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1. Basic FAcTs

Definition 1.1. (Radially Symmetric Functions) We say that a function f : RY — R has
radial symmetry ( or is radially symmetric) if f(z) = g(|z|) for some g : R — R.

(Where |z| = /22 + 22+ +2% )

Example 1.2. f(z) = |z|> — 2|z| — cos|z| / g(t) = t* — 2t — cos(t)

Example 1.3. f(z) = |z]> — 2sin(z;) + Tln|z| is not radially symmetric.

Note 1.4. If f(z) = g(|x|) is radially symmetric then

And

Example 1.5. Let f(z) = |z|3—2|2|—cos|z|. Then 2&) — g’(|x\)% = (3|z[*—2+sin|z|)
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Theorem 1.6. Let f(z) = g(|x|) be a radially symmetric function.
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Proof. We know from Note 1.4 that af( ) — (|:17]) m’) . Thus we can find % by use of the
chain rule. So by defintion Z

c I T E S
It then follows using the quotient rule that
f(x) _ 1 _ @
T e + o e = 25
Which factors down to
0*f(x) x? |z]* — a7

'/ % !

i

O
Definition 1.7. Let Q C RY be an open set and v : 2 — R be a C?- function. Then
0u  0%u 0%u N 92
Au = —t .t =)= —
‘= (8:161 +8x§+ +8:E%V) izl(&v?)

is called the Laplace operator of u.

Note 1.8. Assume u(z) = g(|z|). By Theorem 1.6, 2 a 2 can be easily calculated:

0*u |z|? — 2

a—x?: 9" (|z |)| | +9(|$|)W

Denote r = |z| and we get:

aQU 1" xzz / r? — xzz
8_xf =g (7’)7,—2+9<7") 3
So
N
Pu ., T . Nr?—p?
Au = _la—x%_g(r)ﬁﬂLg(T) 3
That is,
N —1
Au=g')+ 22 0)

Example 1.9. Let u = |z|> — 2|z| — cos|z|. Find Au =?
Solution. Note that u(x) = g(|z|) ( u is radially symmetric) where g(r) = r® — 2r — cosr,
g (r)3r? —2+sinr, ¢"(r) = 6r + cosr.

Hence,
N -1 2 i
Au=¢"(r)+ ——4'(r) =6r +cosr+ (N —1)(3r — = + il
r r r

)

sin|z| .
Example 1.10. Let u : R*> — R be defined by u(z) = { \;v|0 li T # 8
, I T =

Prove that —Au = u.

Proof. We can see that u(z) = g(|z|) is a radially symmetric function, therefore we can use
the identity from Note 1.8.

N -1
Au = ¢"(r) + ——¢'(r), where r = |z|.
r



We have that,

2sin(r)  2cos(r) sin(r) cos(r)  sin(r)

" _ / _
/() = 2] 2eostr) ) gy - M) S s
Therefore,
2sin(r)  2cos(r) sin(r)  3—1 ,cos(r) sin(r)
Au = — — —
B 73 72 r * r ) r 72 )
= _sin(r) =—u forxz#0
,

U

Definition 1.11. (Open and closed sets in RY) A set A C R” is said to be open if for any
x € A there exists r > 0 such that B,(z) C A.
A set B C RY is said to be closed if RV\ B is open.

Example 1.12. B,(z) is open in RV [-1,1] C R is closed.
B={0,1,% % 1L .}C]R1sclosed

’ 519939 40 ’n’n+l’

Note 1.13. (Characterisation of closed sets) B C R” is closed if for any convergent sequence
(x,) C B we also have lim,, .2, € B.

Definition 1.14. Connected sets in RY A set 0 C R¥ is connected if the only subset A C
which is both open and closed in €2 is either A = ¢ or A = Q.
A domain 2 C R” is an open and connected set.

Example 1.15. The intervals [a, b], (a,b), [a, ), (a, b] are the only connected sets on the real
line.

2. GEOMETRIC ANALYSIS

Definition 2.1. (Unit Normal Vector) We say that an open set 2 C RY is of class C* if for
every x, € O there exists r > 0 such that B(z,,7) N 0Q is the graph of a C* function.

If Q is of class C! and z,, € 9 we can define the exterior unit normal v = v(x,) and for a
C'- function u : ) — R we can compute the normal derivative.

du u(z, +tv) — u(m,)
81/( ) zl€—>0 t

Example 2.2. The ball B(z,,r) = B,(z,) = {x € RY : |z| < r} is of class C*.
If z, € 0B,(0), the exterior unit normal is given by:
To T

(for t < 0) = Vu(z,) - v

v=uv(z,) = T
o

To—2
[zo—2]"

More generally, for a ball B,(z) we have v(z,) =

Theorem 2.3. (Divergence Theorem) If F = (Fy, Fy, ..., F) : Q — RY s of class C* then,

/Qdiv (F)dx:/mF-uda(x)

Theorem 2.4. (Green's Idenities) Let 0 € RY be an open set of class C1.
If u,v € C?*(Q) then:

(a)/vAudx: U—da—/Vu Voudz
Q

(b) / (vAu — uAv)de = / @% . %)da



3. COAREA FORMULA AND APPLICATIONS
We first recall the coarea formula.

Theorem 3.1. (Coarea formula) Let f : Br(0) — R be a continuous function. Then

(3.1) /B » F(a)de = /0 ’ ( /a o f(a:)da(x)) dr.

In particular, if f(z) = g(|x|) is a radially symmetric function, then

(3.2) /B » f(x)dz = oy /O "’ rN=1g(r)dr,

where oy denotes the surface area of the unit sphere in RV,

Example 3.2. As an application of the above result, let us find the explicit formula for oy.
Let g(r) = e in (3.2). Then

(3.3) / €_|x2d$:O'N/ rNle " dr,
RN 0

Note that

00 N
(3.4) / e"’:Qdm:/ R B i 7 (/ e_rzdr) .
RN RN —00
Also
> 2 2 2 & 2
(/ e " dr) :/ e P dy = 27r/ re " dr = .
—00 R2 0

Using this equality in (3.4) we find

(3.5) / e P gy = 7N/2,

RN
To estimate the right-hand side in (3.3) we need the following definition.
Definition 3.3. The Gamma function is defined by I" : [0, 00) — R,

(3.6) [(x) = /000 t" e tdt.

By a simple integration we deduce I'(1) =1 and I'(x 4+ 1) = «I'(x) for all z > 0.
In particular, an induction argument yields I'(n) = (n — 1)! for all n > 1.
We next turn to the computation of the right-hand side in (3.3). With the substitution

t = r2 we have
& 1 [ ~- 1 N
/ rN=le= dp = —/ t¥e_tdt = —F(—).
. 2/, 2 \2

Finally, combining this last equality with (3.3) and (3.5) we find

27TN/2

ety

Example 3.4. Let wy denote the volume of the unit ball in RY. Then, by (3.2) we find

1 N/2
wN:/ 1d:v:0N/ TN_ldr:U—N:%T—.
B1(0) 0 N NF(%)

Note 3.5. We always have oy = Nwy.



4. HARMONIC FUNCTIONS

Definition 4.1. Let u :  — R be a C? function where Q C R is an open set. We say that
u is harmonic on © if Au =0 in Q

Example 4.2. Let u(z) = |z|* ('so g(r) = r*). Then
Au=0&g¢"(r)+2g(r) =0 k(k—1)rF2 + k(N = 1)r*2 =0
S k(k+N—-2)=0k=00rk=2-N

Hence u(z) = C' = const is obviously harmonic and u(z) =

|z~ is also harmonic.

Example 4.3. u(z) = log |z|, N=2
Then g(r) = logr, Au = ¢'(r) + Y=2g/(r) = —% + 1.1 = 0
This shows that u(z) = log(z) is a harmonic function in dimension N=2.

Note 4.4. (What happens in dimension N=1)
If u = u(zx) is a harmonic function in dimension N=1 then, 0 = Au = v"(z) = u(z) = Az+B
Thus, the only harmonic functions in dimension 1 are linear functions.

Note 4.5. ( Harmonic polynomials in dimension N=2)

Degree 0: all constant polynomials u = ¢ are harmonic.

Degree 1: all linear polynomials u(z1,z9) = axy + bxs are harmonic.

Degree 2: all quadratic polynomials u(xy, z2) = a(z? — 23) + bx1xo are harmonic.
Degree n: the real and imaginary parts of (z1 + ix2)™ are harmonic functions.

For instance u(zy, rs) = 3 — 3r122 and v(z, x9) = 3 — 3x92? are harmonic.

Example 4.6. Let f :— C be a holomorphic (complex differentiable) function.
Then u(xy,x2) = Re(f(x1,x2)), v(x1, x2) = Im(f(x1,22)) are harmonic functions.

Take for instance f(z) = e* = ™12 = ¢! (cos z9 + isin zq). So,

u(zy,xe) = Re(f) = €' cos xy

) .
v(xy, z5) = Im(f) = €™ sin 5 are both harmonic.

Example 4.7. Let u(z) = 22 r € R?\{0}. Find Au. We have to show that Au = 0, so

||
2

we have to calculate a—g for 1 = {1,2}.
T

OPu  2wawy(af —323)  0*u  —2wyx5(32] — 3)
Ort [0 " O} [ ’
Therefore,
(82u) _ 2mpmy(af — 3x3) | —2wy9(32} —x3)  —datx, — Awiad
— O} [0 [ |z[°
_ SAmmp(af 4 af)  —Amay Au
[ [t

Example 4.8. Let O C R”Y be an open set. If v and u? are harmomic functions then
u=constant.

Proof. Au = V?u =0
V2u? = 2uV?u + 2|Vul? = 2|Vul*> = 0. If 2|Vu|? = 0 then |Vu| = 0 and u has to be a
constant.

O
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Example 4.9. Let Q C RY be an open set, and v : © — R be a harmonic function. Then
v =z - Vu(x) is also harmonic.

Proof.
(2) = ( au ou ou )
V(T 1‘18 a 2 .,I’N—axN
Vo) = (z 82u ou  0*u N ou . 9%u N ou )
18:1:1 oxy’ 28x% Oxy N@x?\, oxn
83u 82 u 62 u 0%y
2 [
Vau(z) = ( 83 82—1-:16283 82—0— +xN8:L“§’V+28x?V)
N 52
_ 3, 2,
—2§ W—i-g a:z E x, —x'Vu—x-V~VU—0

Example 4.10. (Find All harmonic functions which are radially symmetric)
Solution. u = g(r), r = |z|, Au =0 in RY
Thus 0 = Au = ¢"(r) + 2=Lg/(r) for all r > 0

This shows that N1
§'(r)+ =g ()

rg"(r)+ N —1g'(r) =

0
0

Multiply by V=2 and get rV"1g"(r) + N — 1rV"2¢/(r) = 0

thatis[ Lg'(r)] =0 for all r > 0.
Hence rV-1¢/(r) = C = ¢/(r) = Cr'=N for all r > 0.
So

(r) = >N ¢y for some cp,c0 €ER,N > N =1
g\r) = cilnr 4+ ¢y for some c¢1,c0 ER,ifN =2

(Conclusion): The only radially symmetric harmonics functions are,

(2) = >N 4+ ¢y for some c,c0 €R,N > N =1
) = cilnr 4+ ¢y for some c¢j,c0 ER,ifN =2

Definition 4.11. ( Fundamental Solutions of Laplace equation) The function,

1lnx if N=2
E(:z;):{ 1 |l,|2|N| .

if N>3orN=1
Is called the fundamental solution of the Laplace equation.

1
Note that the constraints %(if N=2) or m(lf N>3) are chosen so that,

E
/ a—da( )=1,forall R>0
0BR(0)

14

1
Proof. Take E(x) = Dy In|z|
m

Or; 2m|z||z| 27 |z|?
OF OE, 1 x1 @ 1 =z

VE =

e o) = = G o) T P



T
Note ( —)
||
ov (z) = VE(z) - v(2) 21 |z|? |z 27T|:L‘|3 o |x|
1 o)) 1 1
o 5, Wdoly) = 5 / —do(y)
T JoBgr(0) OV T JoBg) Y]
1 1
= — —do(y
2m 0BR(0) R )
1
= ——10Bg(0
51082 (0)
1
=— . 2rR=1
2R mht =
1
Take E(z) = ————|2[>V.
ake F(r) = N)GNM
1 T T
VE=—_ (2— N)|z|'¥ -
(Q_N)UN( el lz| — on|z|V
T || 11 1 / OF
Bov=—2_.%_ _ 1 1 0F
VE Y= e Tl T ool ow N o oy 0 W)
1 1
=— ———(y)do(y
o Jomo) |x|N—1( )do(y)
1 1

= ﬁ(y)da(y)

ON JoBg(0) R

=3
= —— 1(y)do(y
e ), i)
1 N-1
~ onRN1 o BT =1

Theorem 4.12. (
class C, f € C(Q
that,

Uniqueness of Solutions for Dirichlet problem) Assume Q is an open set of
),g € C(09). Then, there exists at most one solution u € C*(Q) such

Au=f in €
(1) { u=g on 0N

Proof. Assume u, us are two solutions of (1) and denote u = u; — us.

2) Au=Au; —Auy =0 in €
u=1u —uy=0 on 0N

Let us now mulitply by u in the first equation of (2). Then, by Green’s identities,

O:/uAudx: u——/\Au| dx = — /\Au| dx:>/\Au\ dr =0
Q

Since |Au|? > 0, this yields |Au| =0 in Q = u = constant in Q = u; = uy in Q. O
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Definition 4.13. (Averages) Let Q@ C RY be an open set and u : Q — R be a continuous
function.
(a) The solid average of u over a ball B,.(z,) is,

1 1
u(y)dy = u(y)dy = / u(y)dy
][T(x) |B( )| By (x) WNTN ()

(b) The spherical average of u over 0B, () is,

1 1
u(y)do yday:—/ u(y)do(y
]{93,«(@ ( ) ( ) \33( )\ B, () ( ) ( ) oyt 0B, (z) ( ) ( )

Theorem 4.14. ( Mean Value Property for harmonic functions) Let 2 C RY be an open set,
u € C%(Q) be a harmonic function and B,(z) C Q. Then,

“@):]ir(x)“(y)dy and “(x):]g&(x)“@)d“(y)

Proof. Recall Green’s formula,

/vAudy—/ v—da( ) — /Vu-Vvdy
Q )

By taking v = 1 we get,
Ju
Audy = —do(y)
Q

a0 81/

ou
Audy = / —do
/;T(:c) OBy (z) v @)

_ / Vuly) - v(y)do(y)
OBy ()

Hence

— [ v
OBr(x)

r

Let 2~ — 2 Then y=x+rzand do(y) =r""'do(z).
r
Thus, by (1) we get,

0= [ dudy= [ Vuly)-vigioty)
7‘(1') aB”‘(x)
= N+ / Vu(z +rz) - do(z)
0B1(0)

rN-l 0 [/ u(z + rz)da(z)] for all r > 0.
87‘ 831( )
It follows that the function r +— u(x + rz)do(z) = p(r) is constant, so
9B1(0)

o(r) = p(0) = /6B o u(z)do(z) = u(x) /6B o ldo(z) = u(x)on

Hence,
1 1
u(z) =—-p(r) = — u(z +rz)do(z)
ON ON JoB1(0)
—x 1
Denote x +rz =y = z = = do(z) —do(y) so



The proof of the equality

goes as follows,

/m) u(y)dy = lerN /0 (/833(x) u(y)da(y)>ds

1 " No1 ][
otV /0 (UNS - u(y) 0(@/)) s

wnrN
I8
— ONU(]:\E[)/ sV lds
(.UNT 0
_ JNu(a:)ﬂ _ onu(x) _ ulz)
wntN N Nwy '

0

Theorem 4.15. (Strong Maximum principle for harmonic functions) Let @ C RY be a bounded
domain, u € C*(Q) N C(Q) be a harmonic function. If u achieves either its mazimum or
manimum in §2 then u is constant.

Proof. Let M = max(u) and assume there exists x, € Q such that u(x,) = M.

xre
Define A = {x € Q : u(x) = M}. Note that A # () because x, € A. Also A is closed because
if (x,) € A such that (z,) is convergent, then u(z,) = M for all n > 1 so that lim z, =z

n—oo

satisfies lim u(x,) = M = x € A. It remains to show that A is also open. Let x € A. Then

n—o0

u(z) = M and because (2 is open, there exists r > 0 with B,.(z) C .
By the Mean Value Property it follows that,

M = u(x) :]{9( )u(y)dng.

It follows that w = M on B,(x) so B,(x) C A.
This shows that A is both open and closed in Q = A = ) because {2 is connected. Hence
Q=A={xeQ:u(zr)= M} = u= constant.

O

Theorem 4.16. (Weak Maximum principle) Let Q C RY be a bounded domain and let u €
C%(Q) N () be a harmonic function.
Then

max u = maxw, minu = minu,
Q a0 aQ o9

that is, u achieves both mazimum and minimum values over the boundary of the domain 2.

Note 4.17. Let @ C RY be a bounded domain and let u € C*(Q) N (2) be a harmonic
function such that w =1 on 992. We can show that u is a constant function.
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Proof. By the Weak Maximum principle u achieves both its maximum and minimum on
0fY. Since u=1 on 0f2 then the maximum and minimum of u has to be 1 on 2. Thus
max(u) = min(u),= u is a constant function.

O

5. A LIOUVILLE THEOREM

Theorem 5.1. Let u : RN — R, N > 1 be a harmonic function. If u is bounded either from
below or above then u = constant.

Proof. Replacing u by—u we may assume u is bounded below (v > m). Now replacing u by
u +m we may assume u > 0. Let x € RVM\{0} and R > |z|. We want to show u(x) = u(0).
By the Mean Value Theorem,

u(x) = u(y)dy and u(0) = u(y)d
(z) ][R(x) (y)dy (0) ][R(O) (y)dy
So,

1
u(z) —u(0)] = ‘/ u y)dy—/ u y)dy‘
| | wn BN g ) ( Br(0) (
1 ‘/
= u(y)dy—/ u(y)dy‘
wNRN Br(z)\Bx(0) BR(0)\Bg(z)

u(y)dy (%)

= N B WNR /( D\Br(®))U(Br(0)\Br(2))
Claim: (Bg(2)\Br(0)) U (Br(0)\Br(z)) C Brx(0)\Br_1/(0)
Proof. Let y € (Br(z)\Br(0)) U (Br(0)\Bg()).
If y € (Bgr(x)\Bg(0)) then |y — 2| > R and |y| > R > R — |z|.

Thus y < |y — x|+ |z| < R+ |z]. So R— |z| < |y| < R+ |z|.
If y € Br(z) then |y| < R and |y — x| > R. Since |y| + |z| > |y — z| > R, it follows that

—lz| < |yl < R< R+ |z|.

Hence
Y € Bry12/(0)\Br-12(0)
This proves our claim. 0

We now return to the proof of (x)
1

o) ~ w0 € — | u(y)dy
wy RN (Br@)\Br(0))U(Br(O)\Br())
o),
< u(y)dy
wy RY Bri)2(0\Bgr_|(0)
So,
lu(z) — u(0)] < % [/ u(y)dy — / ]
WN BR-Hac|(0) BR—\x\(O)
(R+ |z)¥ 1 / (R — Jz)V 1 /
= u(y)dy — u(y)dy
RN WN(R+ |x|)N BRy|z| ( ) RY WN(R_ |$|)N Br—|o| ( )
(R + [z (R — [z)V f
= 7 u(y)dy — ——v—— u(y)dy
RN Bt ) RN BR_ | W

I
_ (Rt 2PV = (R [z
RN

u(0) — 0 as R — oo.
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This shows that u(x) = u(0) for all z € RY = u = constant. O

6. SUBHARMONIC FUNCTIONS

Definition 6.1. Let Q C RY be an open set. A function u € C*() is called subharmonic
if —Au <0 1in €. Similarly u is called superharmonic if —Awu > 0 in 2.

Example 6.2. In dimension N = 1 any subharmonic function « is in fact a convex function
(resp. any superharmonic function is a concave function).

Example 6.3. Let u(z) = |z|F, 2 € R¥\{0}. Find k such that u is a subharmonic function.
Solution. u is a radially symmetric function, so using Note 1.8:

N -1
r

Au=g"(r) + g'(r)

Therefore
Au=r""2k(k+ N —2)
For u to be subharmonic —Au <0 = Au > 0.

Au=7r"2k(k+N—-2)>0=k(k+N—-2)>0
=k>0 and (k+N—-2)>0 or k<0 and (k+N—-2)<0
=k >max{0,2 - N} or k<min{0,2—- N}
Example 6.4. Let u : 2 — R be a positive harmonic function. Prove that log(u) = Inw is

superharmonic.

7. MEAN VALUE PROPERTY FOR SUBHARMONIC FUNCTIONS

Theorem 7.1. (Mean Value Property for Subharmonic Functions)

Let  C RY be an open set,B,(x) CC Q. Then for any subharmonic function u : 2 — R
we have,

u(z) < ]éBT(z) u(y)doy and u(z) < ][T( )u(y)dy

Proof. Recall Green’s formula,

/vAudy—/ v—da /Vu Vudy
Q o0

ou
Audy:/ —do
/Q o0 OV )

ou
Audy = / —do(y
B, (z) OB, (z) v )

:/ Vu(y) - v(y)do(y)
0B (x)

By taking v = 1 we get,

Hence

=/ V() - L %o (1)
0B (x)

r
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Let u — z. Then y=x+rz and da(y) = TN_ldU(Z)'
r
Thus, by (1) we get,

0< / Audy = / Vu(y) - v(y)do(y)
Br(z) OB (z)

= pNH / Vu(z +rz) - do(z)
9B1(0)

0< erlg [/ u(x + rz)da(z)} for all » > 0.
9B1(0)

or
It follows that the function r — u(z + rz)do(z) = ¢(r) is monotone increasing, so
0B1(0)
o(r) > p(0) = / uw(z)do(z) = u(m)/ ldo(z) = u(x)on
8B1(0) 8B1(0)
Hence,
1 1
u(z) < — - p(r) = —/ u(x + rz)do(z)
N N JoB1(0)
Yy— 1
Denote t +rz =y =2z = - = do(z) = TN_lda(y) S0,
@< [ ) gdo) = s [ (ot
u(zr) < — u o(y) = u(y)do
~ ON JoB,(0) W= ®N ontN 7 JoB, (@) e

The proof of the equality

goes as follows,

ON _
< ¥ sV u(x)ds
WNT 0
.,
onu(z _
< N> sV s
CUNT 0
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8. MAXIMUM PRINCIPLES FOR SUBHARMONIC FUNCTIONS

Theorem 8.1. (Strong Maximum Principle for Subharmonic Functions) Let Q@ C RY be a
bounded domain, u € C*(Q) N C(Q) be a subharmonic function. If there exists xo € Q such
that u(xy) = max, g then u = constant.

Proof. Let M = max(u) and assume there exists x, € € such that u(z,) = M.
e

Define A = {x € Q : u(x) = M}. Note that A # () because z, € A. Also A is closed because
if (z,) € A such that (x,) is convergent, then u(z,) = M for all n > 1 so that lim z, =z

n—oo

satisfies lim u(z,) = M = = € A. It remains to show that A is also open. Let z € A. Then
n—oo

u(z) = M and because €2 is open, there exists r > 0 with B,.(x) C €.
By the Mean Value Property it follows that,

M =u(z) < ][ u(y)dy < M.
By (x)

It follows that w = M on B,(x) so B,(x) C A.
This shows that A is both open and closed in 2 = A = ) because 2 is connected. Hence
Q=A={xe€Q:ulx) = M} = u= constant.

O
Theorem 8.2. (Weak Maximum Principle for Subharmonic Functions) Let Q@ C RY be a

bounded domain and let u € C*(Q) N (Q) be a subharmonic function.
Then

max u = maxu.
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Proof. This follows from the Strong Maximum Principle but there is another approach.
Assume by contradiction that there exists zy € €2 such that

u(zo) = maxu > max u.

Fix € > 0 small enough and define
v(r) = u(r) + €elr — 2>,z €Q
We take € small such that

< — x| < =
max v(z) < maxu + emax |z — zof” < v(zo) = u(zo)

This means that v achieves its maximum in Q at a point # inside of 2. Then gig (z) <0 for
all 1 <7 < N so Av(z) < 0. On the other hand

Av(z) = Au(Z) 4+ 2eN > 2eN > 0
Which is a contradiction. O



