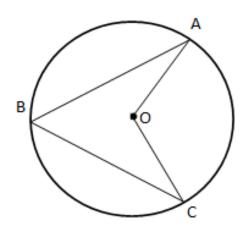
Circle and Cyclic Quadrilaterals

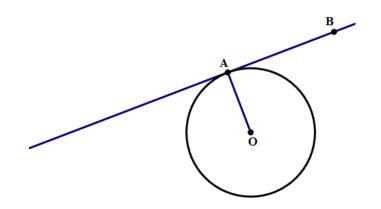
MARIUS GHERGU School of Mathematics and Statistics University College Dublin

Basic Facts About Circles

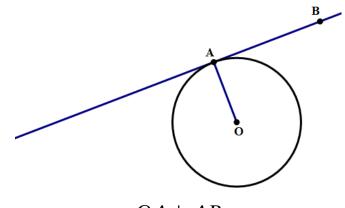
- A central angle is an angle whose vertex is at the center of the circle. It measure is equal the measure of the intercepted arc.
- An angle whose vertex lies on the circle and legs intersect the cirlc is called inscribed in the circle. Its measure equals half length of the subtended arc of the circle.



- $\angle AOC = \text{contral angle}, \ \angle AOC = \widehat{AC}$ $\angle ABC = \text{inscribed angle}, \ \angle ABC = \frac{\widehat{AC}}{2}$
- A line that has exactly one common point with a circle is called tangent to the circle.

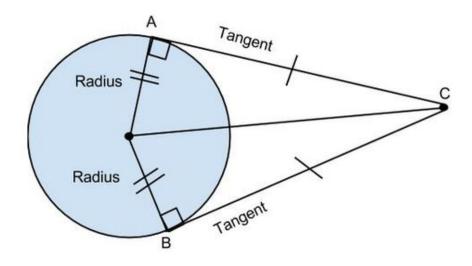


• The tangent at a point A on a circle of is perpendicular to the diameter passing through A.



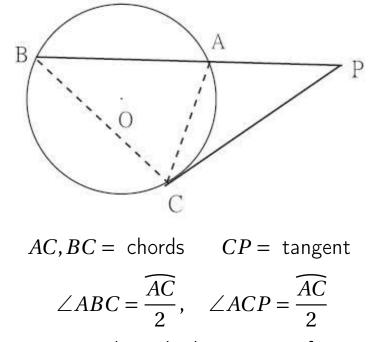
 $OA \perp AB$

• Through a point A outside of a circle, exactly two tangent lines can be drawn. The two tangent segments drawn from an exterior point to a cricle are equal.



 $OA = OB, \angle OBC = \angle OAC = 90^{\circ} \Longrightarrow \triangle OAB \equiv \triangle OBC$

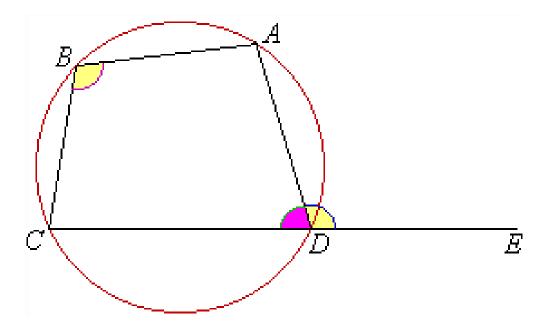
• The value of the angle between chord *AB* and the tangent line to the circle that passes through *A* equals half the length of the arc *AB*.



• The line passing through the centres of two tangent circles also contains their tangent point.

Cyclic Quadrilaterals

- A convex quadrilateral is called cyclic if its vertices lie on a circle.
- A convex quadrilateral is cyclic if and only if one of the following equivalent conditions hold:
 - (1) The sum of two opposite angles is 180° ;
 - (2) One angle formed by two consecutive sides of the quadrilateral equal the external angle formed by the other two sides of the quadrilateral;
 - (3) The angle between one side and a diagonal equals the angle between the opposite side and the other diagonal.



Example 1. Let *BD* and *CE* be altitudes in a triangle *ABC*. Prove that if DE||BC, then AB = AC.

Solution. Let us observe first that $\angle BEC = \angle CDE = 90^{\circ}$, so BCDE is cyclic. It follows that $\angle AED = \angle ACB$ (1) On the other hand, DE||BC implies $\angle AED = ABC$ (2) From (1) and (2) it follows that $\angle ABC = \angle ACB$ so $\triangle ABC$ is isosceles. **Example 2.** In the cyclic quadrilateral ABCD, the perpendicular from B on AB meets DC at B' and the perpendicular from D on DC meets AB at D'. Prove that B'D'||AC.

Solution. Since *ABCD* is cyclic we have $\angle ACD = \angle ABD$. Similarly, *BD'DB'* is cyclic (because $\angle B'DD' + \angle B'BD' = 180^{\circ}$) implies $\angle DB'D' = \angle D'BD$. Hence $\angle DCA = \angle CB'D'$, so that AC||B'D'. **Example 3.** A line parallel to the base BC of triangle ABC intersects AB and AC at P and Q respectively. The circle passing through P and tangent to AC at Q intersects AB again at R. Prove that BCQR is cyclic.

Solution. It is enough to proce that $\angle ARQ = \angle ACB$. Indeed, since $\triangle PRQ$ is inscribed in the circle $\Longrightarrow \angle PRQ = \frac{\widehat{PQ}}{2}$. Since AC is tangent to the circle passing through $P, Q, R \Longrightarrow \angle AQP = \frac{\widehat{PQ}}{2}$.

Hence, $\angle PRQ = \angle AQP$. Now, since PQ||BC it follows that $\angle AQP = \angle ACB$. Thus, $\angle ARQ = \angle ACB$ which shows that BCQR is cyclic.

Example 4. The diagonals of the cyclic quadrilateral *ABCD* are perpendicular and meet at *P*. The perpendicular from *P* to *AD* meets *BC* at *Q*. Prove that BQ = CQ.

Solution. Denote by M the intersection between AD and PQ.

$$\angle MPD = \angle BPQ \quad (\text{opposite angles})$$

$$\angle MPD = \angle MAP \quad (= 90^o - \angle APM) \implies \angle BPQ = \angle CBP$$

$$\angle MAP = \angle CBP \quad (ABCD \text{ cyclic})$$

Hence, δQBP is isosceles which further yields BQ = QP (1) Similarly we have

$$\angle APM = \angle CPQ \quad (\text{opposite angles})$$
$$\angle APM = \angle ADP \quad (= 90^o - \angle MPD)$$
$$\implies \angle CPQ = \angle QCP$$
$$\angle ADP = \angle QCP \quad (ABCD \text{ cyclic})$$

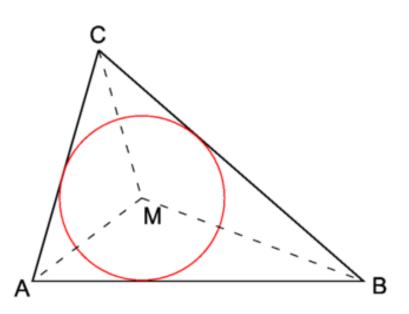
Hence, δQCP is isosceles which further yields CQ = QP (2) From (1) and (2) it follows that BQ = CQ. **Example 5.** Let *E* and *F* be two points on the sides *BC* and *DC* of the square *ABCD* such that $\angle EAF = 45^{\circ}$. Let *M* and *N* be the intersection of the diagonal *BD* with *AE* and *AF* respetively. Let *P* be the intersection of *MF* and *NE*. Prove that $AP \perp EF$.

Solution. $\angle EAN = \angle EBN = 45^{\circ}$ so ABEN is cyclic. It follows that $\angle ANE = 180^{\circ} - \angle ABE = 90^{\circ}$, so $NE \perp AF$. Similarly, ADFM is cyclic so $\angle AMF = 180^{\circ} - \angle ADF = 90^{\circ}$ which yields $AE \perp FM$. It follows that EN and FM are altitudes in $\triangle AEF$, so P is the orthocentre of $\triangle AEF$. This imples $AP \perp EF$. **Example 6.** Let *ABCD* be a cyclic quadrilateral. Prove that the incentres of traingles *ABC*, *BCD*, *CDA*, *ADB* are the vertices of a rectangle.

Note. The incenter is the intersection of angles' bisectors.

Solution. We shall start with the following auxiliary result.

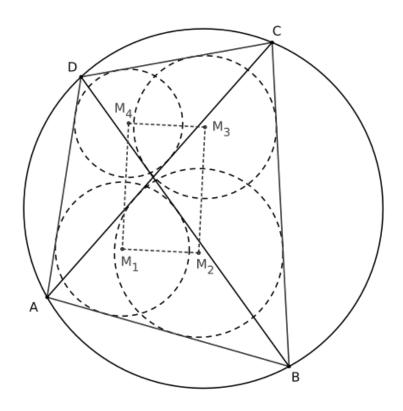
Lemma. If *M* is the incentre of $\triangle ABC$ then $\angle AMB = 90^{\circ} + \frac{\angle ACB}{2}$.



Proof of Lemma. In ΔBMC we have

$$\angle AMB = 180^{\circ} - \angle MAB - \angle MBA$$
$$= 180^{\circ} - \frac{\angle BAC}{2} - \frac{\angle ABC}{2}$$
$$= 180^{\circ} - \frac{\angle BAC + \angle ABC}{2}$$
$$= 180^{\circ} - \frac{180^{\circ} - \angle ACB}{2}$$
$$= 90^{\circ} + \frac{\angle ACB}{2}.$$

Returning to our solution, denote by M_1, M_2, M_3, M_4 the incentres of traingles *DAB*, *ABC*, *BCD* and *CDA* respectively.



 M_1 is the incentre of $\Delta DAB \Longrightarrow \angle AM_1B = 90^o + \frac{\angle ADB}{2}$. (1) M_2 is the incentre of $\Delta ABC \Longrightarrow \angle AM_2B = 90^o + \frac{\angle ACB}{2}$. (2) ABCD is cyclic $\Longrightarrow \angle ACB = \angle ADB$. (3) Combining (1), (2) and (3) we find $\angle AM_1B = \angle AM_2B$ so ABM_2M_1 is cyclic. It follows that

$$\angle BM_2M_1 = 180^o - \angle BAM_1 = 180^o - \frac{\angle BAD}{2}.$$
 (4)

Similarly BCM_3M_1 is cyclic so

$$\angle BM_2M_3 = 180^o - \angle BCM_3 = 180^o - \frac{BCD}{2}.$$
 (5)

From (4) and (5) we now deduce

$$\angle M_1 M_2 M_3 = 360^o - (\angle B M_2 M_1 + \angle B M_2 M_3) = \frac{\angle B A D}{2} + \frac{B C D}{2} = 90^o.$$

In the same way we obtain that all angles of the quadrilateral $M_1M_2M_3M_4$ have meaure 90° and this finishes our proof. **Example 7.** Let A', B' and C' be points on the sides BC, CA and AB of trinagle ABC. Prove that the circumcentres of traingles AB'C', BA'C' and CA'B' have a common point.

Solution. Denote by M the point of intersection of circumcentres of triangl; es AB'C' and BA'C'. We prove that MA'CB' ic cyclic so the circumcentre of triangle A'CB' opasses through M as well.