
“How to Maximize a Function without Really

Trying”

MARK FLANAGAN

School of Electrical, Electronic and Communications

Engineering

University College Dublin





33

We will prove a famous elementary inequality called The Rearrange-

ment Inequality. We will then show that this inequality has some

far-reaching consequences!

Motivating Example (Part 1). Banknotes are available in the

denominations of EUR5 and EUR10. You are allowed to take 3

banknotes of one type, and 7 banknotes of the other type. How

should you choose in order to maximize the amount of money you

have?

Answer. Choose 3 EUR5 notes, and 7 EUR10 notes. “Obvious”!

Justification. Because

3 · 5 + 7 · 10 > 3 · 10 + 7 · 5 .

This example motivates the following result.

The Rearrangement Inequality (Case of two variables): Let

a < b and x < y. Then

ax + by > ay + bx .
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Proof: Note that b − a > 0 and also y − x > 0. Therefore

(b − a)(y − x) > 0 .

Expanding this product yields

ax + by − ay − bx > 0 ,

giving the result.

Motivating Example for the General Case. Banknotes are

available in the denominations of EUR5, EUR10 and EUR20. You

are allowed to take 3 banknotes of one type, 7 banknotes of a second

type, and 9 banknotes of the third type. How should you choose in

order to maximize the amount of money you have?

Answer. Choose 3 EUR5 notes, 7 EUR10 notes, and 9 EUR20

notes. Again, “obvious”!

Justification. Because

3 · 5 + 7 · 10 + 9 · 20 > 3 · x + 7 · y + 9 · z ,

where x, y, z is any rearrangement of 5, 10, 20.

This example motivates the following general result.
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The Rearrangement Inequality:

Suppose that

• The n numbers a1, a2, . . . , an are in increasing order, i.e.,

a1 < a2 < · · · < an

• The n numbers b1, b2, . . . , bn are also in increasing order, i.e.,

b1 < b2 < · · · < bn

If x1, x2, . . . , xn is a rearrangement (or permutation) of the numbers

b1, b2, . . . , bn, then

(1) a1x1 + a2x2 + · · · + anxn ≤ a1b1 + a2b2 + · · · + anbn

with equality if and only if the numbers x1, x2, . . . , xn are in increas-

ing order, i.e., if and only if x1 = b1, x1 = b1, . . ., xn = bn.

In other words, the maximum of the mixed sum

M = a1x1 + a2x2 + · · · + anxn

is equal to the forward-ordered sum

F = a1b1 + a2b2 + · · · + anbn .
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Proof. Suppose we consider any mixed sum

M = a1x1 + a2x2 + · · · + anxn .

Suppose that the arrangement x1, x2, . . . , xn maximizes the mixed

sum. Suppose also that we can find two numbers xi and xj such

that ai < aj but xi > xj. Suppose we swap xi with xj. What

happens to the mixed sum?

The mixed sum beforehand equals

M = a1x1 + a2x2 + · · · + aixi + · · · + ajxj + · · · + anxn

and after the swap equals

M ′ = a1x1 + a2x2 + · · · + aixj + · · · + ajxi + · · · + anxn

Does the mixed sum increase? In other words, is M ′ > M? Well,

this will be true if

aixj + ajxi > aixi + ajxj .

But this must be true since

(aj − ai)(xi − xj) > 0 .

But then the mixed sum after the swap is larger than before the

swap. This contradicts our initial assumption that “we can find

two numbers xi and xj such that ai < aj but xi > xj”. If this
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assumption does not hold, then we must have xi < xj whenever

ai < aj.

This shows that the unique arrangement which maximizes the mixed

sum is x1 = b1, x2 = b2, . . ., xn = bn, i.e., when the numbers

x1, x2, . . . , xn are in increasing order. This completes the proof.

Motivating Example for a Related Result. Banknotes are

available in the denominations of EUR5, EUR10 and EUR20. You

are allowed to take 3 banknotes of one type, 7 banknotes of a second

type, and 9 banknotes of the third type. How should you choose in

order to minimize the amount of money you have?

Answer. Choose 9 EUR5 notes, 7 EUR10 notes, and 3 EUR20

notes.

Corollary to the Rearrangement Inequality:

Suppose that

• The n numbers a1, a2, . . . , an are in increasing order, i.e.,

a1 < a2 < · · · < an

• The n numbers b1, b2, . . . , bn are also in increasing order, i.e.,

b1 < b2 < · · · < bn
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If x1, x2, . . . , xn is a rearrangement (or permutation) of the numbers

b1, b2, . . . , bn, then

(2) a1x1 + a2x2 + · · · + anxn ≥ a1bn + a2bn−1 + · · · + anb1

with equality if and only if x1 = bn, x1 = bn−1, . . ., xn = b1.

This tells us the minimum of the mixed sum

M = a1x1 + a2x2 + · · · + anxn

is equal to the reverse-ordered sum

R = a1bn + a2bn−1 + · · · + anb1 .

Proof of the Corollary to the Rearrangement Inequality:

Applying the Rearrangement Inequality (1) with −bn ≤ −bn−1 ≤

−b1 in place of b1 ≤ b2 ≤ · · · ≤ bn we obtain

(3)

a1(−x1)+a2(−x2)+· · ·+an(−xn) ≤ a1(−bn)+a2(−bn−1)+· · ·+an(−b1)

Here we note that if x1, x2, . . . , xn is a rearrangement of the num-

bers b1, b2, . . . , bn, then −x1,−x2, . . . ,−xn is a rearrangement of

the numbers −b1,−b2, . . . ,−bn.

Simplifying (3) leads to the desired result.
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Example: Chebychev’s Inequality

Assuming a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn, we have

R ≤
(a1 + a2 + · · · + an)(b1 + b2 + · · · + bn)

n
≤ F .

Proof: Cyclically rotating the numbers b1, b2, . . . , bn, we get n

mixed sums:

M1 = a1b1 + a2b2 + · · · + anbn

M2 = a1b2 + a2b3 + · · · + anb1

M3 = a1b3 + a2b4 + · · · + anb2

...

Mn = a1bn + a2b1 + · · · + anbn−1

By the rearrangement inequality, each of the n sums lies between R

and F . Therefore the average of all of the n sums lies between R

and F . But the average of the n sums is

M1 + M2 + · · · + Mn

n
=

(a1 + a2 + · · · + an)(b1 + b2 + · · · + bn)

n
.

This lies between R and F , establishing the desired result.
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Exercise. Show that if we substitute a1 = b1 = c1, a2 = b2 = c2,

. . ., an = bn = cn in Chebychev’s Inequality we get
√

c2

1
+ c2

2
+ · · · + c2

n

n
≥

c1 + c2 + · · · + cn

n
,

i.e., RMS ≥ AM.

We are now ready to prove the AM-GM inequality. First, let’s remind

ourselves of this result!

The Arithmetic Mean – Geometric Mean (AM-GM) In-

equality:

Suppose we have n positive real numbers c1, c2, . . . , cn. Then

c1 + c2 + · · · + cn

n
≥ (c1c2 · · · cn)

1

n

with equality if and only if all of the numbers c1, c2, . . . , cn are equal.

NOTE: The notation y = x
1

n means that y is a number whose n-th

power is x, i.e., such that yn = x. For example,

• y = x
1

2 means that y2 = x, i.e., y =
√

x ;

• y = x
1

3 means that y3 = x, i.e., y = 3
√

x .
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Proof of the AM-GM Inequality:

Since all of the numbers c1, c2, . . . , cn are positive, the geometric

mean of these numbers, GM = (c1c2 · · · cn)
1

n , must also be positive.

Let’s form

a1 =
c1

GM
; a2 =

c1c2

GM 2
; a3 =

c1c2c3

GM 3
; · · · ; an =

c1c2c3 · · · cn

GMn
,

and let

b1 =
1

an
; b2 =

1

an−1

; b3 =
1

an−2

; · · · ; bn =
1

a1

.

An important observation here is that the ordering of the numbers

b1, b2, . . . , bn is the same as that of the numbers a1, a2, . . . , an. To

see this, take the example

(a1, a2, a3, a4, a5) = (5, 10, 8, 1, 2) .

In this case

(b1, b2, b3, b4, b5) = (
1

2
,
1

1
,
1

8
,

1

10
,
1

5
) .

so that

a1b5 + a2b4 + a3b3 + a4b2 + a5b1 = 5

represents the reverse-ordered sum, and is the minimum of any mixed

sum.

Applying the Rearrangement Inequality, we find that the mixed sum

a1b1 + a2bn + a3bn−1 + · · · + anb2
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is greater than or equal to the reverse-ordered sum

a1bn + a2bn−1 + a3bn−2 + · · · + anb1 .

Working this out we get

c1

GM
+

c2

GM
+

c3

GM
+ · · ·

cn

GM
≥ n ,

and simplifying, we get

c1 + c2 + · · · + cn

GM
≥ n ,

or
c1 + c2 + · · · + cn

n
≥ GM ,

in other words, AM ≥ GM.

Exercise. Show that by applying the AM-GM inequality to the

numbers 1/c1, 1/c2, . . . , 1/cn we obtain the GM-HM inequality

(c1c2 · · · cn)
1

n ≥
n

1

c1
+ 1

c2
+ · · · + 1

cn

.
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Exercise 1: 20 points in the plane are given, none of which are

collinear. Divide these into 5 groups. Let N denote the number of

triangles with vertices in different groups.

How should the points be divided in order to maximize N?

Hint: To get started, let x1, x2, x3, x4, x5 denote the number of

points in groups 1, 2, 3, 4, 5, respectively. Then the number of tri-

angles we can form using groups 1, 2 and 3 is x1x2x3 (since there

are x1 choices for the vertex from group 1, x2 choices for the vertex

from group 2, and x3 choices for the vertex from group 3).

Taking into account all of the possible groups for a triangle, we get

N = x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4 + x1x3x5

+ x1x4x5 + x2x3x4 + x2x3x5 + x2x4x5 + x3x4x5 .

Next, consider what happens when you take a point out of one group

and place it into a different group. Does N increase or decrease?

Exercise 2: Repeat the above problem, but this time you must di-

vide the points into 5 groups with a different number of points

in each group. How should the points be divided in order to

maximize N?



1414

For further reading, click here:

Wikipedia entry on the Rearrangement Inequality

http://en.wikipedia.org/wiki/Rearrangement_inequality

