
Matrix Codes and Subspace Designs

Chaoyi Lu  
 

Supervisor: Eimear Byrne  
 

08/03/2018

Abstract
We are interested in the existence of Assmus-Mattson rank-metric codes over finite fields, as such codes yield
constructions of subspace designs. An Assmus-Mattson rank metric code is one whose dual code has few non-
zero ranks. A first step towards tackling this problem is to check the existence of codes that hold designs known
to be realizable. Given the parameters of a known subspace design, we compute the lists of rank weight
distributions of possible codes associated with the design and apply, among other constraints, the rank metric
MacWilliams identities to check existence.

1. Introduction

The Assmus-Mattson Theorem  is one of the well known results in the codes and designs theory. Based on
this theorem, we have made several constructions of t-designs . This theorem has also been the
subject of some generalizations . The Assmus-Mattson theorem states the conditions of a rank
metric linear code holding a specific block as a subspace design. In particular, it shows that the supports of
minimum rank metric weight codewords forms the blocks of a design if the number of non-zero weights of dual
code is small. 

The first time of the notion of a t-design appearing in the literature is 1970s  and some contructions of such
designs can be found in the past papers . A -  design (called blocks) over  is a collection of -
dimensional subspaces of  where every -dimensional subspace of  is contained in the same number  of
elements of D . During the last decade, there was a resurgence of interest in such designs, due in part to the
fact that some subspace designs are optimal as constant weight subspace codes . It has been shown that
the subspace codes have the applications to error correction in network coding . And  shows that non-
trivial exist over any finite field and for every value of t, as long as the parameters n, d, λ are sufficiently large.
The existence of such objects for various parameter sets are shown by several papers and most of them rely on
assumptions of their automorphism groups .  

In our project, we need to check the existence of possible Assmus-mattson codes which hold a specific design
based on a table we take from  according to Assmus-Mattson Theorem and the main tool we use to detemine
the non-existence of such codes is MacWilliams identities . Due to the large amounts of works needing to be
done, we are using python and school cluster to help our checking. In this report, we will first introduce some
basic definitions, theorems, lemmas and examples we focus on in our project in section 2. Then we will put
some sample codes for several specific examples and my main python codes along with the tables we focus on
for checking the existence in section 3. Section 4 will show the results we get from our codes and some
conclusions as well as some comments about these results up to now. We will also talk about what we will do in
the future in this section.
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2. Preliminaries

Finite Fields
In this section, we introduce the necessary background on finite fields. We refer the reader to [20] for further
detail.

Definition 1. A group is a set  together with a binary operation on  such that the following three properties
hold:  

1.  is associative; that is, for any .  
2. There is an identity (or unity) element  in  such that for all , .  
3. For each , there exists an inverse element  such that .  

If the group also satisfies:  

For all , , then the group is called abelian (or commutative).

Definition 2. A ring  is a set , together with two binary operations, denoted by  and  such that:  

1.  is an abelian group with respect to .  
2.  is associative,that is , for all 
3. The distributive laws hold; that is, for all a, b, c E R we have  and 

Definition 3. 

1. A ring is called a ring with identity if the ring has a multiplicative identity, that is, if there is an element
e such that  for all .  

2. A ring is called commutative if is commutative.  
3. A ring is called an integral domain if it is a commutative ring with identity  in which  implies 

 or .  
4. A ring is called a division ring (or skew field) if the nonzero elements of  form a group under .  
5. A commutative division ring is called a field.

Example 4. 

1.  are fields.
2. The integers modulo  for some prime number  can be constructed as a finite field. i.e. we let 

and then  is a finite field. Also this field can be denoted as , ,  or .  
It is known that every finite field has the order of a power of a prime number, and there exists a unique
(up to isomorphism) finite field for each prime power. If  is a power of a prime number, then we can
denote the finite field of order q as , . If  where  is prime, we can also write  or 
and in this case we say that  has characteristic p. i.e.  for all .

3. Let  and let  be a root of  in an extension of (i.e. in a field containing  as a
subfield). In other words,  satisfies the relation  . Consider the following table:  

G G

∗ a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c

e G a ∈ G a ∗ e = e ∗ a = a

a ∈ G ∈ Ga−1 a ∗ = ∗ a = ea−1 a−1

a, b ∈ G a ∗ b = b ∗ a

(R, +, ⋅) R + ⋅

R +

⋅ a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c a, b, c ∈ R

a ⋅ (b + c) = a ⋅ b + a ⋅ c

(b + c) ⋅ a = b ⋅ a + c ⋅ a

ae = ea = a a ∈ R

e ≠ 0 ab = 0

a = 0 b = 0

R ⋅

[3]
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We the set  is called , the finite field of order 8. It can be checked that the
set above satisfies the field axioms, so it is an abelian additive group and forms a commutative
multiplicative group when the zero element is removed. i.e. the multiplicative group \ .  
The column on the left represents the field elements in multiplicative notation. The column on the right
represents the elements in additive form, using the relation provided by .

4. Let  and  is a root of . Then the table of elements of  is

5. Let  and  is the root of . The table of elements of  is

Lemma 5. Let  be a finite field containing a subfield  with  elements. Then  has  elements, where 
.

Theorem 6. Let F be a finite field. Then  has  elements, where the prime  is the characteristic of  and  is
the degree of  over its prime subfield.

Lemma 7. If  is a finite field with  elements, then every  satisfies .
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Lemma 8. If  is a finite field with  elements and  is a subfield of , then the polynomial  in  factors in
 as

Theorem 9. (Existence and Uniqueness of Finite Fields). 
For every prime  and every positive integer  there exists a finite field with  elements. Any finite field with 

 elements is isomorphic to the splitting field of  over .

Lemma 10. The finite field  is an  vector space of dimension . If  is a root of an irreducible polynomial of
degree  with coefficients in , then the set  is a basis of  over .

Rank metric codes

Generally speaking, a linear code is just a subspace of a vector space where the ambient vector space is
equipped with a distance function. Classically, these are subspaces of , endowed with the Hamming metric,
but in recent years, there has been considerable interest in codes that are subspaces of matrices, for the rank
metric. The reader is referred to  for further detail on this topic.

Definition 11. A linear block code of length n over  is a subspace of . If  has dimension k over , we
say that  is an  code. If furthermore  has minimum distance d we say that  is an  code, or an  -

code.  
An -  linear matrix code is a -dimensional subspace of , we also say  is an -  code if
it has minimum rank distance  (Definition 14).

In this project, we focus on  matrix codes over  that are contructed from  block codes over . Let
 be an arbitrary basis of  as a vector space over .  

Let  be the representation of  as a vector of length  with coefficients in , withrt the
basis .  
Given any vector , the matrix represetation of v is the  matrix:  

  

Given a block code , the corresponding matrix code of  with respect to  is defined as .

Example 12.

1. Example 4.3 continuted. For the finite field  as showed above, this field has characteristic , since 
 in this set. It also contains  as a subfield. We could write  since it is obtained from 

 by adjoining the root  to the field . This means that we augment the set  by , and then perform
all possible multiplications and additions until the set stabilizes. So

which is exactly the right column of the table in example 4.3.  
In fact  is an  vector space, with basis .

2. Example 4.4 continuted. For the finite field , this field has characteristic  and we can write:

and  is an  vector space with basis .
3. For example 4.5, the finite field  has characteristic , then we can write:
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and  is an  vector space with basis .
4. Suppose that we have a codeword  with , then

Thus 

5. If the codeword is  with the same basis as above, then

Thus 

Definition 13. A distance function on  is a metric on . Such a function is a map

such that

1.  for all , with equality if and only if ,
2.  for all  (symmetry),
3.  for all  (the triangular inequality).

We then define the weight of a word in  to be its distance to the zero in , i.e. .

Definition 14.  
The Rank distance between a pair of matrices  is defined to be the rank of their difference:  

Example 15.  
We take the result of example 12.4 and 12.5 as our example here. We have  

and

so the rank distance between these two codewords  and  is

where  has -rank  and  has rank 3.

Definition 16. A (linear) matrix code C is an -subspace of . The minimum distance of C is  

Definition 17. Let  be an  matrix code. We define the number  
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which is the number of codewords of C of rank i. The (rank) weight distribution of C is the sequence (
). We say that an integer i is a non-zero weight of  if 

Definition 18. Let  be an  −  code. A matrix  is called a generator matrix of  if  is a  matrix over 
 whose rows form a basis of .  

Therefore,  is a generator matrix for  if and only if

and  has rank .

Defnition 19. Let C be an  -  code. The dual code of  is defined by:

Lemma 20. Let  be an  -  code. Then  is an  -  code.

Definition 21. Let  be an  -  code. An  matrix  over  is called a parity check matrix (PCM)
for  if  for all  .

Lemma 22. Let  be an  -  code. Then  is a  for  if and only if  is a generator matrix for .

Example 23.

1. The binary code  is a  -  code with generator matrix

2. Let . Then . So  has parity check matrix .
3. Let  and let . Let  be a basis of  over . Let  be the -  rank

metric code with parity check matrix

It can be checked that

and that  otherwise. So the weight distribution of  is:

We refer readers to  for further detail relevent to Definition 18,19,20,21,22.

The Rank-Metric Assmus-Mattson Theorem
In this part, we will talk about the main theorem we base on in our project, but before that, we need to look at
some necessary definitions and remarks first. More detail can be found in reference .

Defnition 24. Let  be positive integers and let  be a collection of -dimensional subspaces of . We
say that  forms (the blocks of) a -design over  if every -dimensional subspace of  is contained in the
same number  of elements of . In this case we say that  is a -  design over .  
Designs over  are also known as subspace designs and as designs over finite fields. A -  subspace
design is called a -Steiner system.

(C) := |{X ∈ C : rk(X) = i}|,Wi

(C) : 1 ≤ i ≤ nWi C (C) ≠ 0.Wi

C Fq [n, k] G C G k × n
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Example 25. Let  and for the designs -  where  mod ,  with ambiant space . The
"blocks" are the -subspaces of  of dimension 3 of the form:

Then any -dimensional space  is contained in exactly  blocks of
the form .  

This example is actually a theorem proved by S.Thomas 1987. It is one of the few constructions we know for
subspace designs. Most of other constructions are found by computer but this one is not. We will refer readers
to  for more detail.

Definition 26. Given a vector ,  is the column space of the  matrix.

Definition 27. We say that a subspace  is a support of a code  if  for some codeword .

Remarks 28. A way to construct a design from an AM code here  
We construct a design from an AM -  code as follows:

If  is an AM code, then its dual code also has a subspace design held by the supports of its minimum weight
codewords.

where  is an arbitrary basis of . We call these two designs as -supports of  and -supprts of .  
The basis of this is the following theorem.

Theorem 29. The Rank-Metric Assmus-Mattson Theorem  
Let  be an -  code. Let  be an integer, and assume that

Let  be the minimum distance of . Then for every -basis of  the -supports of  and the -supports
of  form the blocks of a -design over .

Definition 30. Assmus-Mattson (AM) rank-metric code  
Let  be a positive integer. We're interested in the existence of a code  with the following properties.  

1.  is an -  code,  is the minimum rank distance of .
2.   

We will call a code that satisfies the above an Assmus-Mattson (AM) rank-metric code.  
If we can find such a code, then we can construct a -  subspace design.

Example 31. Example 23.3 gives an  -  rank metric code and the weight distribution of  is

We can see that  has - ranks . So if we take , the desired Assmus-mattson property is hold.
i.e.  and . Thus this code is a Assmus-
mattson rank-metric code.

Example 32. The -  rank metric code showed in example 31 has the desired Assmus-mattson property
with . The supports of the codewords of  of rank 2 form a -design over  and the words of rank  in 
form a -  design.

Example 33. Example 23.3, 31 and 32 above is actually a special case where . Generally, let  be a
positive integer and let . Let  be a basis of  over . Let  be the -  rank metric

q = 2 2 (n, 3, 7)2 n ≡ ±1 6 n ≥ 7 F2n

F2 Fn
2

⟨x, y, ⟩ = { x + y + : , , ∈ } where x, y ∈ , x ≠ y
xy
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ax by cxy F2 F×

2n

2 ⟨u, v⟩ := { u + v : , ∈ }where u, v ∈au av au av F2 F×
2n

7

⟨x, y, ⟩
xy

x+y
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24
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code with parity check matrix

then

and that  otherwise. In particular,  has -ranks  and so  has the desired Assmus-mattson
property with . That is,  has exactly one weight  in . The supports of the codewords of  of
rank  form a -design over  and the words of rank  in  form a -  subspace design.

Definition 34. The -binomial or Gaussian coefficient counts the number of -dimensional subspaces of an -
dimensional subspace over  and is given by:

Example 35.

1.  i.e.the number of -dimensional subspaces of an -

dimensional subspace over  is 7.

2.  which means there are 155 -dimensional

subspaces of an -dimensional subspace over .

Tools
Here are some useful tools we will use in the process of determining the non-existence of possible codes.
Some of the tools can help us rule out millions of cases such that our python codes can run much faster than
before. More detail can also be found in .

Definition 36. The rank-metric Singleton bound says that for any -  rank metric code we have:  

Definition 37. Codes that meet the rank-metric Singleton bound are called maximum rank distance (MRD)
codes.

Lemma 38. Let C be an -  code, and let  be any -basis of . Assume . Then the following are
equivalent.

1.  is MRD,
2. The words of rank  in  hold a trivial design over .

Moreover, for ,  is MRD  The words of rank  in  hold a trivial design over .

Example 39. Let  and let  be a set of  -linearly independent elements. Let  be the -
 rank metric code with generator matrix
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Then  is called a Delsarte-Gabidulin code[12] and is optimal, in fact MRD, since it satisfies the rank-metric
Singleton bound. This is a very famous code and its weight distribution is known and uniquely determined by
its parameters . In particular, writing , its weight distribution has the form:

Its dual code  is also MRD, with parameters  and has weight distribution of the form:

where .  has  non-zero weights in , which is less than 
 and so  is an Assmus-Mattson code for any . Similarly, so is  an AM-code.

Example 33 gives -designs and we would like to find designs for . Example 39 gives trivel designs, since
every - dimensional space is a support of the code  in this case which we are not interested in. At the
moment, example 33 and 39 are pretty much the only examples of AM codes known. It would be great to find
more of them.

Remarks 40.  
Part of the difficulty in finding new designs by Rank-Metric Assmus-Mattson Theorem is that very few classes of
rank-metric codes are known, and all the major classes are MRD codes which don't return anything useful (
Lemma 38 shows that MRD codes hold trivial designs and we are not intereted in this case ). And we want to
find more families of rank-metric codes.

One step towards solving the problem would be to look at the parameters of realizable and possible subspace
designs and see whether there exists some code which would induce these designs.

Note that if  is a -  design, then by double-counting the size of the set

we see that , so . So if an AM code  holds this design in its minimum weight

codewords, it must have

 
In other words, by the above property, we can contruct the weight distribution of an possible AM code  and
then we can compute the weight distribution of the dual code  by the following theorem.

Theorem 41. The MacWilliams identities , Theorem  
Let  be an -  code. Then for each  we have:
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In fact, letting  and  we have: 

In particular, we can compute the  from the  via: 

By checking several properties of the elements of the weight distribution of , we can determine the non-
existence of the possible AM codes we constructed. The following section will give more information about this
method.

3. Examples of process and codes

We are going to apply our method to an example to show the process of what we are doing in our project.
Moreover, by some analysis, we found that there will be a large amount of cases needing to be checked. And it
is obvious that it's unwise to check and compute everything by hand, so we chose to use python to help our
checking process.

Example 42. We take -  design as our example. We know that there exists a -  design. If the
blocks of this design were held by a code , it would have to be an -  code such that every -
dimensional subspace of  is contained in exactly  of the -supports of . If  is an AM code for , then
the criterion of the theorem says  must have at most one non-zero weight .

Since the rank of any  matrix is at most , in order for  to have words of weight  we'd need .
We'd also have

Since  has  codewords, we'd need . If , then  and in fact  must have
weight distribution , which is impossible, since  is not a power of 2. If , then 

 and  has weight distribution , so we see that . Then the
possible weight distributions of  are:  
The first case occurs when  and the 2nd when . If  then  is the whole space , which is not
interesting. If we plug these weight distribution values into the equations given by the Macwilliams identities, we
get:

which do not correspond to any actual codes, so neither of theses cases is possible. We could then consider 
 cases and check if there are any possible code parameters that might work. As  increasing, there

are more possibilities for the weight distribution of .

We first tried to use python code to simulate the process of example 42 and the codes showed in the next page.
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m = 5, 6, 7, . . . m
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In [4]:

# 2-(6,3,3)2 design for m = 4
import numpy as np
from numpy.linalg import inv
from fractions import Fraction
 
# define q-binomial
def getqb(n,r,q):
    a=1
    for i in range(r):
        a = a*((q**n-q**i)/(q**r-q**i))
    return a
 
# define the second matrix
def getmtx2(n,k,m,q):
    mtx2 = np.zeros((n+1,n+1)).astype(float)
    for l in range(n+1):
        for i in range(l+1):
            mtx2[l][i]=q**(m*(n-k-l))*getqb(n-i,l-i,q)
    return mtx2
 
# define the first matrix
def getmtx1(n,q):
    mtx1 = np.zeros((n+1,n+1)).astype(float)
    for l in range(n+1):
        for i in range(n-l+1):
            mtx1[l][i] = getqb(n-i,l,q)
    return mtx1
 
# get the inverse of the first matrix
def getinv(mtx):
    mtxinv = inv(mtx)
    return mtxinv
 
# define the process of getting the weight distribution of C perp
def getWCp(mtx1inv,mtx2,WC):
    WCp = np.matmul(mtx1inv,np.matmul(mtx2,WC))
    return WCp
 
# define the d-weight enumerator of C
def getWdC(n,d,t,q,l,m):
    WdC = (q**m-1)*getqb(n,t,q)*l/getqb(d,t,q)
    return WdC
 
# define the weight distribution of C
WC1 = np.zeros((7,1)).astype(float)
WC1[0][0]=1
WC1[3][0]=4185
WC1[4][0]=61350
print('The weight distribution of C when k = 4 is')
print(WC1)
WC2 = np.zeros((7,1)).astype(float)
WC2[0][0]=1
WC2[3][0]=4185
WC2[4][0]=1044390
print('The weight distribution of C when k = 5 is')
print(WC2)
 
# calculate the weight ditribution of C perp
mtx2_1=getmtx2(6,4,4,2)



Codes end here. (Everything printed below the codes are the outputs.)

The codes above is a sample code for -  design when . We call the  matrix in the left
hand side of equation from theorem 41 as 'mtx1' and the  matrix on the right hand side is called
'mtx2'. The results these codes get is actually the same as example 42 where we calculate everything by
magma (which is a progamme normally used in coding theory) if we transfer fraction to float and view the
numbers with  as zero. The reason that the results show  here instead of  may be the
property of the package we use when calculating the inverse of a matrix, but this won't be a problem in our
codes since we have found a way which will be talked about later to deal with this problem.

Lemma 43. If  is an -  rank metric code and , then

1.  for all ,
2.  for all non-zero .

In particular  is a non-negative integer multiple of  for each . 
 

2 (6, 3, 3)2 m = 4 (n + 1) × (n + 1)

(n + 1) × (n + 1)

10−12 7.27595761e − 12 0

C Fqm [n, k, d] X ∈ C

βX ∈ C β ∈ Fqm

rk(βX) = rk(X) β ∈ Fqm

(C)Wi − 1qm i ≥ 1

The weight distribution of C when k = 4 is 
[[  1.00000000e+00] 
 [  0.00000000e+00] 
 [  0.00000000e+00] 
 [  4.18500000e+03] 
 [  6.13500000e+04] 
 [  0.00000000e+00] 
 [  0.00000000e+00]] 
The weight distribution of C when k = 5 is 
[[  1.00000000e+00] 
 [  0.00000000e+00] 
 [  0.00000000e+00] 
 [  4.18500000e+03] 
 [  1.04439000e+06] 
 [  0.00000000e+00] 
 [  0.00000000e+00]] 
The weight distribution of C perp when k = 4 is 
[[  1.00000000e+00] 
 [ -1.08984375e+01] 
 [  4.34765625e+01] 
 [ -9.14062500e+00] 
 [  2.31562500e+02] 
 [ -7.27595761e-12] 
 [  3.63797881e-12]] 
The weight distribution of C perp when k = 5 is 
[[  1.00000000e+00] 
 [ -1.47436523e+01] 
 [  6.83422852e+01] 
 [ -1.13071289e+02] 
 [  7.44726562e+01] 
 [ -7.27595761e-12] 
 [  7.27595761e-12]] 

mtx2_2=getmtx2(6,5,4,2)
mtx1 = getmtx1(6,2)
mtx1inv = getinv(mtx1)
print('The weight distribution of C perp when k = 4 is')
print(getWCp(mtx1inv,mtx2_1,WC1))
print('The weight distribution of C perp when k = 5 is')
print(getWCp(mtx1inv,mtx2_2,WC2))



Example 44. Example 42 comtinued. We know that  should be no less than 3 and we have

So for  i.e. , we have  and  and we are not
interested in the case  since  will be the whole space  in this case. So we have . Of course we also
have the condition where , thus  should be . Then for cases 

, we can contruct the possible weight distribution for . For example, when , the possible
weight distributions of  are:

and then get the weight distribution of  by the equation given by the Macwilliams identities to check
whether it is possible that this weight distribution correspond to any actual codes.

We set two simple properties to determine this:

1. The elements of the weight distribution of  should be integers.
2. The elements of the weight distribution of  should not be negative.

Though everything above is easy to check but we still have a lot of work to do since x can be any number
between  and  and it will take more and more work as  and  increase. Thus, we are going to
use Lemma 43 to improve our mathod above.

Lemma 43 tells that  is a non-negative integer multiple of  for each  if  is an -  rank
metric code and . In other words, we don't need to check every number in  and we just
need to take the numbers which are multiples of  in this interval. i.e. the possible weight distribution of 
can be modified as:

where . And before this, we also need to check whether  is the multiple of  but it is
obvious that it is, because  and  (example 42) are both multiple of . Thus we can take x to
be numbers in range  where  in this example.

Even though the improved method help us rule out a lot of cases but there are still a large amount of cases left.
So asking computer to help our checking will be a nice choice. The following codes are the simulation of the
process of example 44.

m
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In [5]:

Codes end here

The python codes above will return sentences like "Codes may exist for k=, and x=" if there is one case
satisfying the conditions we have set but It seems that these python codes failed to return what we would like to
see, so we can conclude that no such code holding the -  design.

As what we talked about in remarks 40, we are also not interested in the  which meets and exceeds the MRD
(Definition 37), so we can calculate the maximun value kmax by rank-metric Singleton bound. Here we have 

, thus  and  should be . So we only need to check k
from  to  which makes the process much faster than before (we check every  before) i.e. for the
design - , we only need to check  case since the minimum of  is also 3.

Up to now, we have just talked about the cases  and . And for the cases such that 
getting larger, the process will be similar with the  case. We just need to add one more variable to the
possible weight distribution of  each time as  increasing by  until . For example when , what

2 (6, 3, 3)2

k

m = 5 ≤ n = 6 k ≤ (m − d + 1) = (5 − 3 + 1) = = 3.6
n

m

6

5

18

5
kmax 3

1 kmax = 3 k ≤ 6

2 (6, 3, 3)2 k = 3 k

m = d,m = d + 1 m = d + 2 m

m = d + 2

C m − d 1 m = n m = d + 3

W3(C) is  8649.0 when m = 5 
Programme ends here 

n = 6
d = 3
t = 2
q = 2
l = 3
m = 5
W3C5 = getWdC(n,d,t,q,l,m)
print('W3(C) is ',W3C5,'when m = 5')
mtx1_5 = getmtx1(n,q)
mtx1_5inv = getinv(mtx1_5)
for k in range(3,5):
    if q**(m*k)>W3C5+1:
        if float((q**(m*k)-W3C5-1)/(q**m-1)).is_integer()==True:
            mtx2_5 = getmtx2(n,k,m,q)
            for x in range(int((q**(m*k)-W3C5-1)/(q**m-1))+1):
                WC5 = np.zeros((n+1,1)).astype(np.longfloat)
                WC5[0][0]=1
                WC5[3][0]=W3C5
                WC5[4][0]=q**(m*k)-W3C5-1-x*(q**m-1)
                WC5[5][0]=x*(q**m-1)
                flag = True
                WCp_5=getWCp(mtx1_5inv,mtx2_5,WC5)
                for i in range(1,n+1):
                    if round(WCp_5[i][0])==0:
                        continue
                    elif -10**(-5) < (round(WCp_5[i][0])-WCp_5[i][0]) < 10**(-5):
                        continue
                    else:
                        flag = False
                        break
                if flag == True:
                    print('Codes may exist for k =',k,'and x = ',x)                       
    elif q**(m*k)==W3C5+1:
        print('Here is the case q**(m*k)==W3C5+1 and k =',k)
print('Programme ends here')



we need to do is just add one more variable which corresponds to the  in the weight distribution of the
possible codes. i.e. for example, the -  design, when , the weight distribution of  will
become:

and then do the same process as before (checking weight distribution of dual codes) for every possible .

Of course the python codes above are not beautiful since we need to modify several places everytime we move
to a new design or a new . And as n and m increasing, the times of checking will also increase exponentially
such that it may run for several years in my computer. So we chose to run our python codes on school cluster
which is much faster than our own computers and can run jobs simultaneously. To make everything we modify
as simple as possible eveytime when we want to move to a new design and prevent making codes in mess, we
make some new python codes (which are then our main codes in this project) and put them in the next several
pages:

(C)Wd+3

2 (6, 3, 3)2 m = d + 3 = 6 C

[1, 0, 0, 17577 , ( − 17577 − 1 − x ⋅ ( − 1) − y ⋅ ( − 1)) , x ⋅ ( − 1) , y ⋅ ( − 1)]2mk qm qm qm qm

x, y, k

λ



In [ ]:

import numpy as np
from numpy.linalg import inv
from fractions import Fraction
 
# define q-binomial
def getqb(n,r,q):
    a=1
    for i in range(r):
        a = a*((q**n-q**i)/(q**r-q**i))
    return a
 
# define the d-weight enumerator of C
def getWdC(n,d,t,q,l,m):
    WdC = (q**m-1)*getqb(n,t,q)*l/getqb(d,t,q)
    return WdC
 
# define the second matrix
def getmtx2(n,k,m,q):
    mtx2 = np.zeros((n+1,n+1)).astype(float)
    for l in range(n+1):
        for i in range(l+1):
            mtx2[l][i]=q**(m*(n-k-l))*getqb(n-i,l-i,q)
    return mtx2
 
# define the first matrix
def getmtx1(n,q):
    mtx1 = np.zeros((n+1,n+1)).astype(float)
    for l in range(n+1):
        for i in range(n-l+1):
            mtx1[l][i] = getqb(n-i,l,q)
    return mtx1
 
# get the inverse of the first matrix
def getinv(mtx):
    mtxinv = inv(mtx)
    return mtxinv
 
# define the process of getting the weight distribution of C perp
def getWCp(mtx1inv,mtx2,WC):
    WCp = np.dot(mtx1inv,np.dot(mtx2,WC))
    return WCp
 
# For convenience, I am going to define codes for getting maximun of k by MRD
def getkmax(n,d,m):
    if m >= n:
        km = int(np.floor(n-d+1))
        if float(km) == float(n-d+1):
            kmax = km-1
        else:
            kmax = km
    elif m < n:
        km = int(np.floor((n*(m-d+1))/m))
        if float(km) == float((n*(m-d+1))/m):
            kmax = km-1
        else:
            kmax = km
    return kmax
 
# Count the number of k which are available



def chk_k(t,n,d,l,q,m):
    WdC = getWdC(n,d,t,q,l,m)
    kmax = getkmax(n,d,m)
    count = 0
    for i in range(1,kmax+1):
        if q**(i*m)-WdC-1 >= 0:
            count += 1
    return count
 
# Since we have maximum k value (by MRD), then lambda also have maximum value as below
def getlmax(t,n,d,q,m,kmax):
    lmax = int(np.floor((2**(m*kmax)-1)*getqb(d,t,q)/((q**m-1)*getqb(n,t,q))))
    return lmax
 
def ChkExs(t,n,d,l,q,m):
    mtx1 = getmtx1(n,q)
    mtx1inv = getinv(mtx1)
    if m < d:
        f = open("output.txt","a+")
        # Set case m<d as type 1 non-exsitence
        f.write("\n"+"No such code exists, type 1")
        f.close()
    else:
        # get the maximun k by MRD
        kmax = getkmax(n,d,m)
        
        # No variable Case
        if m == d:
            WdC = getWdC(n,d,t,q,l,m)
            # Check whether WdC is integer
            if -10**(-5) < (round(WdC)-WdC) < 10**(-5):
                # Check whether WdC+1 is power of q
                if -10**(-5) < (round(np.log(WdC+1)/np.log(q))-(np.log(WdC+1)/np.log(q))) 
                    < 10**(-5):
                    f = open("output.txt","a+")
                    f.write("\n"+"Code may exist for m ="+str(m))
                    f.close()
                else:
                    f = open("output.txt","a+")
                    # Set case float(np.log(WdC+1)/np.log(q)).is_integer() == False as 
                    # type 3 non-exsitence
                    f.write("\n"+"No such code exists, type 3")
                    f.close()
            else:
                f = open("output.txt","a+")
                # Set case float(WdC).is_integer() == False as type 2 non-exsitence
                f.write("\n"+"No such code exists, type 2")
                f.close()
        
        # One variable Case
        if m == d+1:
            WdC = getWdC(n,d,t,q,l,m)
            if -10**(-5) < (round(WdC)-WdC) < 10**(-5):
                for i in range(1,kmax+1):
                    if q**(i*m)-WdC-1 == 0:
                        if -10**(-5) < (round(np.log(WdC+1)/np.log(q))-(np.log(WdC+1)
                        /np.log(q))) < 10**(-5):
                            f = open("output.txt","a+")
                            f.write("\n"+"Code may exist for m ="+str(m)+"and k ="+str(i))
                            f.close()
                        else:



                            f = open("output.txt","a+")
                            # Set case float(np.log(WdC+1)/np.log(q)).is_integer() == 
                            #False as type 3 non-exsitence
                            f.write("\n"+"No such code exists, type 3")
                            f.close()
                    elif q**(i*m)-WdC-1 > 0:
                        WC = np.zeros((n+1,1)).astype(float)
                        WC[0][0] = 1
                        WC[d][0] = WdC
                        WC[d+1][0] = q**(i*m)-WdC-1
                        mtx2 = getmtx2(n,i,m,q)
                        # Get the weight distribution of C perp
                        WCp = getWCp(mtx1inv,mtx2,WC)
                        flag = True
                        for j in range(1,n+1):
                            if round(WCp[j][0]) == 0:
                                continue
                            # Consider float as integer when error is small enough
                            elif -10**(-5) < (round(WCp[j][0])-WCp[j][0]) < 10**(-5):
                                if round(WCp[j][0]) < 0:
                                    flag = False
                                    break
                                else:
                                    continue
                            else:
                                flag = False
                                break
                        if flag == True:
                            f = open("output.txt","a+")
                            f.write("\n"+"Code may exist for m ="+str(m)+"and k ="+str(i))
                            f.close()
                f = open("output.txt","a+")
                # Set case q**(i*m)-WdC-1 > 0 as type 4 ending
                f.write("\n"+"Program ends here, type 4")
                f.close()
            else:
                f = open("output.txt","a+")
                # Set case float(WdC).is_integer() == False as type 2 non-exsitence
                f.write("\n"+"No such code exists, type 2")
                f.close()
        
        # Two variables case
        if m == d+2:
            WdC = getWdC(n,d,t,q,l,m)
            if -10**(-5) < (round(WdC)-WdC) < 10**(-5):
                for i in range(1,kmax+1):
                    if q**(i*m)-WdC-1 == 0:
                        #print("k =",i)
                        if -10**(-5) < (round(np.log(WdC+1)/np.log(q))-
                            (np.log(WdC+1)/np.log(q)))< 10**(-5):
                            f = open("output.txt","a+")
                            f.write("\n"+"Code may exist for m ="+str(m)+"and k ="+str(i))
                            f.close()
                        else:
                            f = open("output.txt","a+")
                            # Set case float(np.log(WdC+1)/np.log(q)).is_integer() == 
                            # False as type 3 non-exsitence
                            f.write("\n"+"No such code exists, type 3")
                            f.close()
                    elif q**(i*m)-WdC-1 > 0:
                        #print("k =",i)



                        mtx2 = getmtx2(n,i,m,q)
                        for x in range(int((q**(m*i)-WdC-1)/((q**m)-1))+1):
                            WC = np.zeros((n+1,1)).astype(float)
                            WC[0][0] = 1
                            WC[d][0] = WdC
                            WC[d+1][0] = q**(i*m)-WdC-x*((q**m)-1)-1
                            WC[d+2][0] = x*((q**m)-1)
                            flag = True
                            WCp = getWCp(mtx1inv,mtx2,WC)
                            for j in range(1,n+1):
                                if round(WCp[j][0]) == 0:
                                    continue
                                elif -10**(-5) < (round(WCp[j][0])-WCp[j][0]) < 10**(-5):
                                    if round(WCp[j][0]) < 0:
                                        flag = False
                                        break
                                    else:
                                        continue
                                else:
                                    flag = False
                                    break
                            if flag == True:
                                f = open("output.txt","a+")
                                f.write("\n"+"Code may exist for m ="+str(m)+"and k ="+
                                str(i)+"x = "+str(x))
                                f.close()
                f = open("output.txt","a+")
                # Set case q**(i*m)-WdC-1 > 0 as type 4 ending
                f.write("\n"+"Program ends here, type 4")
                f.close()
            else:
                f = open("output.txt","a+")
                # Set case float(WdC).is_integer() == False as type 2 non-exsitence
                f.write("\n"+"No such code exists, type 2")
                f.close()
                
        # Three variables case
        if m == d+3:
            WdC = getWdC(n,d,t,q,l,m)
            if -10**(-5) < (round(WdC)-WdC) < 10**(-5):
                for i in range(1,kmax+1):
                    if q**(i*m)-WdC-1 == 0:
                        #print("k =",i)
                        if -10**(-5) < (round(np.log(WdC+1)/np.log(q))-
                            (np.log(WdC+1)/np.log(q))) < 10**(-5):
                            f = open("output.txt","a+")
                            f.write("\n"+"Code may exist for m ="+str(m)+"and k ="
                            +str(i))
                            f.close()
                        else:
                            f = open("output.txt","a+")
                            # Set case float(np.log(WdC+1)/np.log(q)).is_integer() == 
                            # False as type 3 non-exsitence
                            f.write("\n"+"No such code exists, type 3")
                            f.close()
                    elif q**(i*m)-WdC-1 > 0:
                        #print("k =",i)
                        mtx2 = getmtx2(n,i,m,q)
                        for x in range(int((q**(m*i)-WdC-1)/((q**m)-1))+1):
                            for y in range(int((q**(m*i)-WdC-1)/((q**m)-1))-x+1):
                                WC = np.zeros((n+1,1)).astype(float)



                                WC[0][0] = 1
                                WC[d][0] = WdC
                                WC[d+1][0] = q**(i*m)-WdC-x*((q**m)-1)-y*((q**m)-1)-1
                                WC[d+2][0] = x*((q**m)-1)
                                WC[d+3][0] = y*((q**m)-1)
                                flag = True
                                WCp = getWCp(mtx1inv,mtx2,WC)
                                for j in range(1,n+1):
                                    if round(WCp[j][0]) == 0:
                                        continue
                                    elif -10**(-5) < (round(WCp[j][0])-WCp[j][0]) 
                                    < 10**(-5):
                                        if round(WCp[j][0]) < 0:
                                            flag = False
                                            break
                                        else:
                                            continue
                                    else:
                                        flag = False
                                        break
                                if flag == True:
                                    f = open("output.txt","a+")
                                    f.write("\n"+"Code may exist for m ="+str(m)+"and k ="
                                    +str(i)+"x = "+str(x))
                                    f.close()
                f = open("output.txt","a+")
                # Set case q**(i*m)-WdC-1 > 0 as type 4 ending
                f.write("\n"+"Program ends here, type 4")
                f.close()
            else:
                f = open("output.txt","a+")
                # Set case float(WdC).is_integer() == False as type 2 non-exsitence
                f.write("\n"+"No such code exists, type 2")
                f.close()
            
        # Four variables case
        if m == d+4:
            WdC = getWdC(n,d,t,q,l,m)
            if -10**(-5) < (round(WdC)-WdC) < 10**(-5):
                for i in range(1,kmax+1):
                    if q**(i*m)-WdC-1 == 0:
                        #print("k =",i)
                        if -10**(-5) < (round(np.log(WdC+1)/np.log(q))-
                        (np.log(WdC+1)/np.log(q))) < 10**(-5):
                            f = open("output.txt","a+")
                            f.write("\n"+"Code may exist for m ="+str(m)+"and k ="+str(i))
                            f.close()
                        else:
                            f = open("output.txt","a+")
                            # Set case float(np.log(WdC+1)/np.log(q)).is_integer() == 
                            # False as type 3 non-exsitence
                            f.write("\n"+"No such code exists, type 3")
                            f.close()
                    elif q**(i*m)-WdC-1 > 0:
                        #print("k =",i)
                        mtx2 = getmtx2(n,i,m,q)
                        for x in range(int((q**(m*i)-WdC-1)/((q**m)-1))+1):
                            for y in range(int((q**(m*i)-WdC-1)/((q**m)-1))-x+1):
                                for z in range(int((q**(m*i)-WdC-1)/((q**m)-1))-x-y+1):
                                    WC = np.zeros((n+1,1)).astype(float)
                                    WC[0][0] = 1



                                    WC[d][0] = WdC
                                    WC[d+1][0] = q**(i*m)-WdC-x*((q**m)-1)-y*((q**m)-1)
                                    -z*((q**m)-1)-1
                                    WC[d+2][0] = x*((q**m)-1)
                                    WC[d+3][0] = y*((q**m)-1)
                                    WC[d+4][0] = z*((q**m)-1)
                                    flag = True
                                    WCp = getWCp(mtx1inv,mtx2,WC)
                                    for j in range(1,n+1):
                                        if round(WCp[j][0]) == 0:
                                            continue
                                        elif -10**(-5) < (round(WCp[j][0])-WCp[j][0]) 
                                        < 10**(-5):
                                            if round(WCp[j][0]) < 0:
                                                flag = False
                                                break
                                            else:
                                                continue
                                        else:
                                            flag = False
                                            break
                                    if flag == True:
                                        f = open("output.txt","a+")
                                        f.write("\n"+"Code may exist for m ="+str(m)+
                                        "and k ="+str(i)+"x = "+str(x))
                                        f.close()
                f = open("output.txt","a+")
                # Set case q**(i*m)-WdC-1 > 0 as type 4 ending
                f.write("\n"+"Program ends here, type 4")
                f.close()
            else:
                f = open("output.txt","a+")
                # Set case float(WdC).is_integer() == False as type 2 non-exsitence
                f.write("\n"+"No such code exists, type 2")
                f.close()
            
 
# For convenience, define codes for flexible lambda and check the lambda maximum by codes
def ChkExs_l(t,n,d,q,m,lmin,lmax):
    kmax = getkmax(n,d,m)
    l_end = getlmax(t,n,d,q,m,kmax)
    f = open("output.txt","a+")
    f.write("\n\n"+"Here starts t = "+str(t)+" n = "+str(n)+" d = "+str(d)+" q = "+str(q)
    +" m = "+str(m)+" lmin = "+str(lmin)+" lmax = "+str(lmax)+" designs.")
    f.write("\n"+"Where kmax = "+str(kmax)+" and lambda_end = "+str(l_end)+" by MRD: ")
    f.close()
    print("maximun k =",kmax)
    print("maximun lambda can be",l_end)
    if l_end < lmin:
        f = open("output.txt","a+")
        # Set case l_end < lmin as type 5 non-exsitence
        f.write("\n"+"For all lambda here, No such code exists, type 5")
        f.close()
    elif lmin <= l_end <= lmax:
        for i in range(lmin,l_end+1):
            #print("lambda = ",i)
            #print("# of avaiable k :",chk_k(t,n,d,i,q,m))
            f = open("output.txt","a+")
            f.write("\n"+"For lambda = "+str(i))
            f.close()
            ChkExs(t,n,d,i,q,m)



Sample application codes:

In [11]:

Codes end here

We have updated the codes such that it can check for  and . What we
need to do everytime we move to a new design are just setting parameters  and the interval of  we
want to check. The codes will write the results into a file called "output.txt" in the same file where python codes'
file is.

The codes will also directly print out the maximum  it can reach by MRD and the maximun  according to the
total number of elements can a code have when we set parameters unchanged. For example, we have -
design with  as showed above and this design is known realizable then

and if we set  unchanged then we require that  which means that  will

have a bound above in this case. That is why the codes showed above as "maximun lambda can be 11".

The codes will only return successful cases or something (non-existence) with type 1,2,3,4,5 which have been
explained in the line starting with # in the codes. Actually we met some problems when making the codes and
applying them in the school cluster. In the codes, we set an interval  and check whether the error
between a number and its rounding number is in this interval to determine whether it is integer. Before this, we
first use  command to check integers but we found that python will transfer
fraction to float first which is no longer exactly that fraction anymore when dealing with fraction numbers, so the
result number we get will sometimes have a very small error compared with the exact results and this will make
the command not work well. An example showed below will make everything much clearer.

Example 45. We want to calculate q-binomial:  and the

python codes will return:

m = d,m = d + 1,m = d + 2,m = d + 3 m = d + 4

t, n, d, q,m λ

k λ

2 (6, 3, λ)

kmax = 3

(C) = ( − 1) λW3 2m [ ]
6

2 2
[ ]
3

2

−1

2

m = 5 − ( − 1) λ − 1 ≥ 02m⋅kmax 2m [ ]
6

2 2
[ ]
3

2

−1

2

λ

[− , ]10−5 10−5

f loat(number). is_integer() == Tru′ e′

:= = ⋅ ⋅ = ⋅ ⋅ = 155[ ]
5

3 2

∏3−1
i=0

−25 2i

−23 2i

−25 20

−23 20

−25 21

−23 21

−25 22

−23 22

31

7

30

6

28

4

maximun k = 3 
maximun lambda can be 11 

    elif lmax < l_end:
        for i in range(lmin,lmax+1):
            #print("lambda = ",i)
            #print("# of avaiable k :",chk_k(t,n,d,i,q,m))
            f = open("output.txt","a+")
            f.write("\n"+"For lambda = "+str(i))
            f.close()
            ChkExs(t,n,d,i,q,m)

# 2-(6,3,lambda)2 design
t = 2
n = 6
d = 3
q = 2
m = 5
lmin = 3
lmax = 15
ChkExs_l(t,n,d,q,m,lmin,lmax)



In [6]:

which is a number very close to 155 and that's exactly the problem we have just talked about. Also as we said
after the outputs of the codes for example 42, the package we use for getting inverse of a matrix will have the
same problem. Thus we introduce a way to solve this problem as what we have said before: Calculate the error
between the number the codes return and the rounding number of it. If the error is small enough, then we view
this number the codes return as integer and continue the process. We view those errors which are in the
interval  as small enough.

And here are some tables we focus on for checking existence of possible codes.

Tables of parameters of design known to be realizable [7]  
 
Table 1 Parameters of simple -  designs known to be realizable

-

- . Open:

- . Open:

- . Open:

-
 

. Open:

- . Open: 

-

-
 

 

- Open: 

-

-

-

-
 
 

- Open: 

-

-

-
 

-

[− , ]10−5 10−5

t (n, d, λ)2

t (n, d, λ)q λmin λmax λ

2 (6, 3, λ)2 3 15 3, 6 −

2 (7, 3, λ)2 1 31 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15 −

2 (8, 3, λ)2 21 63 21 −

2 (8, 4, λ)2 7 651
7, 14, 21, 35, 49, 56, 63, 70, 84, 91, 98, 105, 112, 126, 133, 140, 147, 154, 161, 168, 175, 189, 196, 203, 210,

217, 231, 245, 252, 259, 266, 273, 280, 294, 301, 308, 315 28, 42, 77, 119, 182, 224, 268, 287, 322

3 (8, 4, λ)2 1 31 11, 15 1,… , 10, 12, 13, 14

2 (9, 3, λ)2 1 127 7, 12, 19, 21, 22, 24, 31, 36, 42, 43, 48, 49, 55, 60, 63

2 (9, 4, λ)2 7 2667

21, 63, 84, 126, 147, 1889, 210, 252, 273, 315, 336, 378, 399, 441, 462, 504, 525, 567, 588, 630, 651, 693,

714, 756, 777, 819, 840, 882, 889, 903, 945, 966, 1008, 1029, 1071, 1092, 1134, 1155, 1197, 1218,

1260, 1281, 1323

3 (9, 4, λ)2 21 63 21

2 (10, 3, λ)2 3 255 15, 30, 45, 60, 75, 90, 105, 120

2 (10, 4, λ)2 5 10795 595, 1020, 1615, 1785, 1870, 2040, 2635, 3060, 3570, 3655, 4080, 4165, 4675, 5100, 5355

3 (10, 4, λ)2 1 127 −

2 (10, 5, λ)2 15 97155

765, 4590, 5355, 6885, 7650, 9180, 9945, 2295, 3060, 11475, 12240, 13770, 14535, 16065, 16830, 18360,

191125, 20655, 21420, 22950, 23715, 25245, 26010, 27540, 28305, 29835, 30600, 32130, 32385, 32895,

34425, 35190, 36720, 37485, 39015, 39780, 41310, 42075, 43605, 44370, 45900, 46665, 48195

3 (10, 5, λ)2 21 63 21

2 (11, 3, λ)2 7 511 7, 245, 252

2 (11, 4, λ)2 35 43435 −

2 (11, 5, λ)2 5 788035
43435, 74460, 117895, 130305, 136510, 148920, 192355, 223380, 260610, 266815, 297840, 304045,

341275, 372300, 390915

2 (12, 3, λ)2 3 1023 −

Out[6]:

155.00000000000003

(31/7)*(30/6)*(28/4)
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Table 2 Parameters of simple -  designs known to be realizable

-

- . Open:

- .Open:

- . Open:

-

-

-

-

Table 3 Parameters of simple -  designs known to be realizable

-

- . Open: 

-

-

Table 4 Parameters of simple -  designs known to be realizable

-

- . Open: 

-

-

-

The tables above are designs which are known to be realizable and we will focusing but not only on the
parameters showed in these tables. We will check every design and every  between the  and  above but
not just those specific  showed in the tables which have been proved to be realizable or are open for proof.

If our codes return something exciting i.e. if it returns that some design with  we set may be held by some

2 (12, 4, λ)2 7 174251 −

2 (12, 5, λ)2 465 6347715 −

2 (12, 6, λ)2 31 53743987
2962267, 5078172, 8040439, 8886801, 9309982, 10156344, 13115611, 15234516, 17773602, 18196783,

20312688, 20735869, 23274955, 25390860, 26660403

2 (12, k, λ)2 − − −

2 (13, 3, λ)2 1 2047 1, 2,… , 6, 7, 8,… , 1023 −

t (n, d, λ)3

t (n, d, λ)q λmin λmax λ

2 (6, 3, λ)3 4 40 8, 12, 16, 20 −

2 (7, 3, λ)3 1 121 5, 6,… , 12, 13, 14,… , 40, 41, 42,… , 60 −

2 (8, 3, λ)3 52 364 52, 104, 156 −

2 (8, 4, λ)3 13 11011 91 ⋅ 5, 91 ⋅ 6,… , 91 ⋅ 60

2 (10, 3, λ)3 4 3280 1640

2 (11, 3, λ)3 13 9841 13

2 (13, 4, λ)2 1 88573 13

t (n, d, λ)4

t (n, d, λ)q λmin λmax λ

2 (6, 3, λ)4 5 85 10, 15, 25, 30, 35 5, 40

2 (7, 3, λ)4 1 341 21

2 (8, 4, λ)4 21 93093 5733

t (n, d, λ)5

t (n, d, λ)q λmin λmax λ

2 (6, 3, λ)5 6 78 78 6, 12,… , 72

2 (7, 3, λ)5 1 781 31

2 (8, 4, λ)5 31 508431 20181

2 (10, 4, λ)5 6 97656 48828

λ λmin λmax

λs

m



codes by our method, then we will use magma to check the weight distribution of  again to prevent that error
interval we set is a bit loose (magma codes don't have error problem). Setting a loose error interval will just let
codes check more cases (i.e. viewing more cases as something we want to find but actually they may not) to
prevent the checking integer problem may make some problem (Even the probability of this happening is very
small, almost impossible if we set a tight and appropriate interval, but we still think that setting a loose interval
will be better). In other words, we won't miss any successful cases. Just prevent anything unpredictable
happening, we choose to double check by both magma and python and set a slightly loose error interval.

Thanks to my supervisor's help, she has finished the magma codes already before. After her consent, the
codes will be put below. These codes are for checking weight distrution of dual codes in magma.

Magma codes:

In [ ]:

C⊥

/////computes the `q-product', as shown below,
/////which is used to compute the q-binomial coefficient
qprod:=function(q,t,r)
if r in [1..t] then 
return &*{*q^t-q^j:j in [0..r-1]*};
elif
r eq 0 then
return 1;
else   
return 0;   
end if;
end function;
 
/////computes the q-binomial coefficient
qbin:=function(q,n,r) 
if r le -1 then
ans:=0;  
elif
q eq 1 then
ans:=Binomial(n,r);
else   
ans:=qprod(q,n,r)/qprod(q,r,r);
end if;
return ans;
end function;
 
/////computes the (n+1) x (n+1) matrix that appears
/////in the LHS of Th 6 of project.pdf notes
qpascal1:=function(q,n)
L:=[[qbin(q,n-i,j): i in [0..n]]: j in [0..n]];
M:=Matrix(Rationals(),n+1,n+1,L);
return M;
end function;
 
/////computes the (n+1) x (n+1) matrix that appears
/////in the RHS of Th 6 of project.pdf notes
qpascal2:=function(q,n,m,k)
L:=[[q^(m*(n-k-j))*qbin(q,n-i,j-i): i in [0..n]]: j in [0..n]];
M:=Matrix(Rationals(),n+1,n+1,L);
return M;
end function;



Sample application codes:

In [ ]:

Codes end here  

And if there is one case successfully returned by both python codes and magma codes, then we will check
whether this possible code is AM code or not. If it's not, we will move to another design or another  and
continue our checking. And it will be exciting if the codes can return some case.

4. Results and Conclusions

Here are some tables which show the results of what we have checked based on the previous tables.

Table 1 Parameters of simple -  designs known to be realizable

-

-

-

-

-

-

-

-

-

-

m

t (n, d, λ)2

t (n, d, λ)q λmin λmax m = d m = d + 1 m = d + 2 m = d + 3 m = d + 4

2 (6, 3, λ)2 3 15 × × × − −

2 (7, 3, λ)2 1 31 × × × − −

2 (8, 3, λ)2 21 63 × × × − −

2 (8, 4, λ)2 7 651 × × × − −

3 (8, 4, λ)2 1 31 × × × − −

2 (9, 3, λ)2 1 127 × × × − −

2 (9, 4, λ)2 7 2667 × × × − −

3 (9, 4, λ)2 21 63 × × × − −

2 (10, 3, λ)2 3 255 × × × − −

/////checking w.e. of dual code for putative code
/////holding a 2-(7,3,1) design
/////checked m=4,m=5,k=4,5
 
m:=7;
k:=4;
f:=Floor((2^(m*k)-(2^m-1)*381-1)/(2^m-1));  
for x in [1..f] do
W:=Matrix(Rationals(),8,1,[1,0,0,(2^m-1)*381,0,0,2^(m*k)-(2^m-1)*(381+x)-1,x*(2^m-1)]);
wenu:=qpascal1(2,7)^(-1)*qpascal2(2,7,7,k)*W;
flag:=true;
for i in [2..8] do
if IsIntegral(wenu[i][1]) eq false then
flag:=false;
break;
end if;
end for;
if flag eq true then
print wenu;
end if;
end for;
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Table 2 Parameters of simple -  designs known to be realizable

-

-

-

-

-

-

-

-

Table 3 Parameters of simple -  designs known to be realizable

-

-

-

-

Table 4 Parameters of simple -  designs known to be realizable

-

-

-

2 (10, 4, λ)2 5 10795 × × × − −

3 (10, 4, λ)2 1 127 × × × − −

2 (10, 5, λ)2 15 97155 × × × − −

3 (10, 5, λ)2 21 63 × × × − −

2 (11, 3, λ)2 7 511 × × × − −

2 (11, 4, λ)2 35 43435 × × × − −

2 (11, 5, λ)2 5 788035 × × × − −

2 (12, 3, λ)2 3 1023 × × − − −

2 (12, 4, λ)2 7 174251 × × × − −

2 (12, 5, λ)2 465 6347715 × × × − −

2 (12, 6, λ)2 31 53743987 × × × − −

2 (12, k, λ)2 − − − − − − −

2 (13, 3, λ)2 1 2047 × × × − −

t (n, d, λ)3

t (n, d, λ)q λmin λmax m = d m = d + 1 m = d + 2 m = d + 3 m = d + 4

2 (6, 3, λ)3 4 40 × × × − −

2 (7, 3, λ)3 1 121 × × × − −

2 (8, 3, λ)3 52 364 × × × × −

2 (8, 4, λ)3 13 11011 × × × − −

2 (10, 3, λ)3 4 3280 × × × − −

2 (11, 3, λ)3 13 9841 × × × − −

2 (13, 4, λ)2 1 88573 × × × − −

t (n, d, λ)4

t (n, d, λ)q λmin λmax m = d m = d + 1 m = d + 2 m = d + 3 m = d + 4

2 (6, 3, λ)4 5 85 × × × × ×

2 (7, 3, λ)4 1 341 × × × × −

2 (8, 4, λ)4 21 93093 × × × × −

t (n, d, λ)5

t (n, d, λ)q λmin λmax m = d m = d + 1 m = d + 2 m = d + 3 m = d + 4

2 (6, 3, λ)5 6 78 × × × × ×

2 (7, 3, λ)5 1 781 × × × × −



-

-

-

The " " in the tables above means we have checked this design and no code hold that design.  
The "-" means that we haven't checked up to such  for such design or no interval of  of such design are
known to be realizable.  

As we said before, we used 'school cluster' to run our codes. We first use a server called 'magnet' but we heart
from administrator that it is not that fast as another one called 'orr2'. But when we tried to apply our codes on
'orr2', we found a problem. When you try dividing an interger by an integer, the python will always return an
integer. For example, if we want the python in 'orr2' help us calculate  dividng by  it will of course return 2 but
if we let python calculate what is  over , it will return . After some checking and experiments, we found the
reason why that happened. It's because of the version of python. The python the 'orr2' use is version 2.7 but my
codes is for version 3.0 and above and that's why the codes do work in my computer but return wrong results in
the server. With the big help from administrator, we finally can run our codes well in the server.

Up to now, we have checked (as the tables showed above) all the designs for  except the design -
 with  case. The codes of this case are still running and it may take more than 1 year to finish

(since there are really too many cases needing to be checked). So we can't conclude anything about this
designs whith , but for this design up to  and all other designs up to  case, we can
conclude that no code hold any of these designs. Yes, even we set a relatively large checking-integer error
interval , the codes still did't return anything we'd like to see.  

In the future, we will first move to  and  cases based on the tables above (since we have
finished the python codes for these two cases). It will take a lot more time than  case to finish running
the codes for those designs. We will also continue to code for  cases as  going larger and larger if the
codes still return nothing after finishing the  and  cases.

Hope that our codes will return something exciting in the future.
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