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1 Introduction

Network data usually contains a collection of nodes and edge list, or even the weight of the edges, which
allows us to observe clearly the internal connections of the network. Node represents each different entity
and edge is the interaction between the entities, as for the weight of the edge it can usually be seen as the
amount of effort needed to interact from one entity to another.

In analysis, network data is often thought of as a graph, a directed graph or an undirected graph. Consider
two nodes i and j in a graph, and (i , j) in the edge list. For undirected graphs, the connection between i
and j is unpointed, it means i→j = i←j, so it can be written as i∼j. For directed graph, i→j ̸= i←j.

Based on this framework, we can apply it to a wide range of research and analysis in different fields, such as
finance, epidemiology, Internet and transportation. But beyond that, more and more interest is being put
into modelling network data, that is, modelling network data so that we can interpret the data in a better
way and use the models to make forecasts and so forth.

This work has been ongoing since the latter half of the last century and has resulted in a number of profound
models, one of which is the Latent Position Model (Hoff et al., 2002), the theory on which this article is based.
After the Latent Position Model, new improvements are constantly being proposed, either to create a more
sophisticated model by taking more factors into account, or to improve it in a certain direction depending on
the characteristics of the network data objects being analysed. An important statistical modeling approach
presented for specific network data is Interaction Lengths (Rastelli and Fop,2020), which is based on the
Stochastic Block Model for the analysis of dynamic networks with time continuity.

In this project we will attempt to apply the analysis of Interaction Lengths to the Latent Position Model,
and due to time constraints and the complexity of the model, our model will be heavily simplified and will
focus on modelling network data using the given parameters.

2 Latent Position Model

2.1 Concept

According to (Hoff et al., 2002)’s summary of the previous findings, If we observe i→j and j→k, this means
that the distance between i and k in latent space is not too long and that there is a high probability that they
are also connected. And this latent space in which they are located refers to an abstract multi-dimensional
space containing feature values that we cannot interpret directly, but which encodes a meaningful internal
representation of externally observed events, for example, potential transitive tendencies in network relations.

In summary, the Latent Position Model assumes that each node i has an unknown position Zi in Latent
Space, and we can calculate the probability of a connection between two nodes based on the Euclidean
distance between them, the shorter the Euclidean distance, the more likely they are to be in connect with
each other.

2.2 Modelling

N is the number of nodes in the network data, Y is the N x N adjacency matrix with diagonal zero, the value
of Yij represents the connection between node i and node j. If Yij = 1, a connection is established between
the two; If Yij = 0, no connection between the two. Let Z is a N × D matrix where each row is composed
by Zi = (Zi1 , . . . , ZiD), the vector in each row represents the position of each node in the latent space.
Also reintroduce an unknown parameter α.

After setting these conditions, we take a conditional independence approach to modeling by assuming that
the presence or absence of a connection between two individuals is independent of all other connection in
the system.
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Thus we can get Latent Position Model:

P (Y |Z, α) =
∏N

i ̸=j P (yij |zi, zj , α)

Then use logistic regression to parameterise the above model to obtain a linear equation:

ηij = logodds(yij = 1|zi, zj , α) = α− |zi − zj |

And so the probability of a connection between two nodes is:

πij = eηij

1−eηij

Finally, the probability of the whole graph is obtained (which is also equal to Likelihood Function):

P (Y |Z, α) =
N∏

i ̸=j

P (yij |, zi, zj , α) (1)

=
N∏

i ̸=j

πij
yij (1− πij)1−yij (2)

which gives us the model we desire.

2.3 Estimation

An important step in the whole process is estimation, i.e. how do we get the latent space position Z of
the nodes and the value of α to maximize the probability of the whole graph, or we can say maximizing
the Likelihood Function. Because only maximizing the Likelihood Function can we find the probability
distribution and parameters that best explain the observed network data.

In the Latent Position Model, Markov Chain Monte Carlo inference is used for estimation, which will not
be described in detail here as it is not the focus of the project. Given prior information on α and Z, then
sampling from the posterior distribution as follows:

• Identify an MLE Ẑ of Z, centered at the origin, by direct maximization of the Likelihood Function.

• Using Z0 = Ẑ as a starting value, construct a Markov Chain over model parameters as follows:

1. Sample a proposal Ž from J(Z|Zk), a symmetric proposal distribution.

2. Accept Ž as Zk+1 with probability p(Y |Ž,αk)
p(Y |Zk,αk)

π(Ž)
π(Zk) ; otherwise,set Zk+1 = Zk.

3. Store Z̃k+1 = argminT Zk+1tr(Ẑ − TZk+1)′(Ẑ − TZk+1).

In addition, Markov Chain Monte Carlo inference is indeed a relatively good approach for small networks, but
when it comes to large networks, such as thousands of nodes, the computational cost increases significantly.
Therefore, there are many faster and more efficient inference methods developed during the years to solve
the high computational cost.
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3 Modelling of Interaction Lengths

3.1 Concept

In the original Latent Position Model, the probability of a connection between two nodes depends on their
Euclidean distance in latent space. But with the discovery of (Rastelli and Fop,2020), we can use the new
model to analyse the Interaction Lengths between nodes directly on the basis of the Latent Position Model.

At the same time, the application of Interaction Lengths is based on a continuous period of time, which we
separate into small sections, in which Interaction and Non-Interaction always alternate. Once we know the
Interaction Length and whether it is an Interaction or not we can reconstruct the whole network. In this
project, due to the complexity of Interaction Lengths in continuous time, we only consider the variable that
we model is the sum of all the Interaction Lengths XT

ij .

3.2 Generating parameters

The first step for the complete model is to obtain the parameters by estimation, and since estimation is not
the focus of this project, here we first generate the parameters randomly.

We aim to generate a network of 20 nodes, all positions Z in the latent space obey the normal distribution:
Z ∼ N(0, 1):
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Next we set the value of parameter α to 2, this gives us all the parameters that should have been obtained
by estimation.

3.3 Generating simulated network

Based on the known latent space position of the nodes and the value of the α, we can first calculate the rate
λ of the exponential distribution that the Interaction Lengths follow:

λij = exp(−α− Zi · Zj)

For example, for the Interaction Length between node 1 and 2:

λ12 = exp(−2− Z1 · Z2) (3)
= 0.202054 (4)

Also, to make the generating network simpler and easier to observe, some of the larger exponential rates
(λij > 0.13) are ignored. With the exponentially distributed rate in place, we can then generate Interaction
Lengths (Xij ∼ Exp(λij)) between the various nodes:
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Which in turn, resulting in a simulated undirected network that strictly follows our assumptions.

Simulated Network Based on Interaction Lengths
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3.4 Transform the network

Since P (Yij |Z, θ) = λijExp(−λijXi,j), and we know the exponential distribution rate λ and Interaction
Lengths X, the data can be represented in a different way, where we transform it into binary to check which
pairs of nodes have the longest interactions.
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Probability of The Graph

Based on the probability of the whole graph, we can set a probability value as a threshold for filtering, and
only those with a probability value greater than this will be considered to have a connection between nodes,
this results in our simulated network, which has expected Interaction Lengths equal to 1

λ .
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Simulated Network Based on Connection Probability
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By transforming the network we can see that the probability-based model presents a network and its Inter-
action Lengths that are almost identical to the original network, indicating that our model is feasible.

4 Estimation

In this section we will try our hand at estimation. Due to the complexity and time consuming nature of
the estimation itself, what we do will be significantly simplified and more familiar with the concepts and
calculation process.

4.1 Statistical Inference

Statistical inference is a process of extending to whole populations by analysing data on samples to obtain
probability distributions. In the Latent Position Model, we make inference by observing the raw network
data and assuming that these network data and the parameters in our Likelihood Function follow certain
statistical distributions, so as to obtain approximate values that maximise the Likelihood Function to give
our model a high degree of accuracy.

In fact, from the earliest Markov Chain Monte Carlo inference to Expectation Maximization inference to
Variational Inference, new algorithms have been developed to apply to various models based on the Latent
Position Model. Each of these algorithms has its own advantages and disadvantages. As we described earlier,
Markov Chain Monte Carlo is computationally expensive for large networks, so here we try to use Variational
Inference, a statistical inference method that works well for large networks.
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4.2 Variational Inference

4.2.1 Preliminaries

Bayes’ rule states:

P (θ|Y )︸ ︷︷ ︸
P osterior

= P (Z)︸ ︷︷ ︸
P rior

×

Likelihood︷ ︸︸ ︷
P (Y |θ)∫

P (Y |θ)P (θ)dθ︸ ︷︷ ︸
Evidence

where θ is the parameter we want to infer and Y is the observed data. But in general it is difficult to obtain
Marginal Likelihood because of the difficulty of integration, so we have tried to convert this process into a
derivative which greatly simplifies the steps required.

We want to get at the posterior distribution, this can be done by finding density q∗(θ) from a family of
densities Q that best approximates the posterior distribution:

q∗(θ) = argmin︸ ︷︷ ︸
q∗(θ)∈Q

KL(q∗(θ)||p(θ|Y ))

where KL(.||.) represents the Kullback-Leibler divergence, which is to measure the difference between two
probability distributions over the same variable. So our task is to obtain the minimum KL divergence, which
has this property:

KL(q∗(θ)||p(θ|Y )) =
∫

θ

q(θ)log[ q(θ)
p(θ|Y ) ]dθ (5)

=
∫

θ

[q(θ)log(q(θ))]dθ −
∫

θ

[q(θ)log(p(θ|Y )]dθ (6)

= Eq[log(q(θ))]− Eq[log(p(θ|Y )] (7)

= Eq[log(q(θ))]− Eq[log[p(Y, θ)
p(Y ) ]] (8)

= Eq[log(q(θ))]− Eq[log(p(Y, θ))] + Eq[log(p(Y ))] (9)
= Eq[log(q(θ))]− Eq[log(p(Y, θ))] + log(p(x)) (10)

because log(p(x)) is a constant, so we could just ignore it during optimization process. Moreover, minimizing
KL divergence means maximizing its negative, so we can define the evidence lower bound (ELBO(q)):

ELBO(q) = −KL(q(θ)||p(θ|Y ))− log(p(x) (11)
= Eq[log(p(Y, θ))]− Eq[log(q(θ))] (12)

where our ultimate goal is to maximise ELBO(q) as much as possible.
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4.2.2 Inference Process

Due to the complexity of Variational Inference itself, completing a full estimation in the remaining time
of the project is a very difficult task. Therefore, we focus on the estimation of Latent Space Position Z,
which we assume its initial position in each dimension follows the Noraml distribution: N(0, 1). And we will
estimate the value of µ and σ for each position subject to N(µ, σ) by minimizing ELBO(q).
Assume N is the number of nodes, i and j are different nodes,Xij is the interaction lengths, we can obtain
the following conditions by calculation.
Prior:

Z ∼ N(0, 1)

Posterior:

p = p(Z|Y ) (13)
∝ p(Y |Z)p(Z) (14)

=
N∏

i=1

N∏
i<j

exp[−α− Zi · Zj − exp(−α− Zi · Zj)Xij ]× (2π)− n
2 exp(−1

2

N∑
i=1

Zi · Zi) (15)

Closed form distribution density:

q = q(Z|Y ) (16)
= q(Z|µ̃, σ̃2) (17)

= (2πσ̃2)− n
2 exp(− 1

2σ̃2

N∑
i=1

(Zi − µ̃)2) (18)

From these we can calculate KL divergence and got the following:

Eq[log(p(Y |Z))] =
∑N

i=1
∑N

i<j −µ̃iµ̃j − exp(−µ̃iµ̃j)Xij

and

Eq[log(p(Z))] = Eq[−n

2 log(2π)− 1
2

N∑
i=1

Zi · Zi] (19)

≈ −1
2

N∑
i=1

(µ̃i · µ̃i + σ̃i · σ̃i) (20)

∝ −
N∑

i=1
(µ̃i · µ̃i + σ̃i · σ̃i) (21)

and

Eq[log(q(Z))] ≈ −1
2

N∑
i=1

log(2πσ̃i · σ̃i) (22)

∝ −
N∑

i=1
log(2πσ̃i · σ̃i) (23)

With these we can get ELBO,
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ELBO(q) ≈ [
∑N

i=1
∑N

i<j −µ̃iµ̃j − exp(−α− µ̃iµ̃j)Xij ]− [
∑N

i=1(µ̃i · µ̃i + σ̃i · σ̃i)] + [
∑N

i=1 log(2πσ̃i · σ̃i)]

4.2.3 Estimated parameters

By optimizing ELBO(q) for maximum value, we can finally obtain the position of each node in each dimension
of the two-dimensional latent space, which follows a normal distribution with certain µ and σ values.
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Once we have the estimated position, we can perform the previous operations to obtain the modelling
network.
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Modelling Network
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5 Application in Real Dataset

5.1 Infectious dataset

This dataset contains the daily dynamic contact networks collected during the Infectious SocioPatterns event
that took place at the Science Gallery in Dublin, Ireland, during the artscience exhibition “INFECTIOUS:
STAY AWAY”.

The nodes represent visitors of the Science Gallery while the edges represent close-range face-to-face proximity
between the concerned persons. The weights associated with the edges are the number of 20 seconds intervals
during which close-range face-to-face proximity has been detected. The dataset contains daily records for
up to three months; here, to simplify the work, we only analyse records for day1.

5.2 Analysis and modelling

The network below shows the raw data, which indicates that due to the specific nature of Science Gallery
visits, visitors tend to follow a fixed path and interact more with people in adjacent visitor groups.
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Infectious Day1 Network

We then repeated the previous steps to analyse and re-model the network, and we can find that our model
indeed capture some of the information from the original dataset, but the results of the modelling still
lacked precision. Because the estimated parameters were only simple estimates of the latent space position
of the nodes, and more optimisation could be done to improve the precision of the model. For example, the
estimation of α and further evaluation of the position distribution.
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Modelling Infectious Day1 Network
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6 Conclusion

This statistical model differs from the previous analysis of binar interactions and takes into account the
analysis of Interaction Lengths within a continuous period of time. It is therefore well placed to analyse data
on, for example, epidemic types and to reconstruct the original network as far as possible, which is of great
interest in a world that is currently plagued by viruses. My work can be further refined in the future, as
mentioned above, by further improving the accuracy of the model, especially the estimation part, and thus
refining it to make it a complete model. I look forward to the continuation of this part of the work. And I
am very grateful to my supervisors for their patience and guidance in helping me to solve a lot of puzzles
and difficulties in this project.
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