CONTENTS

1.	Basic Facts	1
2.	Geometric Analysis	3
3.	Coarea formula and applications	4
4.	Harmonic functions	5
5.	A Liouville Theorem	10
6.	Subharmonic Functions	11
7.	Mean Value Property for Subharmonic Functions	11
8.	Maximum Principles for Subharmonic Functions	13

REPORT SUMMER PROJECT SUBHARMONIC FUNCTIONS IN REAL ANALYSIS

Joseph Curtis

Week 1

1. BASIC FACTS

Definition 1.1. (Radially Symmetric Functions) We say that a function $f : \mathbb{R}^N \to \mathbb{R}$ has radial symmetry (or is radially symmetric) if f(x) = g(|x|) for some $g : \mathbb{R} \to \mathbb{R}$. (Where $|x| = \sqrt{x_1^2 + x_2^2 + \dots + x_N^2}$)

Example 1.2. $f(x) = |x|^3 - 2|x| - \cos|x| / g(t) = t^3 - 2t - \cos(t)$ **Example 1.3.** $f(x) = |x|^3 - 2sin(x_1) + 7ln|x|$ is not radially symmetric.

Note 1.4. If f(x) = g(|x|) is radially symmetric then

$$\frac{\partial f(x)}{\partial x_i} = g'(|x|)\frac{(x_i)}{|x|}$$

And

$$\nabla f = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, ..., \frac{\partial f(x)}{\partial x_N}\right) = g'(|x|)\frac{(x_i)}{|x|} = \frac{g'(|x|)}{|x|}(x_1, x_2, ..., x_N)$$

Example 1.5. Let $f(x) = |x|^3 - 2|x| - \cos|x|$. Then $\frac{\partial f(x)}{\partial x_i} = g'(|x|)\frac{x_i}{|x|} = (3|x|^2 - 2 + \sin|x|)\frac{x_i}{|x|}$.

So
$$\frac{\partial f(x)}{\partial x_i} = (3|x| - \frac{2}{|x|} + \frac{\sin|x|}{|x|})x_i$$

Theorem 1.6. Let f(x) = g(|x|) be a radially symmetric function.

(1.1)
$$Then \ \frac{\partial^2 f(x)}{\partial x_i^2} = g''(|x|) \frac{x_i^2}{|x|^2} + g'(|x|) \frac{|x|^2 - x_i^2}{|x|^3}.$$

Proof. We know from Note 1.4 that $\frac{\partial f(x)}{\partial x_i} = g'(|x|)\frac{(x_i)}{|x|}$. Thus we can find $\frac{\partial^2 f(x)}{\partial x_i^2}$ by use of the chain rule. So by definition

$$\frac{\partial^2 f(x)}{\partial x_i^2} = \frac{\partial g'(|x|)}{\partial x_i} \frac{x_i}{|x|} + g'(|x|) \frac{\partial}{\partial x_i} \frac{x_i}{|x|}$$

It then follows using the quotient rule that

$$\frac{\partial^2 f(x)}{\partial x_i^2} = g''(|x|) \frac{x_i^2}{|x|^2} + g'(|x|) (\frac{1}{|x|} - \frac{x_i^2}{|x|^3})$$

Which factors down to

$$\frac{\partial^2 f(x)}{\partial x_i^2} = g''(|x|) \frac{x_i^2}{|x|^2} + g'(|x|) \frac{|x|^2 - x_i^2}{|x|^3}$$

Definition 1.7. Let $\Omega \subset \mathbb{R}^N$ be an open set and $u : \Omega \to \mathbb{R}$ be a C^2 -function. Then

$$\Delta u = \left(\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \dots + \frac{\partial^2 u}{\partial x_N^2}\right) = \sum_{i=1}^N \left(\frac{\partial^2 u}{\partial x_i^2}\right)$$

is called the Laplace operator of u.

Note 1.8. Assume u(x) = g(|x|). By Theorem 1.6, $\frac{\partial^2 u}{\partial x_i^2}$ can be easily calculated:

$$\frac{\partial^2 u}{\partial x_i^2} = g''(|x|)\frac{x_i^2}{|x|^2} + g'(|x|)\frac{|x|^2 - x_i^2}{|x|^3}$$

Denote r = |x| and we get:

$$\frac{\partial^2 u}{\partial x_i^2} = g''(r)\frac{x_i^2}{r^2} + g'(r)\frac{r^2 - x_i^2}{r^3}$$

So

$$\Delta u = \sum_{i=1}^{N} \frac{\partial^2 u}{\partial x_i^2} = g''(r) \frac{r^2}{r^2} + g'(r) \frac{Nr^2 - r^2}{r^3}$$

That is,

$$\Delta u = g''(r) + \frac{N-1}{r}g'(r)$$

Example 1.9. Let $u = |x|^3 - 2|x| - \cos|x|$. Find $\Delta u =$? Solution. Note that u(x) = g(|x|) (u is radially symmetric) where $g(r) = r^3 - 2r - \cos r$, $g'(r)3r^2 - 2 + \sin r$, $g''(r) = 6r + \cos r$.

Hence,

$$\Delta u = g''(r) + \frac{N-1}{r}g'(r) = 6r + \cos r + (N-1)(3r - \frac{2}{r} + \frac{\sin r}{r})$$

Example 1.10. Let $u : \mathbb{R}^3 \to \mathbb{R}$ be defined by $u(x) = \begin{cases} \frac{\sin |x|}{|x|} & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$ Prove that $-\Delta u = u$.

Proof. We can see that u(x) = g(|x|) is a radially symmetric function, therefore we can use the identity from Note 1.8.

$$\Delta u = g''(r) + \frac{N-1}{r}g'(r), \text{ where } r = |x|.$$

We have that,

Therefor

$$g''(r) = \frac{2\sin(r)}{r^3} - \frac{2\cos(r)}{r^2} - \frac{\sin(r)}{r}, \quad g'(r) = \frac{\cos(r)}{r} - \frac{\sin(r)}{r^2} \quad \text{for } x \neq 0$$

e,
$$\Delta u = \frac{2\sin(r)}{r^3} - \frac{2\cos(r)}{r^2} - \frac{\sin(r)}{r} + (\frac{3-1}{r})(\frac{\cos(r)}{r} - \frac{\sin(r)}{r^2})$$
$$= -\frac{\sin(r)}{r} = -u \quad \text{for } x \neq 0$$

Definition 1.11. (Open and closed sets in \mathbb{R}^N) A set $A \subset \mathbb{R}^N$ is said to be <u>open</u> if for any $x \in A$ there exists r > 0 such that $B_r(x) \subset A$. A set $B \subset \mathbb{R}^N$ is said to be closed if $\mathbb{R}^N \setminus B$ is open.

Example 1.12. $B_r(x)$ is open in \mathbb{R}^N , $[-1, 1] \subset \mathbb{R}$ is closed. $B = \{0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ..., \frac{1}{n}, \frac{1}{n+1}, ...\} \subset \mathbb{R}$ is closed.

Note 1.13. (Characterisation of closed sets) $B \subset \mathbb{R}^N$ is closed if for any convergent sequence $(x_n) \subset B$ we also have $\lim_{n\to\infty} x_n \in B$.

Definition 1.14. Connected sets in \mathbb{R}^N A set $\Omega \subset \mathbb{R}^N$ is <u>connected</u> if the only subset $A \subset \Omega$ which is both open and closed in Ω is either $A = \phi$ or $A = \Omega$. A domain $\Omega \subset \mathbb{R}^N$ is an open and connected set.

Example 1.15. The intervals [a, b], (a, b), [a, b), (a, b] are the only connected sets on the real line.

2. Geometric Analysis

Definition 2.1. (Unit Normal Vector) We say that an open set $\Omega \subset \mathbb{R}^N$ is of class C^k if for every $x_o \in \partial \Omega$ there exists r > 0 such that $B(x_o, r) \cap \partial \Omega$ is the graph of a C^k function. If Ω is of class C^1 and $x_o \in \partial \Omega$ we can define the exterior unit normal $\nu = \nu(x_o)$ and for a C^1 -function $u: \overline{\Omega} \to \mathbb{R}$ we can compute the normal derivative.

$$\frac{\partial u}{\partial \nu}(x_o) = \lim_{t \to 0} \frac{u(x_o + t\nu) - u(x_o)}{t} \text{ (for } t < 0) = \nabla u(x_o) \cdot \nu$$

Example 2.2. The ball $B(x_o, r) = B_r(x_o) = \{x \in \mathbb{R}^N : |x| < r\}$ is of class C^{∞} . If $x_o \in \partial B_r(0)$, the exterior unit normal is given by:

$$\nu = \nu(x_o) = \frac{x_o}{|x_o|} = \frac{x_o}{r}$$

More generally, for a ball $B_r(z)$ we have $\nu(x_o) = \frac{x_o - z}{|x_o - z|}$.

Theorem 2.3. (Divergence Theorem) If $F = (F_1, F_2, ..., F_N) : \overline{\Omega} \to \mathbb{R}^N$ is of class C^1 then,

$$\int_{\Omega} \operatorname{div} (F) dx = \int_{\partial \Omega} F \cdot \nu d\sigma(x)$$

Theorem 2.4. (Green's Idenities) Let $\Omega \in \mathbb{R}^N$ be an open set of class C^1 . If $u, v \in C^2(\overline{\Omega})$ then:

$$(a) \int_{\Omega} v \Delta u dx = \int_{\partial \Omega} v \frac{\partial u}{\partial \nu} d\sigma - \int_{\Omega} \nabla u \cdot \nabla v dx$$
$$(b) \int (v \Delta u - u \Delta v) dx = \int_{\partial \Omega} (v \frac{\partial u}{\partial \nu} - u \frac{\partial v}{\partial \nu}) d\sigma$$

We first recall the coarea formula.

Theorem 3.1. (Coarea formula) Let $f : B_R(0) \to \mathbb{R}$ be a continuous function. Then

(3.1)
$$\int_{B_R(0)} f(x)dx = \int_0^R \left(\int_{\partial B_r(0)} f(x)d\sigma(x) \right) dr$$

In particular, if f(x) = g(|x|) is a radially symmetric function, then

(3.2)
$$\int_{B_R(0)} f(x) dx = \sigma_N \int_0^R r^{N-1} g(r) dr,$$

where σ_N denotes the surface area of the unit sphere in \mathbb{R}^N .

Example 3.2. As an application of the above result, let us find the explicit formula for σ_N . Let $g(r) = e^{-r^2}$ in (3.2). Then

(3.3)
$$\int_{\mathbb{R}^N} e^{-|x|^2} dx = \sigma_N \int_0^\infty r^{N-1} e^{-r^2} dr$$

Note that

(3.4)
$$\int_{\mathbb{R}^N} e^{-|x|^2} dx = \int_{\mathbb{R}^N} e^{-x_1^2 - x_2^2 - \dots - x_N^2} dx = \left(\int_{-\infty}^{\infty} e^{-r^2} dr \right)^N.$$

Also

$$\left(\int_{-\infty}^{\infty} e^{-r^2} dr\right)^2 = \int_{\mathbb{R}^2} e^{-|x|^2} dx = 2\pi \int_0^{\infty} r e^{-r^2} dr = \pi.$$

Using this equality in (3.4) we find

(3.5)
$$\int_{\mathbb{R}^N} e^{-|x|^2} dx = \pi^{N/2}$$

To estimate the right-hand side in (3.3) we need the following definition.

Definition 3.3. The *Gamma function* is defined by $\Gamma : [0, \infty) \to \mathbb{R}$,

(3.6)
$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

By a simple integration we deduce $\Gamma(1) = 1$ and $\Gamma(x+1) = x\Gamma(x)$ for all x > 0.

In particular, an induction argument yields $\Gamma(n) = (n-1)!$ for all $n \ge 1$.

We next turn to the computation of the right-hand side in (3.3). With the substitution $t = r^2$ we have

$$\int_{0}^{\infty} r^{N-1} e^{-r^{2}} dr = \frac{1}{2} \int_{0}^{\infty} t^{\frac{N-2}{2}} e^{-t} dt = \frac{1}{2} \Gamma\left(\frac{N}{2}\right).$$

Finally, combining this last equality with (3.3) and (3.5) we find

$$\sigma_N = \frac{2\pi^{N/2}}{\Gamma\left(\frac{N}{2}\right)}.$$

Example 3.4. Let ω_N denote the volume of the unit ball in \mathbb{R}^N . Then, by (3.2) we find

$$\omega_N = \int_{B_1(0)} 1 dx = \sigma_N \int_0^1 r^{N-1} dr = \frac{\sigma_N}{N} = \frac{2\pi^{N/2}}{N\Gamma\left(\frac{N}{2}\right)}.$$

Note 3.5. We always have $\sigma_N = N\omega_N$.

Definition 4.1. Let $u: \Omega \to \mathbb{R}$ be a C^2 function where $\Omega \subset \mathbb{R}^N$ is an open set. We say that u is <u>harmonic on Ω </u> if $\Delta u = 0$ in Ω

Example 4.2. Let $u(x) = |x|^k$ (so $g(r) = r^k$). Then $\Delta u = 0 \Leftrightarrow g''(r) + \frac{N-1}{r}g'(r) = 0 \Leftrightarrow k(k-1)r^{k-2} + k(N-1)r^{k-2} = 0$ $\Leftrightarrow k(k+N-2) = 0 \Leftrightarrow k = 0 \text{ or } k = 2 - N$ Hence u(x) = C = const is obviously harmonic and $u(x) = |x|^{2-N}$ is also harmonic.

Example 4.3. $u(x) = \log |x|$, N=2 Then $g(r) = \log r$, $\Delta u = g''(r) + \frac{N-1}{r}g'(r) = -\frac{1}{r^2} + \frac{1}{r} \cdot \frac{1}{r} = 0$ This shows that $u(x) = \log(x)$ is a harmonic function in dimension <u>N=2</u>.

Note 4.4. (What happens in dimension N=1) If u = u(x) is a harmonic function in dimension N=1 then, $0 = \Delta u = u''(x) \rightarrow u(x) = Ax + B$ Thus, the only harmonic functions in dimension 1 are linear functions.

Note 4.5. (Harmonic polynomials in dimension N=2)

Degree 0: all constant polynomials u = c are harmonic.

Degree 1: all linear polynomials $u(x_1, x_2) = ax_1 + bx_2$ are harmonic.

Degree 2: all quadratic polynomials $u(x_1, x_2) = a(x_1^2 - x_2^2) + bx_1x_2$ are harmonic.

Degree n: the real and imaginary parts of $(x_1 + ix_2)^n$ are harmonic functions.

For instance $u(x_1, x_2) = x_1^3 - 3x_1x_2^2$ and $v(x_1, x_2) = x_2^3 - 3x_2x_1^2$ are harmonic.

Example 4.6. Let $f :\to C$ be a holomorphic (complex differentiable) function. Then $u(x_1, x_2) = Re(f(x_1, x_2)), v(x_1, x_2) = Im(f(x_1, x_2))$ are harmonic functions.

Take for instance $f(z) = e^{z} = e^{x_1 + ix_2} = e^{x_1} (\cos x_2 + i \sin x_2)$. So,

$$u(x_1, x_2) = Re(f) = e^{x_1} \cos x_2$$

$$v(x_1, x_2) = Im(f) = e^{x_1} \sin x_2$$
 are both harmonic.

Example 4.7. Let $u(x) = \frac{x_1 x_2}{|x|^2}, x \in \mathbb{R}^2 \setminus \{0\}$. Find Δu . We have to show that $\Delta u = 0$, so we have to calculate $\frac{\partial^2 u}{\partial x_i^2}$ for $i = \{1, 2\}$.

$$\frac{\partial^2 u}{\partial x_1^2} = \frac{2x_2 x_1 (x_1^2 - 3x_2^2)}{|x|^6}, \quad \frac{\partial^2 u}{\partial x_2^2} = \frac{-2x_1 x_2 (3x_1^2 - x_2^2)}{|x|^6},$$

Therefore,

$$\sum_{i=1}^{2} \left(\frac{\partial^2 u}{\partial x_i^2}\right) = \frac{2x_2 x_1 (x_1^2 - 3x_2^2)}{|x|^6} + \frac{-2x_1 x_2 (3x_1^2 - x_2^2)}{|x|^6} = \frac{-4x_1^3 x_2 - 4x_1 x_2^3}{|x|^6}$$
$$= \frac{-4x_1 x_2 (x_1^2 + x_2^2)}{|x|^6} = \frac{-4x_1 x_2}{|x|^4} = \Delta u$$

Example 4.8. Let $\Omega \subset \mathbb{R}^N$ be an open set. If u and u^2 are harmomic functions then u=constant.

Proof. $\Delta u = \nabla^2 u = 0$ $\nabla^2 u^2 = 2u\nabla^2 u + 2|\nabla u|^2 = 2|\nabla u|^2 = 0$. If $2|\nabla u|^2 = 0$ then $|\nabla u| = 0$ and u has to be a constant. **Example 4.9.** Let $\Omega \subset \mathbb{R}^N$ be an open set, and $u : \Omega \to \mathbb{R}$ be a harmonic function. Then $v = x \cdot \nabla u(x)$ is also harmonic.

Proof.

$$v(x) = \left(x_1 \frac{\partial u}{\partial x_1}, x_2 \frac{\partial u}{\partial x_2}, \dots, x_N \frac{\partial u}{\partial x_N}\right)$$
$$\nabla v(x) = \left(x_1 \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial u}{\partial x_1}, x_2 \frac{\partial^2 u}{\partial x_2^2} + \frac{\partial u}{\partial x_2}, \dots, x_N \frac{\partial^2 u}{\partial x_N^2} + \frac{\partial u}{\partial x_N}\right)$$
$$\nabla^2 v(x) = \left(x_1 \frac{\partial^3 u}{\partial x_1^3} + 2\frac{\partial^2 u}{\partial x_1^2} + x_2 \frac{\partial^3 u}{\partial x_2^3} + 2\frac{\partial^2 u}{\partial x_2^2} + \dots + x_N \frac{\partial^3 u}{\partial x_N^3} + 2\frac{\partial^2 u}{\partial x_N^2}\right)$$
$$= 2\sum_{i=1}^N \frac{\partial^2 u}{\partial x_i^2} + \sum_{i=1}^N x_i \frac{\partial^3 u}{\partial x_i^3} = \sum_{i=1}^N x_i \frac{\partial^3 u}{\partial x_i^3} = x \cdot \nabla^3 u = x \cdot \nabla \cdot \nabla^2 u = 0$$

Example 4.10. (Find All harmonic functions which are radially symmetric) Solution. $u = g(r), r = |x|, \Delta u = 0$ in \mathbb{R}^N Thus $0 = \Delta u = g''(r) + \frac{N-1}{r}g'(r)$ for all r > 0This shows that

$$g''(r) + \frac{N-1}{r}g'(r) = 0$$

$$rg''(r) + N - 1g'(r) = 0$$

Multiply by r^{N-2} and get $r^{N-1}g''(r) + N - 1r^{N-2}g'(r) = 0$ that is, $[r^{N-1}g'(r)]' = 0$ for all r > 0. Hence $r^{N-1}g'(r) = C \Rightarrow g'(r) = Cr^{1-N}$ for all r > 0. So $\int c_1 r^{2-N} + c_2$ for some $c_1, c_2 \in \mathbb{R}, N > N = 1$ g

$$q(r) = \begin{cases} c_1 r + c_2 & \text{for some} \quad c_1, c_2 \in \mathbb{R}, N \ge N = 1\\ c_1 lnr + c_2 & \text{for some} \quad c_1, c_2 \in \mathbb{R}, if N = 2 \end{cases}$$

(Conclusion): The only radially symmetric harmonics functions are,

$$u(x) = \begin{cases} c_1 r^{2-N} + c_2 & \text{for some} \quad c_1, c_2 \in \mathbb{R}, N \ge N = 1\\ c_1 lnr + c_2 & \text{for some} \quad c_1, c_2 \in \mathbb{R}, if N = 2 \end{cases}$$

Definition 4.11. (Fundamental Solutions of Laplace equation) The function,

$$E(x) = \begin{cases} \frac{1}{2\pi} ln |x|, & \text{if } N = 2\\ \frac{1}{(2-N)\sigma_N} |x|^{2-N} & \text{if } N \ge 3 \text{ or } N = 1 \end{cases}$$

Is called the fundamental solution of the Laplace equation. Note that the constraints $\frac{1}{2\pi}$ (if N=2) or $\frac{1}{(2-N)\sigma_N}$ (If N≥3) are chosen so that,

$$\int_{\partial B_R(0)} \frac{\partial E}{\partial \nu} d\sigma(y) = 1, \text{ for all } R > 0$$

Proof. Take $E(x) = \frac{1}{2\pi} \ln |x|$ $\frac{\partial E}{\partial \nu} = \nabla E \cdot \nu$ $\frac{\partial E}{\partial x_i} = \frac{1}{2\pi} \frac{x_i}{|x|} \frac{1}{|x|} = \frac{1}{2\pi} \frac{x_i}{|x|^2} \Rightarrow$ $\nabla E = (\frac{\partial E}{\partial x_1}, \frac{\partial E}{\partial x_2}) = \frac{1}{2\pi} (\frac{x_1}{|x|^2}, \frac{x_2}{|x|^2}) = \frac{1}{2\pi} \frac{x}{|x|^2}$

Note
$$\left(\nu = \frac{x}{|x|}\right)$$

$$\frac{\partial E}{\partial \nu}(x) = \nabla E(x) \cdot \nu(x) = \frac{1}{2\pi} \frac{x}{|x|^2} \cdot \frac{x}{|x|} = \frac{1}{2\pi} \frac{|x|^2}{|x|^3} = \frac{1}{2\pi} \frac{1}{|x|} \Rightarrow$$

$$\frac{1}{2\pi} \int_{\partial B_R(0)} \frac{\partial E}{\partial \nu}(y) d\sigma(y) = \frac{1}{2\pi} \int_{\partial B_R(0)} \frac{1}{|y|} d\sigma(y)$$

$$= \frac{1}{2\pi} \int_{\partial B_R(0)|} \frac{1}{R} d\sigma(y)$$

$$= \frac{1}{2\pi R} |\partial B_R(0)|$$

$$= \frac{1}{2\pi R} \cdot 2\pi R = 1$$
Take $E(x) = \frac{1}{(2-N)\sigma_N} |x|^{2-N}$:

$$\nabla E = \frac{1}{(2-N)\sigma_N} (2-N) |x|^{1-N} \frac{x}{|x|} = \frac{x}{\sigma_N |x|^N}$$

$$\nabla E \cdot \nu = \frac{x}{\sigma_N |x|^N} \cdot \frac{x}{|x|} = \frac{|x|^2}{\sigma_N |x|^{N+1}} = \frac{1}{\sigma_N} \frac{1}{|x|^{N-1}} \frac{1}{\sigma_N} \int_{\partial B_R(0)} \frac{\partial E}{\partial \nu}(y) d\sigma(y)$$

$$= \frac{1}{\sigma_N} \int_{\partial B_R(0)} \frac{1}{|x|^{N-1}} (y) d\sigma(y)$$

$$= \frac{1}{\sigma_N N^{N-1}} \int_{\partial B_R(0)} 1(y) d\sigma(y)$$

$$= \frac{1}{\sigma_N R^{N-1}} |\sigma_N R^{N-1}| = 1$$

Theorem 4.12. (Uniqueness of Solutions for Dirichlet problem) Assume Ω is an open set of class $C^1, f \in C(\overline{\Omega}), g \in C(\partial\Omega)$. Then, there exists at most one solution $u \in C^2(\overline{\Omega})$ such that,

(1)
$$\begin{cases} \Delta u = f & in \quad \Omega\\ u = g & on \quad \partial \Omega \end{cases}$$

Proof. Assume u_1, u_2 are two solutions of (1) and denote $u = u_1 - u_2$.

(2)
$$\begin{cases} \Delta u = \Delta u_1 - \Delta u_2 = 0 & \text{in } \Omega \\ u = u_1 - u_2 = 0 & \text{on } \partial \Omega \end{cases}$$

Let us now mulitply by u in the first equation of (2). Then, by Green's identities,

$$0 = \int_{\Omega} u \Delta u dx = \int_{\partial \Omega} u \frac{\partial u}{\partial \nu} - \int_{\Omega} |\Delta u|^2 dx = -\int_{\Omega} |\Delta u|^2 dx \Rightarrow \int_{\Omega} |\Delta u|^2 dx = 0$$

Since $|\Delta u|^2 > 0$, this yields $|\Delta u| \equiv 0$ in $\Omega \Rightarrow u = constant$ in $\Omega \Rightarrow u_1 = u_2$ in $\overline{\Omega}$.

(a) The solid average of u over a ball $B_r(x_o)$ is,

$$\int_{B_r(x)} u(y) dy = \frac{1}{|B_r(x)|} \int_{B_r(x)} u(y) dy = \frac{1}{\omega_N r^N} \int_{B_r(x)} u(y) dy$$

(b) The spherical average of u over $\partial B_r(x)$ is,

$$\int_{\partial B_r(x)} u(y) d\sigma(y) = \frac{1}{|\partial B_r(x)|} \int_{\partial B_r(x)} u(y) d\sigma(y) = \frac{1}{\sigma_N r^{N-1}} \int_{\partial B_r(x)} u(y) d\sigma(y)$$

Theorem 4.14. (Mean Value Property for harmonic functions) Let $\Omega \subset \mathbb{R}^N$ be an open set, $u \in C^2(\Omega)$ be a harmonic function and $B_r(x) \subset \Omega$. Then,

$$u(x) = \int_{B_r(x)} u(y) dy$$
 and $u(x) = \int_{\partial B_r(x)} u(y) d\sigma(y)$

Proof. Recall Green's formula,

$$\int_{\Omega} v \Delta u dy = \int_{\partial \Omega} v \frac{\partial u}{\partial \nu} d\sigma(y) - \int_{\Omega} \nabla u \cdot \nabla v dy$$

By taking $v \equiv 1$ we get,

$$\int_{\Omega} \Delta u dy = \int_{\partial \Omega} \frac{\partial u}{\partial \nu} d\sigma(y)$$

Hence

$$\int_{B_r(x)} \Delta u dy = \int_{\partial B_r(x)} \frac{\partial u}{\partial \nu} d\sigma(y)$$
$$= \int_{\partial B_r(x)} \nabla u(y) \cdot \nu(y) d\sigma(y)$$
$$= \int_{\partial B_r(x)} \nabla u(y) \cdot \frac{y - x}{r} d\sigma \quad (1)$$

Let $\frac{y-x}{r} = z$. Then y = x + rz and $\underline{d\sigma(y) = r^{N-1}d\sigma(z)}$. Thus, by (1) we get,

$$0 = \int_{B_r(x)} \Delta u dy = \int_{\partial B_r(x)} \nabla u(y) \cdot \nu(y) d\sigma(y)$$
$$= r^{N+1} \int_{\partial B_1(0)} \nabla u(x+rz) \cdot d\sigma(z)$$
$$= r^{N-1} \frac{\partial}{\partial r} \Big[\int_{\partial B_1(0)} u(x+rz) d\sigma(z) \Big] \quad \text{for all } r > 0.$$

It follows that the function $r \mapsto \int_{\partial B_1(0)} u(x+rz) d\sigma(z) = \varphi(r)$ is constant, so

$$\varphi(r) = \varphi(0) = \int_{\partial B_1(0)} u(x) d\sigma(z) = u(x) \int_{\partial B_1(0)} 1 d\sigma(z) = u(x) \sigma_N$$

Hence,

$$u(x) = \frac{1}{\sigma_N} \cdot \varphi(r) = \frac{1}{\sigma_N} \int_{\partial B_1(0)} u(x+rz) d\sigma(z)$$

Denote $x + rz = y \Rightarrow z = \frac{y - x}{r} \Rightarrow d\sigma(z) = \frac{1}{r^{N-1}} d\sigma(y)$ so,

$$\begin{split} u(x) &= \frac{1}{\sigma_N} \int_{\partial B_r(0)} u(y) \frac{1}{r^{N-1}} d\sigma(y) = \frac{1}{\sigma_N r^{N-1}} \int_{\partial B_r(x)} u(y) d\sigma(y) \\ &= \oint_{\partial B_r(x)} u(y) d\sigma(y). \end{split}$$

The proof of the equality

$$u(x) = \int_{B_r(x)} u(y) d\sigma(y)$$

goes as follows,

$$\begin{split} \int_{B_r(x)} u(y) dy &= \frac{1}{\omega_N r^N} \int_0^r \left(\int_{\partial B_s(x)} u(y) d\sigma(y) \right) ds \\ &= \frac{1}{\omega_N r^N} \int_0^r \left(\sigma_N s^{N-1} \int_{\partial B_s(x)} u(y) d\sigma(y) \right) ds \\ &= \frac{\sigma_N}{\omega_N r^N} \int_0^r \left(s^{N-1} \int_{\partial B_s(x)} u(y) d\sigma(y) \right) ds \\ &= \frac{\sigma_N}{\omega_N r^N} \int_0^r s^{N-1} u(x) ds \\ &= \frac{\sigma_N u(x)}{\omega_N r^N} \int_0^r s^{N-1} ds \\ &= \frac{\sigma_N u(x)}{\omega_N r^N} \frac{r^N}{N} = \frac{\sigma_N u(x)}{N\omega_N} = u(x). \end{split}$$

Theorem 4.15. (Strong Maximum principle for harmonic functions) Let $\Omega \subset \mathbb{R}^N$ be a bounded domain, $u \in C^2(\Omega) \cap C(\overline{\Omega})$ be a harmonic function. If u achieves either its maximum or minimum in Ω then u is constant.

Proof. Let $M = \max_{x \in \overline{\Omega}}(u)$ and assume there exists $x_o \in \Omega$ such that $u(x_o) = M$. Define $A = \{x \in \Omega : u(x) = M\}$. Note that $A \neq \emptyset$ because $x_o \in A$. Also A is closed because if $(x_n) \in A$ such that (x_n) is convergent, then $u(x_n) = M$ for all $n \ge 1$ so that $\lim_{n \to \infty} x_n = x$ satisfies $\lim_{n \to \infty} u(x_n) = M \Rightarrow x \in A$. It remains to show that A is also open. Let $x \in A$. Then u(x) = M and because Ω is open, there exists r > 0 with $B_r(x) \subset \Omega$. By the Mean Value Property it follows that,

$$M = u(x) = \int_{B_r(x)} u(y) dy \le M.$$

It follows that $u \equiv M$ on $B_r(x)$ so $B_r(x) \subset A$.

This shows that A is both open and closed in $\Omega \Rightarrow A = \Omega$ because Ω is connected. Hence $\Omega = A = \{x \in \Omega : u(x) = M\} \Rightarrow u = constant.$

Theorem 4.16. (Weak Maximum principle) Let $\Omega \subset \mathbb{R}^N$ be a bounded domain and let $u \in C^2(\Omega) \cap (\overline{\Omega})$ be a harmonic function. Then

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u, \quad \min_{\overline{\Omega}} u = \min_{\partial \Omega} u,$$

that is, u achieves both maximum and minimum values over the boundary of the domain Ω .

Note 4.17. Let $\Omega \subset \mathbb{R}^N$ be a bounded domain and let $u \in C^2(\Omega) \cap (\overline{\Omega})$ be a harmonic function such that u = 1 on $\partial \Omega$. We can show that u is a constant function.

Proof. By the Weak Maximum principle u achieves both its maximum and minimum on $\partial \Omega'$. Since u=1 on $\partial \Omega$ then the maximum and minimum of u has to be 1 on Ω . Thus $max(u) = min(u), \Rightarrow$ u is a constant function.

5. A LIOUVILLE THEOREM

Theorem 5.1. Let $u : \mathbb{R}^N \to \mathbb{R}, N \ge 1$ be a harmonic function. If u is bounded either from below or above then u = constant.

Proof. Replacing u by -u we may assume u is bounded below $(u \ge m)$. Now replacing u by u + m we may assume $u \ge 0$. Let $x \in \mathbb{R}^N \setminus \{0\}$ and $R \ge |x|$. We want to show u(x) = u(0). By the Mean Value Theorem,

$$u(x) = \int_{B_R(x)} u(y)dy$$
 and $u(0) = \int_{B_R(0)} u(y)dy$

So,

$$\begin{aligned} |u(x) - u(0)| &= \frac{1}{\omega_N R^N} \Big| \int_{B_R(x)} u(y) dy - \int_{B_R(0)} u(y) dy \Big| \\ &= \frac{1}{\omega_N R^N} \Big| \int_{B_R(x) \setminus B_R(0)} u(y) dy - \int_{B_R(0) \setminus B_R(x)} u(y) dy \\ &\leq \frac{1}{\omega_N R^N} \int_{\left(B_R(x) \setminus B_R(0)\right) \cup \left(B_R(0) \setminus B_R(x)\right)} u(y) dy \quad (\star) \\ \underline{Claim}: \left(B_R(x) \setminus B_R(0)\right) \cup \left(B_R(0) \setminus B_R(x)\right) \subset B_{R+|x|}(0) \setminus B_{R-|x|}(0) \end{aligned}$$

Proof. Let $y \in (B_R(x) \setminus B_R(0)) \cup (B_R(0) \setminus B_R(x))$. If $y \in (B_R(x) \setminus B_R(0))$ then |y - x| > R and |y| > R > R - |x|. Thus $y \leq |y - x| + |x| < R + |x|$. So R - |x| < |y| < R + |x|. If $y \in B_R(x)$ then |y| < R and |y - x| > R. Since $|y| + |x| \geq |y - x| > R$, it follows that R - |x| < |y| < R < R + |x|.

Hence

$$y \in B_{R+|x|}(0) \backslash B_{R-|x|}(0)$$

This proves our claim.

We now return to the proof of (\star)

$$|u(x) - u(0)| \leq \frac{1}{\omega_N R^N} \int_{\left(B_R(x) \setminus B_R(0)\right) \cup \left(B_R(0) \setminus B_R(x)\right)} u(y) dy$$
$$\leq \frac{1}{\omega_N R^N} \int_{B_{R+|x|}(0) \setminus B_{R-|x|}(0)} u(y) dy$$

So,

$$\begin{aligned} |u(x) - u(0)| &\leq \frac{1}{\omega_N R^N} \Big[\int_{B_{R+|x|}(0)} u(y) dy - \int_{B_{R-|x|}(0)} \Big] \\ &= \frac{(R+|x|)^N}{R^N} \frac{1}{\omega_N (R+|x|)^N} \int_{B_{R+|x|}} u(y) dy - \frac{(R-|x|)^N}{R^N} \frac{1}{\omega_N (R-|x|)^N} \int_{B_{R-|x|}} u(y) dy \\ &= \frac{(R+|x|)^N}{R^N} \int_{B_{R+|x|}} u(y) dy - \frac{(R-|x|)^N}{R^N} \int_{B_{R-|x|}} u(y) dy \\ &= \frac{(R+|x|)^N - (R-|x|)^N}{R^N} u(0) \longrightarrow 0 \quad \text{as } R \longrightarrow \infty. \end{aligned}$$

This shows that u(x) = u(0) for all $x \in \mathbb{R}^N \Rightarrow u = constant$.

6. Subharmonic Functions

Definition 6.1. Let $\Omega \subset \mathbb{R}^N$ be an open set. A function $u \in C^2(\Omega)$ is called <u>subharmonic</u> if $-\Delta u \leq 0$ in Ω . Similarly u is called superharmonic if $-\Delta u \geq 0$ in Ω .

Example 6.2. In dimension N = 1 any subharmonic function u is in fact a convex function (resp. any superharmonic function is a concave function).

Example 6.3. Let $u(x) = |x|^k, x \in \mathbb{R}^N \setminus \{0\}$. Find k such that u is a subharmonic function. Solution. u is a radially symmetric function, so using Note 1.8:

$$\Delta u = g''(r) + \frac{N-1}{r}g'(r)$$

Therefore

$$\Delta u = r^{k-2}k(k+N-2)$$

For u to be subharmonic $-\Delta u \leq 0 \Rightarrow \Delta u \geq 0$.

$$\Delta u = r^{k-2}k(k+N-2) \ge 0 \Rightarrow k(k+N-2) \ge 0$$

$$\Rightarrow k \ge 0 \quad \text{and} \quad (k+N-2) \ge 0 \quad \text{or} \quad k \le 0 \quad \text{and} \quad (k+N-2) \le 0$$

$$\Rightarrow k \ge \max\{0, 2-N\} \quad \text{or} \quad k \le \min\{0, 2-N\}$$

Example 6.4. Let $u : \Omega \to \mathbb{R}$ be a positive harmonic function. Prove that $\log(u) = \ln u$ is superharmonic.

7. MEAN VALUE PROPERTY FOR SUBHARMONIC FUNCTIONS

Theorem 7.1. (Mean Value Property for Subharmonic Functions)

Let $\Omega \subset \mathbb{R}^N$ be an open set, $B_r(x) \subset \subset \Omega$. Then for any subharmonic function $u : \Omega \to \mathbb{R}$ we have,

$$u(x) \leq \int_{\partial B_r(x)} u(y) d\sigma y \quad and \quad u(x) \leq \int_{B_r(x)} u(y) dy$$

Proof. Recall Green's formula,

$$\int_{\Omega} v \Delta u dy = \int_{\partial \Omega} v \frac{\partial u}{\partial \nu} d\sigma(y) - \int_{\Omega} \nabla u \cdot \nabla v dy$$

By taking $v \equiv 1$ we get,

$$\int_{\Omega} \Delta u dy = \int_{\partial \Omega} \frac{\partial u}{\partial \nu} d\sigma(y)$$

Hence

$$\int_{B_r(x)} \Delta u dy = \int_{\partial B_r(x)} \frac{\partial u}{\partial \nu} d\sigma(y)$$
$$= \int_{\partial B_r(x)} \nabla u(y) \cdot \nu(y) d\sigma(y)$$
$$= \int_{\partial B_r(x)} \nabla u(y) \cdot \frac{y - x}{r} d\sigma \quad (1)$$

Let $\frac{y-x}{r} = z$. Then y = x + rz and $\underline{d\sigma(y) = r^{N-1}d\sigma(z)}$. Thus, by (1) we get,

0

$$0 \leq \int_{B_r(x)} \Delta u dy = \int_{\partial B_r(x)} \nabla u(y) \cdot \nu(y) d\sigma(y)$$
$$= r^{N+1} \int_{\partial B_1(0)} \nabla u(x+rz) \cdot d\sigma(z)$$
$$\leq r^{N-1} \frac{\partial}{\partial r} \Big[\int_{\partial B_1(0)} u(x+rz) d\sigma(z) \Big] \quad \text{for all } r > 0.$$

It follows that the function $r \mapsto \int_{\partial B_1(0)} u(x+rz) d\sigma(z) = \varphi(r)$ is monotone increasing, so

$$\varphi(r) \ge \varphi(0) = \int_{\partial B_1(0)} u(x) d\sigma(z) = u(x) \int_{\partial B_1(0)} 1 d\sigma(z) = u(x) \sigma_N$$

Hence,

$$u(x) \le \frac{1}{\sigma_N} \cdot \varphi(r) = \frac{1}{\sigma_N} \int_{\partial B_1(0)} u(x+rz) d\sigma(z)$$

Denote $x + rz = y \Rightarrow z = \frac{y - x}{r} \Rightarrow d\sigma(z) = \frac{1}{r^{N-1}} d\sigma(y)$ so,

$$\begin{aligned} u(x) &\leq \frac{1}{\sigma_N} \int_{\partial B_r(0)} u(y) \frac{1}{r^{N-1}} d\sigma(y) = \frac{1}{\sigma_N r^{N-1}} \int_{\partial B_r(x)} u(y) d\sigma(y) \\ &= \oint_{\partial B_r(x)} u(y) d\sigma(y) \\ u(x) &\leq \oint_{\partial B_r(x)} u(y) d\sigma(y). \end{aligned}$$

The proof of the equality

$$u(x) \le \int_{B_r(x)} u(y) d\sigma(y)$$

goes as follows,

$$\begin{split} \int_{B_r(x)} u(y) dy &= \frac{1}{\omega_N r^N} \int_0^r \Big(\int_{\partial B_s(x)} u(y) d\sigma(y) \Big) ds \\ &= \frac{1}{\omega_N r^N} \int_0^r \Big(\sigma_N s^{N-1} \oint_{\partial B_s(x)} u(y) d\sigma(y) \Big) ds \\ &= \frac{\sigma_N}{\omega_N r^N} \int_0^r \Big(s^{N-1} \oint_{\partial B_s(x)} u(y) d\sigma(y) \Big) ds \\ &\leq \frac{\sigma_N}{\omega_N r^N} \int_0^r s^{N-1} u(x) ds \\ &\leq \frac{\sigma_N u(x)}{\omega_N r^N} \int_0^r s^{N-1} ds \\ &\leq \frac{\sigma_N u(x)}{\omega_N r^N} \frac{r^N}{N} = \frac{\sigma_N u(x)}{N\omega_N} = u(x). \end{split}$$

Theorem 8.1. (Strong Maximum Principle for Subharmonic Functions) Let $\Omega \subset \mathbb{R}^N$ be a bounded domain, $u \in C^2(\Omega) \cap C(\overline{\Omega})$ be a subharmonic function. If there exists $x_0 \in \Omega$ such that $u(x_0) = \max_{x \in \overline{\Omega}}$ then u = constant.

Proof. Let $M = \max(u)$ and assume there exists $x_o \in \Omega$ such that $u(x_o) = M$.

Define $A = \{x \in \Omega : u(x) = M\}$. Note that $A \neq \emptyset$ because $x_o \in A$. Also A is closed because if $(x_n) \in A$ such that (x_n) is convergent, then $u(x_n) = M$ for all $n \ge 1$ so that $\lim_{n \to \infty} x_n = x$ satisfies $\lim_{n \to \infty} u(x_n) = M \Rightarrow x \in A$. It remains to show that A is also open. Let $x \in A$. Then u(x) = M and because Ω is open, there exists r > 0 with $B_r(x) \subset \Omega$. By the Mean Value Property it follows that,

$$M = u(x) \le \oint_{B_r(x)} u(y) dy \le M.$$

It follows that $u \equiv M$ on $B_r(x)$ so $B_r(x) \subset A$.

This shows that A is both open and closed in $\Omega \Rightarrow A = \Omega$ because Ω is connected. Hence $\Omega = A = \{x \in \Omega : u(x) = M\} \Rightarrow u = constant.$

Theorem 8.2. (Weak Maximum Principle for Subharmonic Functions) Let $\Omega \subset \mathbb{R}^N$ be a bounded domain and let $u \in C^2(\Omega) \cap (\overline{\Omega})$ be a subharmonic function. Then

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u.$$

Proof. This follows from the Strong Maximum Principle but there is another approach. Assume by contradiction that there exists $x_0 \in \Omega$ such that

$$u(x_0) = \max_{\overline{\Omega}} u > \max_{\partial\Omega} u.$$

Fix $\epsilon > 0$ small enough and define

$$v(x) = u(x) + \epsilon |x - x_0|^2, x \in \overline{\Omega}$$

We take ϵ small such that

$$\max_{\partial \Omega} v(x) \le \max_{\partial \Omega} u + \epsilon \max_{x \in \partial \Omega} |x - x_0|^2 < v(x_0) = u(x_0)$$

This means that v achieves its maximum in $\overline{\Omega}$ at a point \tilde{x} inside of Ω . Then $\frac{\partial^2 v}{\partial x_i^2}(\tilde{x}) \leq 0$ for all $1 \leq i \leq N$ so $\Delta v(\tilde{x}) \leq 0$. On the other hand

$$\Delta v(\tilde{x}) = \Delta u(\tilde{x}) + 2\epsilon N \ge 2\epsilon N > 0$$

Which is a contradiction.