
Parallel I/O and Dynamic LES for Single Phase Flows

Luke Corcoran and Conor McCabe

June/July 2017

Abstract

S-TPLS is a fully parallelised code but makes use of serial I/O(Fannon et al., 2016). We
implemented parallel I/O into this code, and tested both methods in order to compare scalability
and to compute parallel efficiency. We found that the parallel I/O scaled more efficiently, with
a consistently higher value for parallel efficiency Ep. We implemented a dynamic LES model
into the code, an improvement over the previous Smagorinski model. We compared two dynamic
models, and found that a localised model (Pomielli, 1995), was the most stable. However both
dynamic models are found to be unstable for Reynolds numbers of interest (& 200) and thus
a more stable localisation method is required. Finally, we implemented a new parameter input
method in order to make the code more user-friendly. We combined these changes into a new
version of the code, called AS-TPLS, written in FORTRAN-90.

1

1 Introduction and Theory

Two Phase Level Set (TPLS) is a fully parallelised three-dimensional Navier Stokes flow solver, which
makes calls to a number of external libraries in order to boost computational speed. TPLS is written in
Fortran90 and is parallelised using MPI and OpenMP message passing interfaces in order to facilitate
scaling to thousands of CPU cores, and has been rigorously validated with respect to Orr-Sommerfeld,
Orr-Sommerfeld-Squire, and Stuart-Landau semi-analytical theories (O’Naraigh et al., 2014).

Simplified Two Phase Level Set (S-TPLS) is a simplified version of the existing code created for
pedagogical purposes in order to act as a replacement to the many “black box” approaches used in
teaching introductory CFD (Fannon et al., 2016). Modelling only one flow, the second phase (i.e.
the second fluid) has been removed to aid simplicity. S-TPLS retains many of the features of the
original code, including parallelisation and good scalability, however it uses serial I/O as opposed to
the parallel I/O framework of TPLS.

In creating Advanced Simplified Two Phase Level Set (AS-TPLS), we had three main goals: modify
the existing Smagorinsky model to allow for dynamic calculation of the Smagorinsky coefficient,
implement parallel I/O in order to alleviate bottlenecking issues and boost the scalability of the
code, and to implement a parameter input method to make the code more user-friendly.

1.1 Problem statement

We consider an incompressible, Newtonian fluid confined the a channel geometry Ω = [0, Lx]×[0, Ly]×
[0, Lz = 1](Figure 1), subject to a constant pressure drop dp

dx , so it is forced in the x−direction. Periodic
boundary conditions are implemented in the x− and y−directions, and a no-slip condition is enforced
in the z−direction.

Figure 1: Computational Domain Ω

The governing equations which describe such a fluid are the Navier-Stokes equations, here written
in non-dimensional form as follows:

∂t~u+ (~u · ~∇)~u = −~∇p+
1

Re
∇2~u (1)

~∇ · ~u = 0 (2)

where ~u = (u, v, w) ≡ (u1, u2, u3) is the velocity field of the fluid and p is the pressure field. Re =
ρUL
µ is the Reynolds number which characterises the flow, with ρ the density of the fluid, U,L the

velocity and length scales respectively, and µ the dynamic viscosity. In order to solve these equations
numerically, the fields are discretised on a marker-and-cell (MAC) grid, whereby velocity values are
stored at the edges of the cells, and the scalar valued pressure and viscosity fields and stored at cell
centres(Figure 2). This leads to a natural way of interpreting derivatives between cell faces, consistent
with the divergence theorem. This computational grid induces a natural filter on the fields. Given a
field variable f(~x, t), its filtered counterpart f̄(~x, t) can be written:

f̄(~x, t) = G ? f ≡
∫
G(~y, ~x,∆)f(~x− ~y, t)d~y (3)

2

Figure 2: MAC Grid

where G is a convolution kernel, with characteristic length scale ∆, which vanishes at infinity in
momentum space. This ensures that Fourier modes above a certain wavenumber are suppressed in
the filtered variables. Application of the filtering operation (3) to (1) and (2) leads to the filtered
equations of motion, written now in component form:

∂tūi + ūj∂j ūi = −∂ip̄+
1

Re
∂2ūi − ∂jτij (4)

∂iūi = 0 (5)

where τij = uiuj − ūiūj is the residual stress tensor and represents the contribution of the small scale
motions of the fluid. (4) and (5) cannot yet be explicitly solved, due to the presence of the uiuj term
in (4). The procedure of modelling these small scale motions is known as ‘large eddy simulation’(LES)
and there are various ways to do this.

1.2 The Dynamic Smagorinski Model

In order to make any progress in solving (4) and (5), τij needs to be modelled on physical grounds.
The simplest model for this residual stress tensor is declaring its traceless part to be proportional to
the local filtered strain rate s̄ij = 1

2 (∂j ūi+∂iūj), with a constant of proportionality being the viscosity
of sub-grid scale eddies νt:

τdij ≡ τij −
1

3
δijτkk = −2νts̄ij (6)

This eddy viscosity is modelled:

νt = Cs∆̄
2|s̄| (7)

where Cs > 0 is the so-called Smagorinski co-efficient, ∆̄ is the filter scale, and |s̄| =
√

2s̄ij s̄ij . With
these assumptions, (4) becomes:

∂tūi + ūj∂j ūi = −∂ip̄+ 2∂j(
1

Re
+ νt)s̄ij (8)

This model, dubbed the Smagorinski model, closes equations (4) and (5) and has proven to be very
successful in modeling fluids. However, there is little justification for taking Cs to be a positive
constant in (7). This model fails to predict backscatter, the transfer of energy from smaller to larger

3

eddies, and near-wall terms need to be included to ensure correct behaviour of νt near boundaries.
The dynamic Smagorinski model (DSM) aims to fix this. It is based on introducing a test filter on
top of the grid filter, with scale ∆̃ = α∆̄ > ∆̄, where α = 2 is found to be the best value of α. This
filtering leads to a test residual stress tensor Tij = ũiuj − ˜̄ui ˜̄uj , analogous to τij in (4). The DSM is
built from the premise that Cs, while spatially and temporally varying, should be independent of the
filter width. Thus we model Tij :

T dij ≡ Tij −
1

3
δijTkk = −2ν̃t ˜̄sij = −2Cs∆̃

2|˜̄s|˜̄sij (9)

Introducing Lij = ˜̄uiūj − ˜̄ui ˜̄uj it is apparent that:

Ldij ≡ Lij −
1

3
δijLkk = T dij − τ̃dij (10)

if we allow Cs to pass through the test filtering operation. If we define Mij = −2∆̄2 |̃s̄|s̄ij − 2∆̃2|˜̄s|˜̄sij
then the following equation holds for Cs:

Ldij = CsMij (11)

To find the best value of Cs in the dynamic model, we appeal to two different methods. The first
(DSM1) is by minimising the mean-square error of the approximation in (11), which leads to the
specification:

Cs =
MijLij
MklMkl

(12)

As the values for Mij and Lij fluctuate and can be very large, Cs is averaged along homogeneous
flow directions for stability. The second method (DSM2) was proposed by Pomielli(1995), and takes
note of a mathematical inconsistency which arises in the derivation of (12), namely the fact the we
implicitly assumed a spatial independence of Cs in deriving (10), as it is passed through the test
filtering operation. Without this assumption, (10) becomes:

Ldij = −2∆̃2Cs|˜̄s|˜̄sij + 2∆̄2C̃s|s̄|s̄ij ≡ −2Csαij + 2C̃sβij (13)

Denoting the Cs under the tilde by C∗, our best guess for Cs at the current time step, (12) is solved
for Cs:

Csαij = −1

2
(Ldij − C̃∗βij) (14)

Again, minimising the mean-square error of (13) leads to an expression for Cs:

Cs = −1

2

(Ldij − C̃∗βij)αij

αklαkl
(15)

Upon calculation of Cs for DSM1 (12) or DSM2 (15), (6) can be used to find τij and (4) and (5) may
be solved. DSM2 is the method used in AS-TPLS.

2 Parallel I/O Implementation

Dr. O’Naraigh provided a template parallel I/O framework which had been used in the original
TPLS code (O’Naraigh et al., 2014). This fit quite well into the S-TPLS code and needed only minor
adjustment in order to be run successfully. The parallel I/O makes use of NetCDF, a data storage
system which supports array oriented scientific data. Storing each output variable as a 3 dimensional
array cuts down on post-processing of data and aids usability. We inserted a logical flag into the code
to allow for easy choice between serial and parallel I/O.

4

We ran into problems when trying to compile the code in an environment without NetCDF support.
This was remedied by creating a new module in which to store the NetCDF subroutines and by
commenting out the two remaining references to NetCDF in the main code, i.e. ‘use netcdf’ and ‘use
netcdf stuff’. We then created a file with empty subroutines of the same name which must be linked
to when compiling. This is a somewhat inelegant solution and might be improved upon in further
work by making use of Fortran preprocessor macros.

Number of CPU Cores Parallel I/O Serial I/O

8 503.90 594.93
32 187.02 289.15
50 147.60 247.52
128 98.92 198.16
200 91.78 187.50

Table 1: Time taken in seconds to run 1, 000 iterations on varying CPU core counts.

The AS-TPLS code was run with a grid Nx = 161, Ny = 81, and Nz = 81 for a total grid count
of N = 1.056× 106 for 1, 000 time iterations, on various numbers of processors.

Figure 3: Comparison of Parallel/Serial I/O Speeds

In order to increase the usability of the code, we implemented a new parameter input method.
Prior to this, users needed to hard code parameters which may have hindered the code’s use as a
pedagogical tool. All parameters are now entered into a text file and read from there into the main
code.

We calculated and plotted the parallel efficiency, a measure of scaling efficiency, according to the
following formula:

Ep =
ep
e8

=
T1
pTp

8T8
T1

=
8T8
pTp

Where T1 is the run time on 1 process and Tp is the run time on p processes. We used 8 cores as
the base case because it was not feasible to run the program on a single core.

Optimal parallel efficiency is 1, thus it is clear that parallel I/O scales more efficiently than serial
I/O at all core counts.

5

Number of CPU Cores Parallel I/O Serial I/O

32 0.67 0.514
50 0.546 0.385
128 0.318 0.188
200 0.22 0.127

Table 2: Parallel efficiency of parallel and serial I/O.

3 Dynamic LES Implementation

In order to apply the test filtering operation to the velocity fields, a subroutine was written to calculate
the ‘cell-centred’ velocities uc, vc and wc. The details of the MAC grid are not covered here, but due
to the indexing used the cell centred velocities were calculated by the following simple averages:

uc(i, j, k) =
1

2
(u(i, j, k − 1) + u(i− 1, j, k − 1)) (16)

vc(i, j, k) =
1

2
(v(i, j, k − 1) + v(i, j − 1, k − 1)) (17)

wc(i, j, k) =
1

2
(w(i, j, k) + w(i, j, k − 1)) (18)

A subroutine was written to calculate the fields necessary in the implementation of DSM, namely
the product ūiūj (calculated with cell centred values), s̄ij , |s̄|, |s̄|s̄ij , and C∗βij (for DSM2). Each of
these arrays is populated locally on each MPI process. Halo swaps are performed between neighbouring
processors for taking derivatives/filtering. The test filter, with double the width of the grid filter, is
realised by nearest-neighbour averaging of the field variables. Explicitly: given f̄(i, j, k), its doubly

filtered counterpart ˜̄f(i, j, k) is:

˜̄f(i, j, k) =
1

6
(f̄(i+1, j, k)+ f̄(i−1, j, k)+ f̄(i, j+1, k)+ f̄(i, j−1, k)+ f̄(i, j, k+1)+ f̄(i, j, k−1)) (19)

Using (19) the doubly filtered fields used in the calculation of Cs can be calculated using (12) or (15).
In DSM1 Cs is averaged along homogeneous directions of the flow in each MPI process, leading to
a piecewise constant viscosity in the channel. Cs in DSM2 is not averaged, the value of C∗ is taken
as Cs at the previous time step. There are various more complicated, iterative ways to pick C∗, as
described in [2]. With τij modelled the Navier-Stokes equations are then solved as described in [1].

The DSM1 and DSM2 algorithms were found to be unstable for Reynolds numbers of interest
(Figure 1). In [1] the Smagorinski model was used to simulate a single phase channel flow for Re = 360,
whereas DSM1 and DSM2 blew up very quickly at this value of Re.

This ‘blowing up’ manifested itself as an instability in the pressure solver. Due to higher stability
at lower Reynolds numbers and more mathematical consistency DSM2 was used in the final version
of AS-TPLS, however stability at higher Reynolds numbers is greatly desired.

Although unstable, DSM2 does provide reasonably plots for the u-velocity and viscosity fields after
300,000 time iterations at dt = 10−4. Figure 5 shows a slice of u-velocity. This plot looks reasonable
due to the pressure drop in the x-direction, and thus the x-component of the velocity field should
have a high value away from the walls. This nice plot may however be an artifact of the suggestive
initial conditions used for the velocity field. Figure 6 shows a slice of the viscosity field, which shows
a vanishing viscosity at the boundaries and small patches of high viscosity which we may interpret as
eddy currents.

6

Figure 4: Comparison of DSM1 and DSM2 stability

Figure 5: DSM2: Slice of u-velocity in xz-plane at y=midpoint, 300,000 iterations

Figure 6: DSM2: Slice of viscosity in xz-plane at y=midpoint, 300,000 iterations

4 Conclusions and Future Work

The new version of S-TPLS, AS-TPLS, was successfully produced. This version includes parallel I/O
implementation, a dynamic LES concept, and a user-friendly input method. The parallel I/O was
found to speed up the code and also scales more efficiently than serial I/O. Two dynamic models
were tested, and both were found to be unstable for Reynolds numbers of interest. Thus it is of great
interest to find a way to stabilise these models. One way of realising this might be to implement a
‘mixed’ dynamic model, such as the one proposed by Bardina and implemented by Zang et al. in
1993. This model is reported to be the most successful LES model by Vreman et al. in 1997 in their
investigation of turbulent mixing layers. It would be interesting to stabilise any of these models since
none of these avail of the parallel computing techniques employed here.

7

5 Appendix - Some notes on running the code

In order to change the input parameters, the file “input.txt” should be edited. There are further
instructions in the file regarding what format the data should take.

The submit script we used to run the code on Fionn1 was:

module load dev intel/2015/-u3

module load libs netcdf/intel_mpi/4.3.0

mpiifort -c netcdf_stuff.f90

-I/ichec/packages/netcdf/intel_mpi/4.3.0/include

-L/ichec/packages/netcdf/intel_mpi/4.3.0/lib

-lnetcdff -lnetcdf

mpiifort -O3 final_main_spsrj_LES.f90

ds_momentum_stuff_allflux_LES.f90 mpi_stuff.f90

pressure_stuff.f90 sor_iteration_allflux_spsrj.f90

sphase_LES_initialisation.f90 -o stpls.x ./netcdf_stuff.o

-I/ichec/packages/netcdf/intel_mpi/4.3.0/include

-L/ichec/packages/netcdf/intel_mpi/4.3.0/lib

-lnetcdff -lnetcdf

Future users should note that the ”netcdf stuff.f90” file which contains the NetCDF subroutines is
specified as a module which means it needs to be compiled separately to the main file and then linked
to in the main compile line.

If you want to compile in an environment without NetCDF support, you will need to include an
additional link to the file “no netcdf support.f90” which contains the empty subroutines.

An example compile script used to successfully compile the code on Orr2 is:

/share/apps/mvapich2gnu/bin/mpif90 -O3

final_main_spsrj_LES.f90 mpi_stuff.f90

sphase_LES_initialisation.f90 pressure_stuff.f90

ds_momentum_stuff_allflux_LES.f90

sor_iteration_allflux_spsrj.f90 no_netcdf_support.f90

-o stpls.x

1Fionn is the Irish supercomputer cluster. More information at https://www.ichec.ie.
2Orr is UCD’s local computer cluster.

8

6 References

[1] - Fannon J, Loiseau J-C, Valluri P, Bethune I and Ó Náraigh L 2016 High-performance computa-
tional fluid dynamics: a custom-code approach Eur. J. Phys. 37
[2] - Piomelli U Large-eddy simulation of rotating channel flows using a localized dynamic model 1995
Physics of Fluids 7, 839
[3] - Ó Náraigh L, Valluri P, Scott D M, Bethune I, Spelt P D M 2014 Linear instability, nonlinear
instability, and ligament dynnamics in three-dimensional laminer two-layer liquid flows J. Fluid Mech.
750 464-506
[4] - TPLS: High Resolution Direct Numerical Simulation of Two-Phase Flows. http://sourceforge.net/projects/tpls/
[5] - Zang, Y., Street, R.L. and Koseff, J.R. (1993) A Dynamic Mixed Subgrid-Scale Model and Its
Application to Turbulent Recirculating Flows. Physics of Fluids A: Fluid Dynamics, 5, 3186-3196.
[6] - Large-eddy simulation of the turbulent mixing layer, Bert Vreman, Bernard Geurts and Hans
Kuerten.
[7] - AS-TPLS Source Code. https://gitlab.com/zagaluke/AS-TPLS

9

