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The latent position model is a widely used statistical model for the anal-
ysis of social network interactions. This model postulates that the nodes
are embedded as points in a Euclidean social space, and that nodes that are
close in this space are more likely to exhibit social interactions. One of the
main difficulties encountered is that the likelihood of a latent position model
is unaffected by rotations, translations and reflections of the latent positions.
This in turn creates a non-identifiability problem. The goal of this research
project is to adopt a decision theoretic approach to define an optimality cri-
terion that can be used to summarise a posterior sample of latent positions.
This would allow one to extract a meaningful point estimate for the model’s
parameters which would overcome said identifiability issues.
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1 Introduction

1.1 Latent Position Models

Network models are used to study actors and the relationship between them.
Latent position model was first introduced by Hoff, Raftery and Handcock [1]
as an alternative approach to network modelling. The estimation of the
latent positions is usually performed in a Bayesian setting using Markov chain
Monte Carlo methods to sample from a posterior distribution of interest.
Samples of positions for each actor can be captured from this algorithm.
In this paper, we will primarily focus on the 2 dimensional space using the
Euclidean distances.

1.2 Procrustes Analysis

Procrustes analysis is a popular method to compare shapes between data
while allowing superimposition on each individual set of points in the data
set. Procrustes imposition includes scaling, rotating, translating and reflect-
ing. In this paper, we will be using Partial Procrustes analysis which does
not allow scaling from the superimposition.

Partial Procrustes analysis does not affect the representativeness of a
latent position model. Two latent position models can have different co-
ordinates for their actors but they would represent the exact same informa-
tion if the relative positions of a specific actor to the others are the same in
both models.

1.3 The Non-Identifiability Problem

Generally, the posterior mode of the samples generated from the MCMC
algorithm is chosen as the optimal positions for the actors [1]. Alternatively,
one could apply Partial Procrustes superimposition on each sample to achieve
maximum likeliness between these MCMC samples, then the optimal position
for each actor is the average position from the transformed positions.

In the latent position model, the position of each actor is meaningless
without considering the relative position of this actor to the others in the
latent space, since each latent position model can be modified under Partial
Procrustes superimposition as mention in 1.2. Therefore, we will try to come
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up with a method that will determine the optimal positions for the actors by
looking at the distances between them, rather then the actual positions.

The following approach is suggested using the Bayes Estimator to give
penalties (or losses) to the difference in total distances between different
MCMC samples.

2 Bayes Estimator

2.1 Definition

Suppose an unknown parameter θ is known to have a prior distribution π.
i.e. θ ∼ π. Let θ̂ be an estimator of θ, and L be a loss function.

Then the Bayes Risks is given by

E
π

(L(θ, θ̂))

and the Bayes Estimator is

arg min
θ̂

E
π

(L(θ, θ̂))

Generally, a loss function L(θ, θ̂) returns a loss or a cost that describe the
difference or the error of the predictor θ̂ to the true value θ. There is not a
general rule of how to pick or build a loss function. However, the two loss
functions below are widely used.

Mean Absolute Error:
| θ − θ̂ |

1

n

n∑
i=1

| θi − θ̂i |

Mean Square Error:
(θ − θ̂)2

1

n

n∑
i=1

(θi − θ̂i)2

Ultimately, we are interested in finding out the sample with the optimal
positions from all our samples based on the total distances. In the other
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words, the total distances between all actors in this optimal sample has the
least difference to other samples, compared to picking any other samples as
the optimal solution.

If we set
dij = ‖zi· − zj·‖2 and d

(t)
ij = ‖z(t)i· − z

(t)
j· ‖2

where zk· = (zk1, zk2) denotes the true latent position of kth actor and z
(t)
k· =

(z
(t)
k1 , z

(t)
k2 ) denotes the latent position of kth actor in the tth sample from the

MCMC algorithm. We have

Mean Absolute Error:
1

n2

n∑
i

n∑
j

| dij − d(t)ij |

Mean Square Error:
1

n2

n∑
i

n∑
j

(dij − d(t)ij )2

Denote d = {dij}i,j, and set θ̂ = d and θ = d(t). Our Bayes Estimator is
then

arg min
d

E(L(d,d(t)))

arg min
d

1

T

T∑
t

1

n2

n∑
i

n∑
j

(dij − d(t)ij )2

arg min
d

T∑
t

n∑
i

n∑
j

(dij − d(t)ij )2

and the loss function here is

n∑
i

n∑
j

(dij − d(t)ij )2 (1)
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2.2 Minimizing distances

Furthermore, the equation of this particular Bayes Estimator can be simpli-
fied.

To minimise d :

∂

∂d

T∑
t

n∑
i

n∑
j

(dij − d(t)ij )2 = 0

T ·
n∑
i

n∑
j

d∗ij =
T∑
t

n∑
i

n∑
j

d
(t)
ij

n∑
i

n∑
j

d∗ij =
1

T

T∑
t

n∑
i

n∑
j

d
(t)
ij

n∑
i

n∑
j

d∗ij =
n∑
i

n∑
j

d
(t)
ij

⇒ d∗ = d

It is important to note that we cannot use the results from the derivation
above as our solution. This derivation provides a matrix that contains the
means of distances between each pair of actors. In doing this, the solution is
no longer a proper distance matrix. The triangle inequality is not guaranteed
to hold for this matrix necessarily. However, this derivation does help to
simplify our equation for the Bayes Estimator. Thus, the following theorem
is proposed.
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Theorem 1.

arg min
d

E(L(d,d(t))) = arg min
d

n∑
i

n∑
j

(dij − dij)2

Proof.

arg min
d

T∑
t

n∑
i

n∑
j

(dij − d(t)ij )2

arg min
d

n∑
i

n∑
j

(T · d2ij +
T∑
t

(d
(t)
ij )2 − 2 · dij

T∑
t

d
(t)
ij )

arg min
d

n∑
i

n∑
j

(T · d2ij − 2 · dij
T∑
t

d
(t)
ij )

arg min
d

n∑
i

n∑
j

(T · d2ij − 2 · dij · T · dij)

arg min
d

n∑
i

n∑
j

(d2ij − 2 · dij · dij)

arg min
d

n∑
i

n∑
j

(d2ij + dij
2 − 2 · dij · dij)

arg min
d

n∑
i

n∑
j

(dij − dij)2

This equation is computationally cheaper than before. It is t times quicker
as it is not required to deal with one of the summations as before. This is
particularly helpful for a large sample size.
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3 Extension from Bayes Estimator

3.1 Classical Multidimensional Scaling

So far, the approach we have looked at uses one of the iterations from the
MCMC algorithm as the solution. This approach would be very limited
with a small number of samples to work with. To improve performance, the
amount of samples must increase but this will also increase computational
expense together. As the theorem suggests above, a proper distance matrix
is always preferred if it’s closer to d than any other option of matrices does.
Rather than using the Bayes Estimator method, we can consider to find a
matrix of distances that is as similar to d as possible while the matrix itself
satisfies the triangle inequality. To achieve this, classical multidimensional
scaling (CMD scaling) can be used. By definition, CMD scaling find a set of
points that have distances as close to the ideal set of distances (in our case,
d) as possible.

By using CMD scaling, we now would only need to find d and apply
CMD scaling to d to obtain our optimal latent positions, this should be an
even more efficient and more accurate approach in terms of our loss function,
compared to the methods that were mentioned above.
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4 Examples

We will now look at two examples below that have been implemented in R
studio. In this section, the Bayes Estimator method refers to the result from
Theorem 1, with the loss function from the expression 1. The CMD scaling
method refers to the approach mentioned in 3.1, the function cmdscale from
R is used [4].

4.1 Generated Samples

In the following example, we will generate samples of latent positions for 10
actors. The two methods listed above in section 4 are then used to compared
with the method of taking average positions after applying Procrustes super-
imposition to each sample. The efficiencies and accuracies of these methods
will be compared according to our loss function. The “true” latent positions
of these 10 actors are generated using a Gaussian distribution with a zero
mean and variance of 10. 1000 samples are then created by adding an error
term to the true positions for each actor, these error terms are generated
using another Gaussian distribution with zero mean and variance of 1.
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After running the three algorithms, it is clear that the CMD scaling
method is the quickest and the most accurate (according to our loss function)
as expected. Meanwhile, the Bayes Estimator is providing a terrible result
despite not being too much slower to run then the CMD scaling. Lastly, the
average positions has a good accuracy, but it is very expensive computation-
ally compared to the other methods.

4.2 Monks Data

An ethnographic study of community structure in a New England monastery
between 18 Monks was collected by Samuel F. Sampson during the 1960’s.
By using the latentnet package in R, 4000 samples of latent positions are
captured for these 18 Monks [2]. The package also provided results of the
optimal positions with two other approaches, the posterior mode from the
MCMC algorithm and the Minimum Kullback-Leibler (MKL) method [3].
Although the efficiency of these two methods cannot be referenced in this
case, the accuracies of these 2 methods according to our choice of loss function
can be obtained.
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In terms of the efficiency, CMD scaling was the fastest to run in R, as
expected. Similar to the previous example, the Bayes Estimator is almost
as efficient as the CMD scaling. The average position method was very
computational expensive here.

Between these three methods, the accuracies are similar to the ones from
the last example. However, the performances of the 2 methods provided in
the package are very poor. After applying Procrustes Superimposition to
the latent positions calculated by all five different methods, it is clear that
the optimal positions from the 2 methods we propose provide a denser set of
latent positions compared to the methods from the package.
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Figure 1: Latent Positions determined by CMD scaling

Figure 2: Latent Positions determined by Posterior Mode
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5 Simulation

Once the optimal latent positions are chosen, by using

pij =
eβ−dij

1 + eβ−dij

the probability of any two actors having a relationship can be found whether
it is undirected or directed [1]. After, simulations can be done based on these
probabilities and thus we have the total number of edges within the latent
position model.

6 Conclusion

In this report, we have tried to propose new methods to select an optimal
position for each actor in a latent space. These methods have an advantage
such that the optimal positions are selected based on a theoretical results.
At first, we decided to use Bayes Risk and Bayes Estimator to select a sam-
ple from our data with the least difference in total distances between actors
compared to the rest of the data. We chose to use the MSE of distances as
our loss function. As we looked into the computation area of this algorithm,
we managed to propose a theorem and managed to simplify the algorithm
even further. Finally, we suggested an additional approach that the classi-
cal multidimensional scaling can be used on the average distances between
actors from our samples. The last algorithm makes it even cheaper compu-
tationally compared to the previous approaches. We have also looked at two
examples to see how these algorithms would behave in these two scenarios.
The classical multidimensional scaling approach was the most efficient as
expected.
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