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The Principle of Induction: Let a be an integer, and let P(n)
be a statement (or proposition) about n for each integer n > a.
The principle of induction is a way of proving that P(n) is true for

all integers n > a. It works in two steps:

(a) [Base case:] Prove that P(a) is true.
(b) [Inductive step:| Assume that P(k) is true for some integer

k > a, and use this to prove that P(k + 1) is true.

Then we may conclude that P(n) is true for all integers n > a.

This principle is very useful in problem solving, especially when we

observe a pattern and want to prove it.

The trick to using the Principle of Induction properly is to spot how
to use P(k) to prove P(k-+1). Sometimes this must be done rather

ingeniously!




Problem 1. Prove that for any integer n > 1,

P+28 4384+ 4 n? = 5

Solution. Let P(n) denote the proposition to be proved. First let's
examine P(1): this states that
2
13 _ @ _ 12
2 Y

l.e., 1 = 1, which is correct.
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Next, we assume that P(k) is true for some positive integer k, i.e.

k(k+1)]2 |

13+23+33+---+k3=[ >

We want to use this to prove P(k + 1), i.e.

(k+1)(k+2)]°
)

P42+ 3+ (k+1)° = [
Taking the LHS and using P(k),

P22 43+ +(k+1)° = (P+2° 43+ + k) + (k+1)°

_ [k(k; 1)]2 +(k+1)°

= —]’“Q(kj 1)2+(/€+1)3

K2 (k+1)2 4+ 4(k 4+ 1)(k + 1)

4
(k +1)%(k* + 4k + 4)
4
(k + 1)2(k + 2)?
4

[+ D(k+2)]7
-

and thus P(k + 1) is true. This completes the proof.

Note that we used P(k) in the second line of the above calculations
— this is very important and is the key step to making the solution

easier than it would be without induction.



Problem 2. A sequence ap, as, ... is defined by a; = 1 and

1
a, = (n+1) (ay+as+---+ay_q) foralln>2.
n_

Determine aq.

Solution. Using the recursive formula, we can generate the first

few values of a,,, and tabulate these:

nla, | n+1| 20 on—2
111 2 12| 2] 12
23 3 1 14] 1
38 4 2 [ 8| 2
4120 5 4 |16| 4
5/48| 6 8 |32] 8

Based on this, we make the conjecture that
ap = (n+1)2" *foralln>1.

Call this claim P(n). We will prove this claim by induction. First,

we check the base case P(1):
ap=2-2"1=1,

which is true.
Next, assume that P(k) is true, i.e.,

kE+1
aj = <k—i1> (CLl‘I‘CLQ"‘"“"CLk_l):(k+1)2k_2.
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We wish to use this hypothesis to prove that P(k + 1) is true, i.e.,

that

k+2
A1 = (T) (a1 +as+ -+ ap) = (k+2)28 1,

To achieve this, consider

Ap+1 = (

o~
B
DO

I
7 N N 7/ N
PTA
NO)
NI I A e

(a1+a2+---+ak)

™
+
DO

(ar +as+ - +ap_1) + a

(1)
(k+ 1) "

()
=N

o
o+
(N)

+
= 2 _—
(k + 1) i
= 2 (Z—ﬁ) (k -+ 1)2F2
= (k+2)2"!

and this proves P(k 4 1). Note that we used P(k) in the sixth line
of the calculation above.

Thus we conclude by the principle of induction that
a, = (n+1)2" % foralln>1.

It follows that ajgy = 101 - 2%,
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Problem 3. 2n points are given in space, where n > 2. Altogether
n?+1 line segments (‘edges’) are drawn between these points. Show
that there is at least one set of three points which are joined pairwise

by line segments (i.e. show that there exists a triangle).

Solution. The proposition (let's call it P(n)) holds for n = 2
(why?). Assume that the proposition P(n) is true for n = k, i.e.
that if 2k points are joined together by k% + 1 edges, there must
exist a triangle.

Now consider P(k + 1): here we have 2(k + 1) = 2k + 2 points,
which are connected by (k + 1)? + 1 = k? + 2k + 2 edges.

Take a pair of points A, B which are joined by an edge (there must
be such a pair, otherwise there are no edges connecting any of the
points!). The remaining 2k points form a set which we will call S.
Let's focus on the set S for the moment. If there were at least k%+1
edges in S, then there would have to be a triangle in here (using
the P(k) assumption). Of course there could be < k? edges in S;
let's suppose this is the case. But if this were true, it would mean
that there are at least 2k + 2 edges in the other part of the graph,
i.e. connecting A and B to each other and to the points in S.
Discounting the edge AB gives at least 2k 4+ 1 edges which connect
from A or B into §. But we notice that if P is a point in S, then

P can be connected either to A or B, but not both (or a triangle
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PAB would be formed!). Therefore the maximum number of edges
connecting from A or B into S (without forming a triangle) is 2k.

This contradiction proves that P(k + 1) must be true.

Note. If we have 2n points and exactly n? edges, it is possible
to avoid making a triangle. This is done by breaking the set of
points into two subsets X’ and ) which contain n points each, then
connecting every point in X’ to every point in Y. This is illustrated

below for the case n = 4.

1 5
2 6
3 7
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Problem 4 (from IrMO 2012). Let n be a positive integer. A
mouse sits at each corner point of an n X n square board, which is

divided into unit squares as shown below for the example n = 5.

The mice then move according to a sequence of steps, in the fol-

lowing manner:

(a) In each step, each of the four mice travels a distance of one unit
in a horizontal or vertical direction. Each unit distance is called an
edge of the board, and we say that each mouse uses an edge of the
board.

(b) An edge of the board may not be used twice in the same direc-
tion;

(c) At most two mice may occupy the same point on the board at

any time.

The mice wish to collectively organise their movements so that each
edge of the board will be used twice (not necessarily by the same
mouse), and each mouse will finish up at its starting point. Deter-
mine, with proof, the values of n for which the mice may achieve

this goal.
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Solution. We prove by induction that the mice may achieve this
goal for every positive integer n. We will focus on the movements
of one mouse starting at one corner A of the board.

First, for n = 1, consider the following figure:
A B

[ ]

The mouse moves A — B — A. Successive mice move in a
symmetrical fashion (rotated by 90 degrees).

Next, for n = 2, consider the following figure:
A B

D C

Two mice move A - B - C - B -+ A — D — A, and the
other two move A - D - A —- B — C — B — A (with the
understanding that the moves for each successive mouse are rotated
by 90 degrees). Note that at four points during this process, two
mice occupy the same point of the board at the same time.

Next, for n > 2, we assume that a solution exists for an (n — 2) X

(n — 2) board.
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Consider the figure below.
A X, Xy Xs X, 5 X, 1 B

The mouse starting at A can execute the moves:

A—->Xi Y — X,

— Xo— Y, — X5

— X5 =Y = X5

o= X1 =Y, 01— X,

— B

— X, 1= X, 90— X, 3 —X] > A.
If the other four mice execute the same moves rotated by 90 degrees,
then
(a) Together the mice will use every edge exactly once in each
direction, apart from the inner (n — 2) X (n — 2) square;
(b) When the mouse starting from A reaches position Y7, all four
mice will be at the corners of the inner (n — 2) x (n — 2) square;
thus the solution for n — 2 can be spliced in at this moment before
the mice continue on their homeward journey.

It follows by the principle of induction that a solution can be achieved

for every positive integer n.
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Exercise 1. Prove that for any integer n > 1,

1)(2n +1
P+?+3?w~+n%:mn+z§n+).

Exercise 2. Show that for all integers n > 1,
,  n(4n®—1)

P+ 3 +5+-+(2n—1) ;

Exercise 3.

Let m and n be positive integers. Given a (2m + 1) x (2n + 1)
chessboard in which all four corners are black squares, show that
if one removes any one white square and any two black squares,
the remaining board can be covered with non-overlapping dominoes

(here, a domino is a 1 X 2 rectangle).
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Exercise 4.

Let f(n) be the number of regions which are formed by n lines in
the plane, where no two lines are parallel and no three meet at a
single point (e.g. f(1) = 2; f(2) = 4; etc.). Find a formula for
f(n).

Exercise 5. Every road in Uniland is one-way. Every pair of cities
is connected by exactly one direct road. Show that there exists a
city which can be reached from every other city either directly of via

at most one other city.

Exercise 6. A row of n lamps is labelled from left to right with
the numbers 1 to n, where n is an odd positive integer. Each lamp
has a switch which, if pressed, turns it from OFF to ON or from ON
to OFF; however the switches may only be pressed according to the

following rules:

(a) Switch 1 may be pressed at any time;
(b) Switch k£ € {2,...,n} may be pressed if and only if lamp (k—1)
is ON and all lamps ¢ < (k — 1) (if any) are OFF.

Initially all lamps are ON. Prove that the minimum number of times

the switches must be pressed to turn all the lamps OFF is
2n+1 —1
3
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Polya’s Paradox:

A common way (in 1950, at least!) of expressing that something
is out of the ordinary is “That’s a horse of a different color!” The
famous mathematician George Pdlya gave the following proof that
“all horses are the same color”, which works by the principle of

induction:

Proposition P(n): Suppose we have n horses. Then all n horses are

the same colour.

Base case: n = 1; if there is only one horse, there is only one
colour.

Inductive step: Assume that P(k) is true, i.e. that for any set
of k horses, there is only one color. Now look at any set of £ + 1
horses; call this {Hy, Hy, Hs, -+ , Hi, Hi.1}. Consider the sets
{Hy,Hy, Hs,--- ,H} and {Hy, H3, Hy, ..., H;.1}. Each is a set
of only k horses, therefore within each there is only one colour. But
the two sets overlap, so there must be only one colour among all

k -+ 1 horses.

The flaw is that when k£ = 2 the inductive step doesn't work, because

the statement that “the two sets overlap” is false.



