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1. Basic Facts

Definition 1.1. (Radially Symmetric Functions) We say that a function f : RN → R has
radial symmetry ( or is radially symmetric) if f(x) = g(|x|) for some g : R→ R.

(Where |x| =
√
x2

1 + x2
2 + · · ·+ x2

N )

Example 1.2. f(x) = |x|3 − 2|x| − cos|x| / g(t) = t3 − 2t− cos(t)

Example 1.3. f(x) = |x|3 − 2sin(x1) + 7ln|x| is not radially symmetric.

Note 1.4. If f(x) = g(|x|) is radially symmetric then

∂f(x)

∂xi
= g′(|x|)(xi)

|x|
And

∇f = (
∂f(x)

∂x1

,
∂f(x)

∂x2

, ...,
∂f(x)

∂xN
) = g′(|x|)(xi)

|x|
=
g′(|x|)
|x|

(x1, x2, ..., xN)

Example 1.5. Let f(x) = |x|3−2|x|−cos|x|. Then ∂f(x)
∂xi

= g′(|x|) xi|x| = (3|x|2−2+sin|x|) xi|x| .

So
∂f(x)

∂xi
= (3|x| − 2

|x|
+
sin|x|
|x|

)xi.

Theorem 1.6. Let f(x) = g(|x|) be a radially symmetric function.

(1.1) Then
∂2f(x)

∂x2
i

= g′′(|x|) x
2
i

|x|2
+ g′(|x|) |x|

2 − x2
i

|x|3
.

1
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Proof. We know from Note 1.4 that ∂f(x)
∂xi

= g′(|x|) (xi)
|x| . Thus we can find ∂2f(x)

∂x2i
by use of the

chain rule. So by defintion

∂2f(x)

∂x2
i

=
∂g′(|x|)
∂xi

xi
|x|

+ g′(|x|) ∂

∂xi

xi
|x|

It then follows using the quotient rule that

∂2f(x)

∂x2
i

= g′′(|x|) x
2
i

|x|2
+ g′(|x|)( 1

|x|
− x2

i

|x|3
)

Which factors down to

∂2f(x)

∂x2
i

= g′′(|x|) x
2
i

|x|2
+ g′(|x|) |x|

2 − x2
i

|x|3

�

Definition 1.7. Let Ω ⊂ RN be an open set and u : Ω→ R be a C2- function. Then

∆u = (
∂2u

∂x2
1

+
∂2u

∂x2
2

+ ...+
∂2u

∂x2
N

) =
N∑
i=1

(
∂2u

∂x2
i

)

is called the Laplace operator of u.

Note 1.8. Assume u(x) = g(|x|). By Theorem 1.6, ∂2u
∂x2i

can be easily calculated:

∂2u

∂x2
i

= g′′(|x|) x
2
i

|x|2
+ g′(|x|) |x|

2 − x2
i

|x|3

Denote r = |x| and we get:

∂2u

∂x2
i

= g′′(r)
x2
i

r2
+ g′(r)

r2 − x2
i

r3

So

∆u =
N∑
i=1

∂2u

∂x2
i

= g′′(r)
r2

r2
+ g′(r)

Nr2 − r2

r3

That is,

∆u = g′′(r) +
N − 1

r
g′(r)

Example 1.9. Let u = |x|3 − 2|x| − cos|x|. Find ∆u =?

Solution. Note that u(x) = g(|x|) ( u is radially symmetric) where g(r) = r3 − 2r − cos r,
g′(r)3r2 − 2 + sin r, g′′(r) = 6r + cos r.

Hence,

∆u = g′′(r) +
N − 1

r
g′(r) = 6r + cos r + (N − 1)(3r − 2

r
+

sin r

r
)

Example 1.10. Let u : R3 → R be defined by u(x) =

{ sin |x|
|x| if x 6= 0

0, if x = 0
Prove that −∆u = u.

Proof. We can see that u(x) = g(|x|) is a radially symmetric function, therefore we can use
the identity from Note 1.8.

∆u = g′′(r) +
N − 1

r
g′(r), where r = |x|.
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We have that,

g′′(r) =
2 sin(r)

r3
− 2 cos(r)

r2
− sin(r)

r
, g′(r) =

cos(r)

r
− sin(r)

r2
for x 6= 0

Therefore,

∆u =
2 sin(r)

r3
− 2 cos(r)

r2
− sin(r)

r
+ (

3− 1

r
)(

cos(r)

r
− sin(r)

r2
)

= −sin(r)

r
= −u for x 6= 0

�

Definition 1.11. (Open and closed sets in RN) A set A ⊂ RN is said to be open if for any
x ∈ A there exists r > 0 such that Br(x) ⊂ A.
A set B ⊂ RN is said to be closed if RN\B is open.

Example 1.12. Br(x) is open in RN , [−1, 1] ⊂ R is closed.
B = {0, 1, 1

2
, 1

3
, 1

4
, ..., 1

n
, 1
n+1

, ...} ⊂ R is closed.

Note 1.13. (Characterisation of closed sets) B ⊂ RN is closed if for any convergent sequence
(xn) ⊂ B we also have limn→∞xn ∈ B.

Definition 1.14. Connected sets in RN A set Ω ⊂ RN is connected if the only subset A ⊂ Ω
which is both open and closed in Ω is either A = φ or A = Ω.
A domain Ω ⊂ RN is an open and connected set.

Example 1.15. The intervals [a, b], (a, b), [a, b), (a, b] are the only connected sets on the real
line.

2. Geometric Analysis

Definition 2.1. (Unit Normal Vector) We say that an open set Ω ⊂ RN is of class Ck if for
every xo ∈ ∂Ω there exists r > 0 such that B(xo, r) ∩ ∂Ω is the graph of a Ck function.
If Ω is of class C1 and xo ∈ ∂Ω we can define the exterior unit normal ν = ν(xo) and for a
C1- function u : Ω→ R we can compute the normal derivative.

∂u

∂ν
(xo) = lim

t→0

u(xo + tν)− u(xo)

t
(for t < 0) = ∇u(xo) · ν

Example 2.2. The ball B(xo, r) = Br(xo) = {x ∈ RN : |x| < r} is of class C∞.
If xo ∈ ∂Br(0), the exterior unit normal is given by:

ν = ν(xo) =
xo
|xo|

=
xo
r

More generally, for a ball Br(z) we have ν(xo) = xo−z
|xo−z| .

Theorem 2.3. (Divergence Theorem) If F = (F1, F2, ..., FN) : Ω→ RN is of class C1 then,ˆ
Ω

div (F )dx =

ˆ
∂Ω

F · νdσ(x)

Theorem 2.4. (Green’s Idenities) Let Ω ∈ RN be an open set of class C1.
If u, v ∈ C2(Ω) then:

(a)

ˆ
Ω

v∆udx =

ˆ
∂Ω

v
∂u

∂ν
dσ −

ˆ
Ω

∇u · ∇vdx

(b)

ˆ
(v∆u− u∆v)dx =

ˆ
∂Ω

(v
∂u

∂ν
− u∂v

∂ν
)dσ
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3. Coarea formula and applications

We first recall the coarea formula.

Theorem 3.1. (Coarea formula) Let f : BR(0)→ R be a continuous function. Then

(3.1)

ˆ
BR(0)

f(x)dx =

ˆ R

0

(ˆ
∂Br(0)

f(x)dσ(x)

)
dr.

In particular, if f(x) = g(|x|) is a radially symmetric function, then

(3.2)

ˆ
BR(0)

f(x)dx = σN

ˆ R

0

rN−1g(r)dr,

where σN denotes the surface area of the unit sphere in RN .

Example 3.2. As an application of the above result, let us find the explicit formula for σN .
Let g(r) = e−r

2
in (3.2). Then

(3.3)

ˆ
RN

e−|x|
2

dx = σN

ˆ ∞
0

rN−1e−r
2

dr.

Note that

(3.4)

ˆ
RN

e−|x|
2

dx =

ˆ
RN

e−x
2
1−x22−···−x2Ndx =

(ˆ ∞
−∞

e−r
2

dr

)N
.

Also (ˆ ∞
−∞

e−r
2

dr

)2

=

ˆ
R2

e−|x|
2

dx = 2π

ˆ ∞
0

re−r
2

dr = π.

Using this equality in (3.4) we find

(3.5)

ˆ
RN

e−|x|
2

dx = πN/2.

To estimate the right-hand side in (3.3) we need the following definition.

Definition 3.3. The Gamma function is defined by Γ : [0,∞)→ R,

(3.6) Γ(x) =

ˆ ∞
0

tx−1e−tdt.

By a simple integration we deduce Γ(1) = 1 and Γ(x+ 1) = xΓ(x) for all x > 0.

In particular, an induction argument yields Γ(n) = (n− 1)! for all n ≥ 1.

We next turn to the computation of the right-hand side in (3.3). With the substitution
t = r2 we have ˆ ∞

0

rN−1e−r
2

dr =
1

2

ˆ ∞
0

t
N−2

2 e−tdt =
1

2
Γ
(N

2

)
.

Finally, combining this last equality with (3.3) and (3.5) we find

σN =
2πN/2

Γ
(
N
2

) .
Example 3.4. Let ωN denote the volume of the unit ball in RN . Then, by (3.2) we find

ωN =

ˆ
B1(0)

1dx = σN

ˆ 1

0

rN−1dr =
σN
N

=
2πN/2

NΓ
(
N
2

) .
Note 3.5. We always have σN = NωN .
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4. Harmonic functions

Definition 4.1. Let u : Ω→ R be a C2 function where Ω ⊂ RN is an open set. We say that
u is harmonic on Ω if ∆u = 0 in Ω

Example 4.2. Let u(x) = |x|k ( so g(r) = rk). Then
∆u = 0⇔ g′′(r) + N−1

r
g′(r) = 0⇔ k(k − 1)rk−2 + k(N − 1)rk−2 = 0

⇔ k(k +N − 2) = 0⇔ k = 0 or k = 2−N
Hence u(x) = C = const is obviously harmonic and u(x) = |x|2−N is also harmonic.

Example 4.3. u(x) = log |x|, N=2
Then g(r) = log r, ∆u = g′′(r) + N−1

r
g′(r) = − 1

r2
+ 1

r
.1
r

= 0
This shows that u(x) = log(x) is a harmonic function in dimension N=2.

Note 4.4. (What happens in dimension N=1)
If u = u(x) is a harmonic function in dimension N=1 then, 0 = ∆u = u′′(x)→ u(x) = Ax+B
Thus, the only harmonic functions in dimension 1 are linear functions.

Note 4.5. ( Harmonic polynomials in dimension N=2)
Degree 0: all constant polynomials u = c are harmonic.
Degree 1: all linear polynomials u(x1, x2) = ax1 + bx2 are harmonic.
Degree 2: all quadratic polynomials u(x1, x2) = a(x2

1 − x2
2) + bx1x2 are harmonic.

Degree n: the real and imaginary parts of (x1 + ix2)n are harmonic functions.

For instance u(x1, x2) = x3
1 − 3x1x

2
2 and v(x1, x2) = x3

2 − 3x2x
2
1 are harmonic.

Example 4.6. Let f :→ C be a holomorphic (complex differentiable) function.
Then u(x1, x2) = Re(f(x1, x2)), v(x1, x2) = Im(f(x1, x2)) are harmonic functions.

Take for instance f(z) = ez = ex1+ix2 = ex1(cosx2 + i sinx2). So,

u(x1, x2) = Re(f) = ex1 cosx2

v(x1, x2) = Im(f) = ex1 sinx2
are both harmonic.

Example 4.7. Let u(x) = x1x2
|x|2 , x ∈ R2\{0}. Find ∆u. We have to show that ∆u = 0, so

we have to calculate
∂2u

∂x2
i

for i = {1, 2}.

∂2u

∂x2
1

=
2x2x1(x2

1 − 3x2
2)

|x|6
,

∂2u

∂x2
2

=
−2x1x2(3x2

1 − x2
2)

|x|6
,

Therefore,

2∑
i=1

(
∂2u

∂x2
i

) =
2x2x1(x2

1 − 3x2
2)

|x|6
+
−2x1x2(3x2

1 − x2
2)

|x|6
=
−4x3

1x2 − 4x1x
3
2

|x|6

=
−4x1x2(x2

1 + x2
2)

|x|6
=
−4x1x2

|x|4
= ∆u

Example 4.8. Let Ω ⊂ RN be an open set. If u and u2 are harmomic functions then
u=constant.

Proof. ∆u = ∇2u = 0
∇2u2 = 2u∇2u + 2|∇u|2 = 2|∇u|2 = 0. If 2|∇u|2 = 0 then |∇u| = 0 and u has to be a
constant.

�
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Example 4.9. Let Ω ⊂ RN be an open set, and u : Ω → R be a harmonic function. Then
v = x · ∇u(x) is also harmonic.

Proof.

v(x) = (x1
∂u

∂x1

, x2
∂u

∂x2

, ..., xN
∂u

∂xN
)

∇v(x) = (x1
∂2u

∂x2
1

+
∂u

∂x1

, x2
∂2u

∂x2
2

+
∂u

∂x2

, ..., xN
∂2u

∂x2
N

+
∂u

∂xN
)

∇2v(x) = (x1
∂3u

∂x3
1

+ 2
∂2u

∂x2
1

+ x2
∂3u

∂x3
2

+ 2
∂2u

∂x2
2

+, ...+ xN
∂3u

∂x3
N

+ 2
∂2u

∂x2
N

)

= 2
N∑
i=1

∂2u

∂x2
i

+
N∑
i=1

xi
∂3u

∂x3
i

=
N∑
i=1

xi
∂3u

∂x3
i

= x · ∇3u = x · ∇ · ∇2u = 0

�

Example 4.10. (Find All harmonic functions which are radially symmetric)

Solution. u = g(r), r = |x|, ∆u = 0 in RN

Thus 0 = ∆u = g′′(r) + N−1
r
g′(r) for all r > 0

This shows that

g′′(r) +
N − 1

r
g′(r) = 0

rg′′(r) +N − 1g′(r) = 0

Multiply by rN−2 and get rN−1g′′(r) +N − 1rN−2g′(r) = 0
that is, [rN−1g′(r)]′ = 0 for all r > 0.
Hence rN−1g′(r) = C ⇒ g′(r) = Cr1−N for all r > 0.
So

g(r) =

{
c1r

2−N + c2 for some c1, c2 ∈ R, N ≥, N = 1
c1lnr + c2 for some c1, c2 ∈ R, ifN = 2

(Conclusion): The only radially symmetric harmonics functions are,

u(x) =

{
c1r

2−N + c2 for some c1, c2 ∈ R, N ≥, N = 1
c1lnr + c2 for some c1, c2 ∈ R, ifN = 2

Definition 4.11. ( Fundamental Solutions of Laplace equation) The function,

E(x) =

{
1

2π
ln|x|, if N = 2

1
(2−N)σN

|x|2−N if N ≥ 3 or N = 1

Is called the fundamental solution of the Laplace equation.

Note that the constraints
1

2π
(if N=2) or

1

(2−N)σN
(If N≥3) are chosen so that,

ˆ
∂BR(0)

∂E

∂ν
dσ(y) = 1, for all R > 0

Proof. Take E(x) =
1

2π
ln |x|

∂E

∂ν
= ∇E · ν

∂E

∂xi
=

1

2π

xi
|x|

1

|x|
=

1

2π

xi
|x|2
⇒

∇E = (
∂E

∂x1

,
∂E

∂x2

) =
1

2π
(
x1

|x|2
,
x2

|x|2
) =

1

2π

x

|x|2
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Note (ν =
x

|x|
)

∂E

∂ν
(x) = ∇E(x) · ν(x) =

1

2π

x

|x|2
· x
|x|

=
1

2π

|x|2

|x|3
=

1

2π

1

|x|
⇒

1

2π

ˆ
∂BR(0)

∂E

∂ν
(y)dσ(y) =

1

2π

ˆ
∂BR(0)

1

|y|
dσ(y)

=
1

2π

ˆ
∂BR(0)

1

R
dσ(y)

=
1

2πR
|∂BR(0)|

=
1

2πR
· 2πR = 1

Take E(x) =
1

(2−N)σN
|x|2−N :

∇E =
1

(2−N)σN
(2−N)|x|1−N x

|x|
=

x

σN |x|N

∇E · ν =
x

σN |x|N
· x
|x|

=
|x|2

σN |x|N+1
=

1

σN

1

|x|N−1

1

σN

ˆ
∂BR(0)

∂E

∂ν
(y)dσ(y)

=
1

σN

ˆ
∂BR(0)

1

|x|N−1
(y)dσ(y)

=
1

σN

ˆ
∂BR(0)

1

RN−1
(y)dσ(y)

=
1

σRN−1

ˆ
∂BR(0)

1(y)dσ(y)

=
1

σNRN−1
|σNRN−1| = 1

�

Theorem 4.12. (Uniqueness of Solutions for Dirichlet problem) Assume Ω is an open set of
class C1, f ∈ C(Ω), g ∈ C(∂Ω). Then, there exists at most one solution u ∈ C2(Ω) such
that,

(1)

{
∆u = f in Ω
u = g on ∂Ω

Proof. Assume u1, u2 are two solutions of (1) and denote u = u1 − u2.

(2)

{
∆u = ∆u1 −∆u2 = 0 in Ω

u = u1 − u2 = 0 on ∂Ω

Let us now mulitply by u in the first equation of (2). Then, by Green’s identities,

0 =

ˆ
Ω

u∆udx =

ˆ
∂Ω

u
∂u

∂ν
−
ˆ

Ω

|∆u|2dx = −
ˆ

Ω

|∆u|2dx⇒
ˆ

Ω

|∆u|2dx = 0

Since |∆u|2 > 0, this yields |∆u| ≡ 0 in Ω⇒ u = constant in Ω⇒ u1 = u2 in Ω. �
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Definition 4.13. (Averages) Let Ω ⊂ RN be an open set and u : Ω → R be a continuous
function.
(a) The solid average of u over a ball Br(xo) is, 

Br(x)

u(y)dy =
1

|Br(x)|

ˆ
Br(x)

u(y)dy =
1

ωNrN

ˆ
Br(x)

u(y)dy

(b) The spherical average of u over ∂Br(x) is, 
∂Br(x)

u(y)dσ(y) =
1

|∂Br(x)|

ˆ
∂Br(x)

u(y)dσ(y) =
1

σNrN−1

ˆ
∂Br(x)

u(y)dσ(y)

Theorem 4.14. ( Mean Value Property for harmonic functions) Let Ω ⊂ RN be an open set,
u ∈ C2(Ω) be a harmonic function and Br(x) ⊂ Ω. Then,

u(x) =

 
Br(x)

u(y)dy and u(x) =

 
∂Br(x)

u(y)dσ(y)

Proof. Recall Green’s formula,ˆ
Ω

v∆udy =

ˆ
∂Ω

v
∂u

∂ν
dσ(y)−

ˆ
Ω

∇u · ∇vdy

By taking v ≡ 1 we get, ˆ
Ω

∆udy =

ˆ
∂Ω

∂u

∂ν
dσ(y)

Hence ˆ
Br(x)

∆udy =

ˆ
∂Br(x)

∂u

∂ν
dσ(y)

=

ˆ
∂Br(x)

∇u(y) · ν(y)dσ(y)

=

ˆ
∂Br(x)

∇u(y) · y − x
r

dσ (1)

Let
y − x
r

= z. Then y = x+ rz and dσ(y) = rN−1dσ(z).

Thus, by (1) we get,

0 =

ˆ
Br(x)

∆udy =

ˆ
∂Br(x)

∇u(y) · ν(y)dσ(y)

= rN+1

ˆ
∂B1(0)

∇u(x+ rz) · dσ(z)

= rN−1 ∂

∂r

[ ˆ
∂B1(0)

u(x+ rz)dσ(z)
]

for all r > 0.

It follows that the function r 7→
ˆ
∂B1(0)

u(x+ rz)dσ(z) = ϕ(r) is constant, so

ϕ(r) = ϕ(0) =

ˆ
∂B1(0)

u(x)dσ(z) = u(x)

ˆ
∂B1(0)

1dσ(z) = u(x)σN

.

Hence,

u(x) =
1

σN
· ϕ(r) =

1

σN

ˆ
∂B1(0)

u(x+ rz)dσ(z)

Denote x+ rz = y ⇒ z =
y − x
r
⇒ dσ(z) =

1

rN−1
dσ(y) so,
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u(x) =
1

σN

ˆ
∂Br(0)

u(y)
1

rN−1
dσ(y) =

1

σNrN−1

ˆ
∂Br(x)

u(y)dσ(y)

=

 
∂Br(x)

u(y)dσ(y).

The proof of the equality

u(x) =

 
Br(x)

u(y)dσ(y)

goes as follows, ˆ
Br(x)

u(y)dy =
1

ωNrN

ˆ r

0

(ˆ
∂Bs(x)

u(y)dσ(y)
)
ds

=
1

ωNrN

ˆ r

0

(
σNs

N−1

 
∂Bs(x)

u(y)dσ(y)
)
ds

=
σN
ωNrN

ˆ r

0

(
sN−1

 
∂Bs(x)

u(y)dσ(y)
)
ds

=
σN
ωNrN

ˆ r

0

sN−1u(x)ds

=
σNu(x)

ωNrN

ˆ r

0

sN−1ds

=
σNu(x)

ωNrN
rN

N
=
σNu(x)

NωN
= u(x).

�

Theorem 4.15. (Strong Maximum principle for harmonic functions) Let Ω ⊂ RN be a bounded
domain, u ∈ C2(Ω) ∩ C(Ω) be a harmonic function. If u achieves either its maximum or
minimum in Ω then u is constant.

Proof. Let M = max
x∈Ω

(u) and assume there exists xo ∈ Ω such that u(xo) = M .

Define A = {x ∈ Ω : u(x) = M}. Note that A 6= ∅ because xo ∈ A. Also A is closed because
if (xn) ∈ A such that (xn) is convergent, then u(xn) = M for all n ≥ 1 so that lim

n→∞
xn = x

satisfies lim
n→∞

u(xn) = M ⇒ x ∈ A. It remains to show that A is also open. Let x ∈ A. Then

u(x) = M and because Ω is open, there exists r > 0 with Br(x) ⊂ Ω.
By the Mean Value Property it follows that,

M = u(x) =

 
Br(x)

u(y)dy ≤M.

It follows that u ≡M on Br(x) so Br(x) ⊂ A.
This shows that A is both open and closed in Ω ⇒ A = Ω because Ω is connected. Hence
Ω = A = {x ∈ Ω : u(x) = M} ⇒ u = constant.

�

Theorem 4.16. (Weak Maximum principle) Let Ω ⊂ RN be a bounded domain and let u ∈
C2(Ω) ∩ (Ω) be a harmonic function.
Then

max
Ω

u = max
∂Ω

u, min
Ω
u = min

∂Ω
u,

that is, u achieves both maximum and minimum values over the boundary of the domain Ω.

Note 4.17. Let Ω ⊂ RN be a bounded domain and let u ∈ C2(Ω) ∩ (Ω) be a harmonic
function such that u = 1 on ∂Ω. We can show that u is a constant function.
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Proof. By the Weak Maximum principle u achieves both its maximum and minimum on
∂Ω’. Since u=1 on ∂Ω then the maximum and minimum of u has to be 1 on Ω. Thus
max(u) = min(u),⇒ u is a constant function.

�

5. A Liouville Theorem

Theorem 5.1. Let u : RN → R, N ≥ 1 be a harmonic function. If u is bounded either from
below or above then u = constant.

Proof. Replacing u by−u we may assume u is bounded below (u ≥ m). Now replacing u by
u+m we may assume u ≥ 0. Let x ∈ RN\{0} and R ≥ |x|. We want to show u(x) = u(0).
By the Mean Value Theorem,

u(x) =

 
BR(x)

u(y)dy and u(0) =

 
BR(0)

u(y)dy

So,

|u(x)− u(0)| = 1

ωNRN

∣∣∣ ˆ
BR(x)

u(y)dy −
ˆ
BR(0)

u(y)dy
∣∣∣

=
1

ωNRN

∣∣∣ ˆ
BR(x)\BR(0)

u(y)dy −
ˆ
BR(0)\BR(x)

u(y)dy
∣∣∣

≤ 1

ωNRN

ˆ(
BR(x)\BR(0)

)
∪
(
BR(0)\BR(x)

) u(y)dy (?)

Claim:
(
BR(x)\BR(0)

)
∪
(
BR(0)\BR(x)

)
⊂ BR+|x|(0)\BR−|x|(0)

Proof. Let y ∈
(
BR(x)\BR(0)

)
∪
(
BR(0)\BR(x)

)
.

If y ∈
(
BR(x)\BR(0)

)
then |y − x| > R and |y| > R > R− |x|.

Thus y ≤ |y − x|+ |x| < R + |x|. So R− |x| < |y| < R + |x|.
If y ∈ BR(x) then |y| < R and |y − x| > R. Since |y|+ |x| ≥ |y − x| > R, it follows that

R− |x| < |y| < R < R + |x|.
Hence

y ∈ BR+|x|(0)\BR−|x|(0)

This proves our claim. �

We now return to the proof of (?)

|u(x)− u(0)| ≤ 1

ωNRN

ˆ(
BR(x)\BR(0)

)
∪
(
BR(0)\BR(x)

) u(y)dy

≤ 1

ωNRN

ˆ
BR+|x|(0)\BR−|x|(0)

u(y)dy

So,

|u(x)− u(0)| ≤ 1

ωNRN

[ ˆ
BR+|x|(0)

u(y)dy −
ˆ
BR−|x|(0)

]
=

(R + |x|)N

RN

1

ωN(R + |x|)N

ˆ
BR+|x|

u(y)dy − (R− |x|)N

RN

1

ωN(R− |x|)N

ˆ
BR−|x|

u(y)dy

=
(R + |x|)N

RN

 
BR+|x|

u(y)dy − (R− |x|)N

RN

 
BR−|x|

u(y)dy

=
(R + |x|)N − (R− |x|)N

RN
u(0) −→ 0 as R −→∞.
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This shows that u(x) = u(0) for all x ∈ RN ⇒ u = constant. �

6. Subharmonic Functions

Definition 6.1. Let Ω ⊂ RN be an open set. A function u ∈ C2(Ω) is called subharmonic
if −∆u ≤ 0 in Ω. Similarly u is called superharmonic if −∆u ≥ 0 in Ω.

Example 6.2. In dimension N = 1 any subharmonic function u is in fact a convex function
(resp. any superharmonic function is a concave function).

Example 6.3. Let u(x) = |x|k, x ∈ RN\{0}. Find k such that u is a subharmonic function.
Solution. u is a radially symmetric function, so using Note 1.8:

∆u = g′′(r) +
N − 1

r
g′(r)

Therefore

∆u = rk−2k(k +N − 2)

For u to be subharmonic −∆u ≤ 0⇒ ∆u ≥ 0.

∆u = rk−2k(k +N − 2) ≥ 0⇒ k(k +N − 2) ≥ 0

⇒ k ≥ 0 and (k +N − 2) ≥ 0 or k ≤ 0 and (k +N − 2) ≤ 0

⇒ k ≥ max{0, 2−N} or k ≤ min{0, 2−N}

Example 6.4. Let u : Ω→ R be a positive harmonic function. Prove that log(u) = lnu is
superharmonic.

7. Mean Value Property for Subharmonic Functions

Theorem 7.1. (Mean Value Property for Subharmonic Functions)

Let Ω ⊂ RN be an open set,Br(x) ⊂⊂ Ω. Then for any subharmonic function u : Ω → R
we have,

u(x) ≤
 
∂Br(x)

u(y)dσy and u(x) ≤
 
Br(x)

u(y)dy

Proof. Recall Green’s formula,ˆ
Ω

v∆udy =

ˆ
∂Ω

v
∂u

∂ν
dσ(y)−

ˆ
Ω

∇u · ∇vdy

By taking v ≡ 1 we get, ˆ
Ω

∆udy =

ˆ
∂Ω

∂u

∂ν
dσ(y)

Hence ˆ
Br(x)

∆udy =

ˆ
∂Br(x)

∂u

∂ν
dσ(y)

=

ˆ
∂Br(x)

∇u(y) · ν(y)dσ(y)

=

ˆ
∂Br(x)

∇u(y) · y − x
r

dσ (1)
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Let
y − x
r

= z. Then y = x+ rz and dσ(y) = rN−1dσ(z).

Thus, by (1) we get,

0 ≤
ˆ
Br(x)

∆udy =

ˆ
∂Br(x)

∇u(y) · ν(y)dσ(y)

= rN+1

ˆ
∂B1(0)

∇u(x+ rz) · dσ(z)

0 ≤ rN−1 ∂

∂r

[ ˆ
∂B1(0)

u(x+ rz)dσ(z)
]

for all r > 0.

It follows that the function r 7→
ˆ
∂B1(0)

u(x+ rz)dσ(z) = ϕ(r) is monotone increasing, so

ϕ(r) ≥ ϕ(0) =

ˆ
∂B1(0)

u(x)dσ(z) = u(x)

ˆ
∂B1(0)

1dσ(z) = u(x)σN

.

Hence,

u(x) ≤ 1

σN
· ϕ(r) =

1

σN

ˆ
∂B1(0)

u(x+ rz)dσ(z)

Denote x+ rz = y ⇒ z =
y − x
r
⇒ dσ(z) =

1

rN−1
dσ(y) so,

u(x) ≤ 1

σN

ˆ
∂Br(0)

u(y)
1

rN−1
dσ(y) =

1

σNrN−1

ˆ
∂Br(x)

u(y)dσ(y)

=

 
∂Br(x)

u(y)dσ(y)

u(x) ≤
 
∂Br(x)

u(y)dσ(y).

The proof of the equality

u(x) ≤
 
Br(x)

u(y)dσ(y)

goes as follows, ˆ
Br(x)

u(y)dy =
1

ωNrN

ˆ r

0

(ˆ
∂Bs(x)

u(y)dσ(y)
)
ds

=
1

ωNrN

ˆ r

0

(
σNs

N−1

 
∂Bs(x)

u(y)dσ(y)
)
ds

=
σN
ωNrN

ˆ r

0

(
sN−1

 
∂Bs(x)

u(y)dσ(y)
)
ds

≤ σN
ωNrN

ˆ r

0

sN−1u(x)ds

≤ σNu(x)

ωNrN

ˆ r

0

sN−1ds

≤ σNu(x)

ωNrN
rN

N
=
σNu(x)

NωN
= u(x).

�
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8. Maximum Principles for Subharmonic Functions

Theorem 8.1. (Strong Maximum Principle for Subharmonic Functions) Let Ω ⊂ RN be a
bounded domain, u ∈ C2(Ω) ∩ C(Ω) be a subharmonic function. If there exists x0 ∈ Ω such
that u(x0) = maxx∈Ω then u = constant.

Proof. Let M = max
x∈Ω

(u) and assume there exists xo ∈ Ω such that u(xo) = M .

Define A = {x ∈ Ω : u(x) = M}. Note that A 6= ∅ because xo ∈ A. Also A is closed because
if (xn) ∈ A such that (xn) is convergent, then u(xn) = M for all n ≥ 1 so that lim

n→∞
xn = x

satisfies lim
n→∞

u(xn) = M ⇒ x ∈ A. It remains to show that A is also open. Let x ∈ A. Then

u(x) = M and because Ω is open, there exists r > 0 with Br(x) ⊂ Ω.
By the Mean Value Property it follows that,

M = u(x) ≤
 
Br(x)

u(y)dy ≤M.

It follows that u ≡M on Br(x) so Br(x) ⊂ A.
This shows that A is both open and closed in Ω ⇒ A = Ω because Ω is connected. Hence
Ω = A = {x ∈ Ω : u(x) = M} ⇒ u = constant.

�

Theorem 8.2. (Weak Maximum Principle for Subharmonic Functions) Let Ω ⊂ RN be a
bounded domain and let u ∈ C2(Ω) ∩ (Ω) be a subharmonic function.
Then

max
Ω

u = max
∂Ω

u.

Proof. This follows from the Strong Maximum Principle but there is another approach.
Assume by contradiction that there exists x0 ∈ Ω such that

u(x0) = max
Ω

u > max
∂Ω

u.

Fix ε > 0 small enough and define

v(x) = u(x) + ε|x− x0|2, x ∈ Ω

We take ε small such that

max
∂Ω

v(x) ≤ max
∂Ω

u+ εmax
x∈∂Ω
|x− x0|2 < v(x0) = u(x0)

This means that v achieves its maximum in Ω at a point x̃ inside of Ω. Then ∂2v
∂x2i

(x̃) ≤ 0 for

all 1 ≤ i ≤ N so ∆v(x̃) ≤ 0. On the other hand

∆v(x̃) = ∆u(x̃) + 2εN ≥ 2εN > 0

Which is a contradiction. �


