Distribution of the absorbing time. Theorem 1.6 gives the limiting
distribution of the fluctuations of the finishing times of individual particles.
However, the relation between finishing times of different particles is more
delicate and requires knowledge about the joint distribution of last-passage
percolation times. An interesting open problem would be to find sequences
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Figure 3: Tracy-Widom GOE Distribution and the scaled distribution of the absorbing
time with 1,725 data points.

of scaling constants (an)∞n , (bn)∞n and a distribution function F such that
the absorbing times of the oriented swap process satisfies the convergence in
distribution

an(βn∗ − 2n)− bn =⇒ F as n→∞.

The rest of this report is a discussion of an’s, bn’s and the nature of F . We will look to a
Last-Passage Percolation model that jointly describes all finishing times of the Oriented
Swap Process and, therefore, the absorbing time. This will be a first fundamental step to
address the open problem above.

3 Numerics for the Absorbing Time

Our numerical investigations into the fluctuations of the absorbing time showed that they
are of order n

1
3 . This arose from plotting log(σ) against log(n), where σ is the standard

deviation of the sample of finishing times, and n ∈ {128, 181, 256, 362}. The graph is
shown in Figure 4. The slope of this graph tends to 1

3 for sufficiently large n. Hence we
conclude that:

σ ∼ σ∗n
1
3 ,

where σ∗ is a constant as n → ∞. Note here that the value for σ∗ ≈ 1.575... is given by
ec, where c is the y-intercept of the line-of-best-fit in Figure 4. Remarkably, the numeric
value for σ∗ is less than the standard deviation

σ∗ ≈ 1.575... < lim
n→∞

σ(βn(n/2))

n1/3
= γ

2
3
y (y(1− y))−

1
6

∣∣∣
y= 1

2

·σ(F2) ≈ 1.804... ,
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Figure 4: log(σ) vs log(n), with 92,985 data points.

where σ(F2) ≈ 0.902... is the standard deviation of F2 (see Theorem 2). This means that
the distribution of the absorbing time is not a direct consequence of Theorem 2.

The order of the fluctuations suggests that the absorbing time is in the same universality
class as that of the individual finishing times i.e. the Kardar-Parisi-Zhang Universality
Class [3]. Therefore, we also expect the limiting distribution of the scaled absorbing time
to arise from random matrix theory and, in particular, to be one of the Tracy-Widom
distributions. We compared the histogram of the rescaled absorbing times with the prob-
ability density of the Tracy-Widom GUE, GOE and GSE distributions. The distribution
matched that of the Tracy-Widom GOE distribution, as shown in Figure 3, and explained
below.
The Tracy-Widom GOE Distribution F1 is the limiting distribution of the scaled max-
imum eigenvalue of the Gaussian Orthogonal Ensemble. This refers to real symmetric
matrices of size N with independent Gaussian entries{

Aii = Xi for 1 ≤ i ≤ N,
Aij =

Yij√
2

for 1 ≤ i < j ≤ N,
(7)

where Xi, Yij are independent standard real Gaussian variables.
For large n, we expect the absorbing time to be distributed about 2n:

βn∗ ' 2n+ cn1/3ξ,

where ξ is a random variable in a distribution F and c ∈ R. We therefore have that the
standard deviation of the absorbing time is:

σ(β∗) = cσ(ξ)n
1
3 ,
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where σ(ξ) is the standard deviation of F . Using our empirical value for the standard
deviation, and our assumtion that F is the Tracy-Widom GOE, we have

c =
σ∗
σ(ξ)

=
1.575...

1.268...
' 2

1
3 .

This led us to formulate the following conjecture:

Conjecture 1 (Limiting distribution of the absorbing time). Let βn∗ be the absorbing
time for the Oriented Swap Process with n particles. Then

βn∗ − 2n

(2n)
1
3

d
=⇒ F1, as n→∞, (8)

where F1 is the Tracy-Widom GOE distribution.

4 Line-to-Line Last-Passage Percolation Model

In this section we describe the absorbing time of the OSP as an upper-triangular array
of waiting times, like

w12 w13 w14

w23 w24

w34

,

where the wij ’s are independent exponential random times of rate 1. The relationship
between the wij ’s and the waiting times for the swaps in the Oriented Swap Process is
unclear for now. In the case n = 3, we have a consistent definition for each wij in the
following array:

w12 w13

w23

We let w12 be the waiting time for the first successful swap of particles in positions 1 and
2, and w23 to be the waiting time for the first successful swap of particles in positions
2 and 3. Finally, we let w13 be the waiting time for the third swap, after the first
two swaps have occurred. Figure 5 represents TASEPs for the case where the clock in
position 1 rings before that in position 2. The waiting times between each jump are
A,B and C. In this case, we have w12 = A,w23 = A+ B, and w13 = C. Thus, we have
that β3

∗ = w13 + w12 ∨ w23. In fact, a stronger statement is true:

Proposition 1. In the Oriented Swap Process for n = 3, we have the following equality
of joint distributions:

(V 3(1), V 3(2))
d
= (T (1, 2; 1, 3), T (1, 3; 2, 3)) = (w12 + w13, w13 + w23),

where w12, w13, w23
iid∼ Exp(1). In particular, β3

∗
d
= T (1, 2; 1, 3) ∨ T (1, 3; 2, 3) = w13 +

w12 ∨ w23.

Proof. We want to show

P(V 3(1) ≤ s, V 3(2) ≤ t) = P(X + Y ≤ s,X + Z ≤ t),
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where X,Y, Z
iid∼ Exp(1). By symmetry we may assume, without loss of generality, that

s < t. The right-hand side is given by∫
{x+y≤s, x+z≤t}

e−x−y−z dx dy dz (9)

=

∫ s∧t

0

e−x dx

∫ s−x

0

e−y dy

∫ t−x

0

e−z dz

=

∫ s

0

e−x dx

∫ s−x

0

e−y dy
(
1− e−t+x

)
=

∫ s

0

e−x
(
1− e−t+x

)
dx

∫ s−x

0

e−y dy

=

∫ s

0

e−x
(
1− e−t+x

) (
1− e−s+x

)
dx

=

∫ s

0

e−x − e−s − e−t + e−s−t+x

=1− e−s − s(e−s + e−t) + e−t − e−s−t.
To compute the left-hand side, let J be the waiting time for the first swap of the particles
in positions 1 and 2. Let K be the waiting time for the first swap of particles in positions
2 and 3, and let M be the waiting time for the third swap after the first two swaps occur.
Then the left-hand side is given by:

P
(
V 3(1) ≤ s, V 3(2) ≤ t

)
=P
(
V 3(1) ≤ s, V 3(2) ≤ t, J < K

)
+ P

(
V 3(1) ≤ s, V 3(2) ≤ t,K < J

)
We deal first with the case where J < K, which is illustrated in Figure 5. In this case, J
is the waiting time for the swap of particles 1 and 2, and K is the waiting time for the

swap of particles 1 and 3. Since M,K, J
i.i.d
= Exp(1), we have:

P
(
V 3(1) ≤ s, V 3(2) ≤ t, J < K

)
=P (K ≤ s,K +M ≤ t, J ≤ K)

=

∫
{0≤k≤s, 0≤k+m≤t, 0≤j≤k}

e−k−j−m dk dj dm

=

∫ s

0

e−k dk

∫ t−k

0

e−m dm

∫ k

0

e−j dj

=

∫ s

0

e−k dk

∫ t−k

0

e−m dm(1− e−k)

=

∫ s

0

e−k(1− e−t+k)(1− e−k) dk

=

∫ s

0

e−k − e−t − e−2k + e−k−t dk

=1− e−s − se−t +
e−2s

2
− 1

2
+ e−t − e−s−t.
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A

B

C

Figure 5: Coupled TASEPs for the OSP for n = 3, where the sequence of swaps is
(123)→ (213)→ (231)→ (321).

The second case, where K < J is similar. With s < t, we have:

P
(
V 3(1) ≤ s, V 3(2) ≤ t,K < J

)
=P (J +M ≤ s, J ≤ t,K < J)

=

∫
{0≤K<J, 0≤J≤t, 0≤M≤s−J}

e−j−k−m dj dm dk

=

∫ s

0

e−j dj

∫ s−j

0

e−m dm

∫ j

0

e−k dk

=

∫ s

0

e−j dj

∫ s−j

0

e−m(1− e−j) dm

=

∫ s

0

e−j(1− e−s+j)(1− e−j) dj

=

∫ s

0

e−j − e−s − e−2j + e−s−j dj

=1− e−s − se−s +
e−2s

2
− 1

2
+ e−s − e−2s.

We therefore have

P
(
V 3(1) ≤ s, V 3(2) ≤ t

)
= 1− e−s − s(e−s + e−t) + e−t − e−s−t

as required.

Looking to the cases where n > 3, we do not have consistent definitions for the wij ’s.
However, we conjecture that the absorbing time of the OSP for n = 4 is given by the
maximum last-passage percolation time over all subarrays highlighted below from North-
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(a) n = 4 (b) n = 5

(c) n = 6

Figure 6: The empirical distributions of βn∗ (black) and the Last-Passage time defined on
the right-hand side of Equation (11) (red).

West (i.e. the top-left) to South-East (i.e. bottom right):

w12 w13 w14

w23 w24

w34

w12 w13 w14

w23 w24

w34

w12 w13 w14

w23 w24

w34

We conjecture that a similar statement is true for all n. Figure 6 provides numerical
evidence of the identity in distribution between the absorbing time and the last-passage
percolation time for the cases n = 4, 5, 6. In analogy with the case n = 3 worked out in
Proposition 1, we actually conjecture a stronger statement:

Conjecture 2 (Line-to-Line Last-Passage Percolation). Let W = (wij)1≤i<j≤n be an
array of i.i.d Exp(1) waiting times. We have the equality in distribution

(V n(1), V n(2), . . . , V n(n− 1))
d
= (T (1, 2; 1, n), T (1, 3; 2, n), . . . , T (1, n;n− 1, n)). (10)

where T (1, k; k − 1, n) is the last passage time from (1, k) to (k − 1, n) in the subarray
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W [1, k; k − 1, n]. In particular:

βn∗
d
= max
k=2,...,n

T (1, k; k − 1, n), (11)

Note that the marginals of the right-hand side of Equation 10 are known to be equivalent,
from Equation 4 and [3, 4]. We call the variable on the right-hand side of Equation 11
“Line-to-Line Last-Passage Percolation”, because it is taken over all oriented paths of
length n− 1 from points on L1 to points on L2, where, in the array W above:

L1 = {(1, k) : k ∈ Z},
L2 = {(k, n) : k ∈ Z}.

Using the Robinson-Schensted-Knuth (RSK) correspondence and its variations, in a sim-
ilar fashion to [2, 4], we should be able to prove that the above line-to-line model is equal
in distribution to the point-to-line model in the case of exponential random variables.
The point-to-line last-passage percolation is given by

τn := max
i+j=n

T (1, 1; i, j) (12)

on an array (wi,j)i,j≥1,i+j≤n. If this equality were proven, along with Conjecture 2 above,
then Theorem 4 below, from [2], would lead to a proof of Conjecture 1.

Theorem 4 (Limit Law of Point-to-Line Last-Passage Percolation [2]). If the waiting
times are independent and exponentially distributed with rate 1, then the following con-
vergence in distribution holds:

τn − 2n

(2n)
1
3

=⇒ F1 as n→∞. (13)

where τn is the point-to-line last-passage percolation time, and F1 is the Tracy-Widom
GOE distribution.
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