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Graphs are an elegant framework to succinctly represent the joint dependencies of a vector of
covariates. They can, for example, be used to encode conditional independences, which makes them a
useful tool in probabilistic reasoning (Koller and Friedman, 2009). They can also encode qualitative
causal relationships and be used for causal reasoning (Pearl, 2009). As a result, the problem of learning
a graphical model from observational data, a problem known by many names such as causal discovery,
unsupervised learning or structure learning, has received considerable research attention (e.g. Spirtes
et al., 2000; Shimizu et al., 2006; Zheng et al., 2018). The resulting algorithms, however, remain
inaccurate in applications and practitioners are generally sceptical of them (Reisach et al., 2021). This
is in large part because structure learning is simply a very difficult problem, but machine learning has
shown that research on difficult problem can progress remarkably quickly if clear performance metrics
are available. Structure learning, however, lacks a universally accepted performance metrics in part
because graphical models can be used for so many distinct tasks (Gentzel et al., 2019).

In this project, we will try and develop a metric for causal graphical models by centering the core
task we use these graphs for: causal inference. Specficially, the metric should capture how well a graph
would perform if we used it to infer causal effects. One natural starting point to develop such a metric,
is to built on the structural intervention distance by Peters and Bühlmann (2015) by using advances
in the literature on causal inference made in recent years. Another, is to revisit causally oriented
empirical metrics such as the one proposed by Eigenmann et al. (2020) and investigate their empirical
characteristics. While causal inference is the primary focus, a secondary aim is to develop a general
framework for task-oriented structure learning metrics.
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