Quantum channels and non-commutative graphs
Rupert Levene

Quantum channels are fundamental objects in quantum information theory, the mathematical underpinnings of quantum computing. In this project we will investigate quantum channels by studying their so-called non-commutative confusability graphs [1], which are operator spaces encoding several important information theoretic properties. In particular, the zero-error quantum capacity of a quantum channel is determined by its confusability graph, and can be estimated from it [2]. This project will take this connection between quantum channels and operator spaces further. Potential directions of particular interest include:

- Investigating the (non-zero-error) quantum capacity from this perspective.
- Introducing and applying versions of fractional graph parameters to non-commutative graphs.
- Improving our understanding of the inverse map from operator spaces to quantum channels.

References
