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Simple example: Suppose you see a queue, and

1) the first person in the queue is woman;

2) behind each woman there is a woman.

Is it true that there are only women in the queue?

Problem 1. Prove that for every n ≥ 3 there exists a convex

polygon that has exactly three acute angles.

Solution: For n = 3 the statement is obvious. For n = 4 it is easy

to build an example with angles ]70◦,]60◦,]70◦ and ]160◦. Let

n = 5, we will build a pentalygon with exactly 3 acute angles taking

our example for n = 4 and cutting off its obstute angle so that we

get a pentagon.

Clearly, the new shape has exactly three acute angles.

Problem 2. There are n circles in a plane. Prove that the regions

in the plane divided o by the can be colored with two colors (black
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and white) in such a way that no two regions sharing some length

of border are the same color

Solution: Let’s start with one circle and two regions: one black and

one white. Then let’s add the second circle. It is easy to check that

no matter where you draw the second circle you can still colour the

regions in two colours.

Now draw the third circle and do not change any colors for now.

There are three types of regions: inside the new circle, outside the

new cirsce and croosed by the new circle. No two adjacent regions

outside or inside of the new circle are painted in same color, because

you did not change any colors, and any two regions on the inside or

outside may share only a part of a circle which they shared before you

drew a new circle. Moreover, if you invert the colors of all regions

inside the new circle, then this property will still hold for them.

When you draw the third circle, you created new regions by dividing

some regions in two parts. These and only these newly created

adjacent regions will share same color. But once you invert the



44

colors of all regions inside, you get what you need. All adjacent

regions on either side are still painted in different colors, and now

newly created adjacent regions (which share the same side which is

a part of the new circle) are opposite colors as well, because one of

them got inverted.

We can repeat the same consideration for the forth circle, then fifth

and so on.

Problem 3. What is the maximum number of regions defined by

n lines in the plane?

Solution: Let Ln denotes the maximum number of regions defined

by n lines in the plane. Obviously L0 = 1 and L1 = 2. Short

experimentation showes that L2 = 4. Let’s find L3 = 7. If we want

to obtain the maximum possible number of regions, we shall not let

the new line pass through the intersection of the first two, for then
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we would get six regions and can do better. Leaving that point on

one side of the third line means that the line won’t be able to cross

all four already existent regions, but at most only three - one more

than there are lines. This gives a clue to a general case.

Suppose we have drawn n lines. When adding a line, the latter may

cross each existent line in one point and thus cross at most n + 1

regions. So Ln+1 = Ln + (n + 1).

Let’s find the formula for Ln:

Ln = n+Ln−1 = n+(n−1)+Ln−2 = n+(n−1)+(n−2)+· · ·+2+1+L0

=
n2 + n

2
+ 1 =

n2 + n + 2

2

Problem 4. Show that any number greater than 7 can be presented

in the form 3x + 5y, where x and y are positive.

Solution: Observe that

8 = 3 + 5;

9 = 3× 3;

10 = 2× 5;

For 11, 12 and 13 we will use the above identities and get:

11 = 8 + 3;

12 = 9 + 3;

13 = 10 + 3.

Any bigger number can be obtained by adding 3 several times to 8,

9 or 10.
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As you have noticed in all the above problems we followed the fol-

lowing algorithm: first, we proved the statement for small numbers,

say for n = 1, then we showed how to prove for n = 2, then for

n = 3 and so on. This type of proof has special name: induction.

Here is the formal way to prove statements by induction

Formal proof by induction:

The simplest and most common form of mathematical induction

infers that a statement involving a natural number n holds for all

values of n. The proof consists of two steps:

1. Base case: prove that the statement holds for the a small

natural number n (usually n = 1).

2. The inductive step: prove that, if the statement holds for

some natural number n, then the statement holds for n + 1.

The hypothesis in the inductive step that the statement holds for

some n is called the induction hypothesis (or inductive hypothesis).

To perform the inductive step, one assumes the induction hypothesis

and then uses this assumption to prove the statement for n + 1.

Induction can be very useful for proving inequalities and identities.

Problem 5. Prove by induction 1 + 3 + 5 + · · · + 2n− 1 = n2.

Solution: Let an = 1 + 3 + 5 + · · · + 2n− 1.

Base case: a1 = 1 = 12, so the statement holds for n = 1.
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Inductive step: Suppose an = n2. Consider

an+1 = 1 + 3 + 5 + · · · + 2n− 1 + 2(n + 1)− 1 = an + 2n + 1

= n2 + 2n + 1 = (n + 1)2.

So, by induction, we have proved the formula for all n.

Problem 6. Prove that

√
6 +

√
6 +

√
6 +
√
6 < 3. Show it for

arbitrary number of square roots.

Solution: Let an =

√
6 +

√
6 + . . .

√
6 +
√
6 (n square roots).

Base case: Let’s show that a1 < 3:

a1 =
√
6 <
√
9 = 3.

Induction step: Suppose an < 3. Consider

an+1 =
√
6 + an <

√
9 = 3.

Exercises.

(1) Find 10 different numbers, sum of which is divisible by each

of these numbers. (Hint: first find three such numbers).

(2) Square cannot be cut into 2 or 3 smaller squares, but it can

be cut in 6 or 7 squares. Find all n such that square can be

cut into n smaller squares.

(3) There are 100 houses in a village. How many fences can be

built so that:

(i) No two fences intersect;
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(ii) Each fence surrounds at least on house;

(iii) There are no two fences that surround the same set of

houses?

(4) The Tower of Hanoi is a mathematical game or puzzle. It

consists of three rods, and a number of disks of different sizes

which can slide onto any rod. The puzzle starts with the

disks in a neat stack in ascending order of size on one rod,

the smallest at the top, thus making a conical shape.

The objective of the puzzle is to move the entire stack to

another rod, obeying the following simple rules:

(i) Only one disk can be moved at a time.

(ii) Each move consists of taking the upper disk from one

of the stacks and placing it on top of another stack i.e. a disk

can only be moved if it is the uppermost disk on a stack.

(iii) No disk may be placed on top of a smaller disk.

Find the minimum number of moves required to solve a

Tower of Hanoi puzzle.

(5) A circle and a chord of that circle are drawn in a plane. Then

a second circle, and chord of that circle, are added. Repeating

this process, once there are n circles with chords drawn, prove

that the regions in the plane divided o by the circles and chords

can be colored with three colors in such a way that no two

regions sharing some length of border are the same color.
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(6) 2n dots are placed around the outside of the circle. n of

them are colored red and the remaining n are colored blue.

Going around the circle clockwise, you keep a count of how

many red and blue dots you have passed. If at all times the

number of red dots you have passed is at least the number of

blue dots, you consider it a successful trip around the circle.

Prove that no matter how the dots are colored red and blue,

it is possible to have a successful trip around the circle if you

start at the correct point.

(7) Show that the number 11 . . . 1 (81 figures ′1′) is divisible by

81.

(8) Prove by induction the formula for geometric progression

1 + x2 + x3 + · · · + xn =
xn+1 − 1

x− 1
.

(9) Prove by induction

1 · 3 · 5 · · · · (2n− 1)

2 · 4 · 6 · · · · 2n
<

1√
n + 1

.

(10) (**) A sphere is covered with some number of caps which

are hemispheres. Prove that it is possible to choose four

hemispheres, and remove all others, while still keeping the

sphere covered. (Hint: See Helly’s theorem wikipedia)


