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KAZIM BUYUKBODUK

1. MODULAR ARITHMETIC

Suppose a, b, n are integers. We want to solve for z in the congruence
ar=b modn.
This amounts to finding = 'b mod n.
This may not be always possible: 2y =1 mod 6 has no solutions, as for a solution, we would have
216|2y—1
which is impossible.
However: 2y =1 mod 5 has a unique solution mod 5: y =3 mod 5.

The key difference is that
ged(2,6) = 2 > 1 whereas ged(2,5) =1.

1.1. Suppose (a,n) =d > 1. Then a~! mod n does not exist. Namely, there is no integer y so that ay =1 mod n.

Proof. If otherwise,
d|n|lay—1, butalsod|a = d|1,
contradicting that d > 1. O

1.2.  Let us define
Mod = {a mod n:a € Z such that a=' mod n exists} .

Namely, Mod, consists of “residue classes” @ mod n for which their inverses exist modulo n. Yet in other words, Mod,s
consists of @ mod n such that one can find an integer y with ay =1 mod n.

1.2.1. Mod,, = {a mod n:a € Z such that (a,n) =1} =: S.

Proof. We already saw that LHS is contained in the RHS. We need to prove the opposite containment. To that end, suppose
b mod n belongs to RHS, i.e. ged(b,n) = 1. We want to prove that b~! mod n exists, namely that we can find some
integer y with by =1 mod n.

For that purpose, let us consider the map

z (mod n)—bx (mod n)

Mb:S S

which indeed makes sense since
ged(b,n) =1 =ged(z,n) = ged(bx,n)=1.
We claim that the map Mj, is injective. Indeed,
My(z1) = Mp(29)<=bx1 = bry mod n<=n | b(x) — x2)<=n |z — X211 =22 mod n
where the last equivalence follows from the fact that ged(b,n) = 1. This proves that M, is indeed injective.

Since the set S is finite (note that we are working mod n), it follows that the map M, is also surjective (therefore
bijective). In particular, there exists a unique y mod n with

by=Mp(y modn)=1 modneS.

This is what we wanted to prove.

This statement is useful because we can easily compute ged(a, n) using the Euclidean algorithm.
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1.3. Application: Euler’s theorem. Suppose that gcd(a,n) = 1. Then
a¥™ =1 modn,
where

o(n) := #Mod,. = #{a: a € Z such that 1 <a <n and (a,n) =1}.

Proof. As we saw in the previous proof,
aMod,* = M,(Mod,’) = Mod,* .

That shows
= I] -
reaMod X z€Mod X
But also
H T = H ay = a?™ x H Y.
reaMod X yEMod X yEMod

Combining these two equalities, we deduce that

a?™ x H y= H z.

yEMod X z€Mod X
———
II
This shows
n | M(a?™ —1),
and since ged(IT, n) = 1, also that n | a?(™ — 1. O
2. CHINESE REMAINDER THEOREM (CRT)
Suppose that ny,--- ,n, € Z are pairwise coprime. Suppose that a1, -+ ,ax € Z are any k-tuple of integers. Then there

exists a unique integer x with 0 < x < ny ---ny, verifying the following congruences simultaneously:
T =a; mod ng

T =ay mod ng

T =a, mod ny.
Example 2.1. There exists a unique integer 0 < x < 15 x 28 x 169 such that
=4 mod 15

r =23 mod 28
x =127 mod 169
I dare you to prove this by brute force!

Proof of CRT. Let us consider
Mod; = {{0,1,--- ,n —1},+ mod n} = {{a modn:a€Z},+ modn}

the set of integers modulo n, equipped with addition modulo n. Let us put N = ny - - - ny, and consider the ‘diagonal’ map'

.-~ Mod"

Nk

A : Modf;

mod N +— (x mod ni, -,z mod ng
( ), Modyf, x

Our goal? is to prove that given (a; mod nq,--- ,a; mod ny) on the RHS, one can find z so that A(z) = (a1 mod ny,--- ,ax
mod ng). In other words, we contend to prove that A is surjective.

Note that the source of A has N elements, and its target has ny---ni, = N elements as well. As a result, proving that
A is surjective is the same as proving A is injective. This is what we shall verify.

Suppose that we have
(x mod ny, -,z modng) =A(x)=A(y) =(y modny, - -,y modnyg),
which is equivalent to saying that >

r=y modn

1n the example above, N = 70980 and the map A is given by
z mod 70980 +— (¢ mod 15,2 mod 28,z mod 169)

A Modyogo Modj; x Modjy x Mod g .

2In the example above, we want to find x such that A(z) = (4 mod 15,23 mod 28,127 mod 128).
3Tn the example above, this would mean

rz=y mod 15,z =y mod 28,z =y mod 169,
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r=1y mod ng

which is to say
ni, - ,ng all divide x — y.

But since ny,--- ,ny are coprime, this the same as requiring that their product
N =ny---ny divides x — y,

which exactly means £ =y mod N, proving that A is injective, as required.

2.1. Example. Prove that for any integer n, one can find integers a,b such that 4a? + 9b® — 1 is divisible by n.

2.1.1. Proof. The idea is to work modulo n, and factor n into a product of powers of primes (fundamental theorem of
arithmetic), solve for prime powers (that divide n) and finally, use CRT to patch things up.

In other words, let’s first try to find integers a,, b, with

2 2 _ k
da; +9b5; =1 mod p*.

Case 1: n =2 (p=2). We want to find as, by with
402+ 93 =1 mod 2*.
Note that 37! mod 2" exists since ged(3,2%) = 1. Set by =371 mod 2* and ay = 0.
Case 3: n = p* (p > 2). We wish to find integers ap, by with
4a12) + Qbf, =1 mod p*.

Since ged(2,p*) = 1, we know that 27! mod p* exists. Put a, =2~! mod p* and b, = 0.
General case: n = p]fl ...pkm and p; are pairwise distinct primes:
For each index i = 1,--- ,m, we have found (a,,,b,,) such that

2 2 _ k;
da; +9b, =1 mod p;”.

By CRT (applied twice), we can choose a,b € Z with

a = ayp, modpf", 1=1,---,m,
b=y, modpfi, t=1--,m.
Then,
4a® + 9% = 4az2,i —|—9b]201, =1 mod mod pfi, foralli=1,--- ,m.
This shows
pf divides 4a® + 9> — 1 forall i =1,--- ,m.
Since p1,- -+, pm are pairwise distinct, this means that their product

p’fl = ~pf,;" = n divides 4a® + 9b% — 1.

3. QUADRATIC RESIDUES

Question 3.1. What are the squares in Mod, ? Namely, describe the subset

O, :={a € Z:gcd(a,n) =1 and a = 2 for some integer s} .
The elements of [,, are sometimes called “quadratic residues mod n”.

3.1. Suppose that p is an odd prime. We will describe the set of quadratic residues [, mod p using the following fact
without proof.

which is to say
15,28, 169 all divide x — y .



3.1.1. Mod; contains a primitive root. Namely, there is an integer g coprime to p such that
Mod) ={g mod p,g° modp,---,¢""" =1 mod p}
where the final congruence is Fermat’s little theorem (which follows from Euler’s theorem that we discussed earlier).

Example 3.2. g = 3 is a primitive root modulo 17 (why?). In general, it is very difficult to find primitive roots.

3.1.2. Suppose that g is a primitive root modulo p. Then observe that

(3.1) O, 2 {g% -+ ,9" '} = even powers of g.

Lemma 3.3. O, = {¢%,--- ,¢?"'}. In particular, there are b= quadratic residues modulp p.

Proof. In view of the containment (3.1), we need to show that odd powers of g are not squares modulo p.

2r+1 1

2 o mod p exists, and we have

Suppose on the contrary that g>"t! e Op; namely, x g

mod p. Since (g,p) =1, g~

y2 = [as(gfl)’"]2 =g modp.

Raise both sides of this congruence to the power %_1

p—1
1=y =g 2 mod p,
which is impossible since ¢ is a primitive root modulo p (why?4).

O

It is therefore desirable to know which modulus admits a primitive root. Here’s the conclusive statement in this vein:
Theorem 3.4. Mod)S has a primitive root, i.e. there exists an integer such that
ModX = {g,¢%,---,¢9*"™ mod n}
if and only if

e cither n = p® where p is an odd prime and « is a positive integer,
e orn = 2p“ where p is an odd prime and « is a positive integer,
e n=24.

3.1.3. Application: Wilson’s theorem. Let g be a primitive root modulo a prime number p. Note that

p—1
p-=[[d"=9"%" modp.
j=1

Note also that ngfl = —1 mod p. Indeed, if we put y := ngf1 mod p, note then that
y>*=1 mod p
and hence (since p is a prime)
pdividesy —lory+1;
in other words,
y=1 modp or y=-1 modp.

To verify our claim, we only need to explain that gpz;l # 1 mod p. This follows from the choice of g as a primitive root
(see the footnote).

This shows that
(p—1)!'=-1 mod p,

which is known as Wilson’s theorem. There’re other proofs of it and you’re invited to think about one.

4Here’s a hint: check that, to say that g is primitive root is the same as requiring that p — 1 is the smallest among the set of positive integers
k for which we have g¥ =1 mod p. In other words:

g is a primitive root <=p — 1 = min{k € ZT : g* =1 mod p}.



3.1.4. Ezample. Prove that if 2¢ = 2° mod 101 then a = b mod 100.

Proof. 2 = 2* mod 101<=2%"% = 1 mod 101, and @ = b mod 100<=a — b = 0 mod 100. Our problem is therefore
equivalent to checking that, on setting m : a — b,

2™ =101<=100 | m..
This is equivalent to checking that 2 is a primitive root modulo the prime 101 (convince yourself why this is so).

To check that, you need to check that 2¢ # 1 mod 101 for positive integers d | 100 with d < 100 (convince yourself why
checking this is indeed necessary and sufficient). In other words, you need to check that the set

{2,22,2%,25 210 920 925 950 104 101}

does not contain 1 mod 101. Do that! O

3.1.5. Ezxample. Suppose that p is an odd prime. Find all integers k£ such that
P2k (p-1)F =S

is divisible by p.

3.1.6. Solution. The idea is that calculating the sum of geometric sequences is easy:

17 m—+1
l-—2)l+z+-+2™)=1-2"" — (Q+z4+---+2™)= 1fx

So we would like to convert the sum above to look like the sum of a geometric sequence. To do that, we will use the fact
that we have a primitive root g modulo p.

Note that, for g as above, we have
{17,])_1} modp:{g():l’gl”gp_g} mOdp
Note then that
Sp=g"F 4" 4 4 gD mod p.
Using the identity above with z = ¢* and m = p — 2, we see that
1-g"Se=1-("P1=1-(¢*H*=0 modp.
In other words,
p divides (1 — g*)S}, .
Case 1: p—1 does not divide k: In that case, 1 — ¢g* Z 0 mod p, since g is a primitive root modulo p. As a result, p
does not divide 1 — g*. Since we saw above that
p divides (1 — g*)Sy,
it follows that, since p is a prime, p must divide Sj.
As a result, we checked that Sy is divisible by p whenever p — 11 k.
Case 2: p— 1 divides k: In that case,
Sp=1P"14 2 o (p— 1P =14 F1p—120 dp.
2 (p—1) +--+1p—1#0 modp
p— 1 terms
In other words, if p — 1 divides k, then Sy is not divisible by p.
Answer: All integers that are not divisible by p — 1.

3.2. Quadratic Reciprocity Law (Gauss’ “Golden Theorem?”).

3.2.1. Suppose p is a prime number and a is an integer. We define the Legendre symbol <a) on setting
p

-1 ifptadg,,
(a>= +1 ifaeD,,
0 if p|a.
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3.2.2. Legendre symbol is multiplicative. We have

(5)-G)6)
p p)\p)
Indeed, if a or b is divisible by p, then both sides are equal to 0. Assume therefore that p 1 ab.

Let g be a primitive root and let m,n be integers so that

g"=a,9g" =b modp.
()= (%)
(&)=

namely that even powers of g are squares mod p, and odd powers are not. As a result,
m—+n m n
(£5) = omen = comenr = (2 (2
p p p

This is somewhat surprising: It tells us that the product of two non-squares mod p is a square mod p.

Then we would like to check that

We have checked earlier that

as desired.

3.2.3. Quadratic Reciprocity Law. Suppose that p and ¢ are odd primes. Then:

) (5)(5) = cume

i) () — (—D)5

Q)- ()
101

3.2.4. Ezxample. Let us see if 101 is a square modulo 997. This amounts to calculating the Legendre symbol (997> I dare

you to decide whether or not there is an = such that z? = 101 mod 997 using brute force!

101 100x996 [ 997 997 —-13 o .
Gauss: (997> =(-1)" 12 (m) = (101> = (101) where the final equality is because 997 = —13 mod 101.

(o) = () = (1) (o) = 0 (o) = ().

13 12x1 101 1
Gauss again: (101> =(-1) 2 () = () , where the final equality is because 101 = 10 mod 13. Hence,
0

Hence,

W1\ 10y (2 (5 e (5 (5
997) \13) \13)\13) 13) \13)°
Here, the third equality uses QRL(ii).
101 5 x1z2 (13 3
Gauss once again: (997> = - (13 = —(—1)% 5) = — (5> = —1 x —1 = 1, where the penultimate equality is

because the only squares modulo 5 are 1 and 4 (check by hand!).

That means 101 is indeed a square modulo 997. Amazing, isn’t it?!
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