MODULAR ARITHMETIC II

PETER MCNAMARA

Bucknell University and Trinity College Dublin

Recap of last time.

1. $a \equiv b \pmod{m}$ if $m \mid a - b$ i.e. *m* divides a - b.

This is equivalent to a and b having the same remainder under division by m.

2. If
$$a_1 \equiv b_1 \pmod{m}$$
 and $a_2 \equiv b_2 \pmod{m}$ then $a_1a_2 \equiv b_1b_2 \pmod{m}.$

3. Fermat's Little Theorem: for any prime p and any integer a such that $p \not\mid a$ (i.e. p does not divide a),

 $a^{p-1} \equiv 1 \pmod{p}.$

While we made use of Fermat's Little Theorem last time, it has an obvious shortcoming. Thoughts?

We'd like a version that works when p is not prime.

Motivating Problem.

Find the last two digits of 77⁷⁷. In other words, what is 77⁷⁷ (mod 100)?

1. EULER'S TOTIENT THEOREM

Definition. The greatest common divisor of two integers a and b, written gcd(a, b), is the largest integer that divides both of them. If gcd(a, b) = 1, then we say that a and b are relatively prime or coprime or that they have no common factor.

Examples. gcd(9, 30) = 3, while 10 and 21 are relatively prime.

Euler's Totient Theorem. For any number *m* and any integer *a* that is relatively prime to *m*,

$$a^{\phi(m)}\equiv 1 \pmod{m},$$

where $\phi(m)$ is Euler's totient function, defined as the number of integers between 1 and *m* inclusive that are relatively prime to *m*.

Examples.

(a) **In seats:** What's $\phi(25)$?

 $2^{20} \equiv 1 \pmod{25}.$

(b) If p is prime, what's $\phi(p)$?

We get: if a is relatively prime to p, then

$$a^{p-1} \equiv 1 \pmod{p}$$

This is exactly Fermat's Little Theorem!

Question coming up: how do we calculate $\phi(m)$ in general?

Problem 1. Find 77⁷⁷ (mod 100).

Solution. Strategy: 100 = 4.25. Let's calculate $77^{77} \pmod{4}$ and $77^{77} \pmod{25}$ and go from there. **In seats:** Calculate $77^{77} \pmod{4}$.

Since $77 \equiv 1 \pmod{4}$,

$$77^{77} \equiv 1^{77} \equiv 1 \pmod{4}.$$

Next, $77 \equiv 2 \pmod{25}$, $77^{77} \equiv 2^{77} \pmod{25}$.

We know that since $\phi(25) = 20$, $2^{20} \equiv 1 \pmod{25}$. $2^{77} \equiv (2^{20})^3 2^{17} \equiv 1^3 \cdot 2^{17} \equiv 2^{17} \pmod{25}$.

Now we just find some reasonably simple way to compute $2^{17} \pmod{25}$.

$$2^5\equiv 32\equiv 7\pmod{25}$$

 $2^{10}\equiv (2^5)^2\equiv 7^2\equiv 49\equiv -1\pmod{25}$

Finally,

$$2^{17}\equiv 2^5$$
 . 2^{10} . $2^2\equiv 7$. (-1) . $4\equiv -28\equiv -3\equiv 22 \pmod{25}$.

To finish the problem, find a number < 100 that's congruent to 1 (mod 4) and 22 (mod 25).

22, 47, 72, 97. Answer: 97

2. CALCULATING THE TOTIENT FUNCTION

 $\phi(m) = \{1 \leq r \leq m \mid \gcd(r, m) = 1\}.$

- We know $\phi(p) = p 1$ when p is prime.
- Next, consider φ(p^a) when p is prime and a > 1.
 r and p^a have a common factor if and only if p divides r.
 r = p, 2p, 3p, ..., p^a.
 Thus φ(p^a) = p^a p^{a-1} = p^{a-1}(p 1).
- In seats: Is it true that φ(a.b) = φ(a)φ(b)?
 If not, are there conditions on a and b that make it true?
 If gcd(a, b) = 1, then φ(a.b) = φ(a)φ(b).
- Every *m* can be written in the form

$$m=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}$$

where each p_i is prime. So

$$\phi(m) = (p_1^{a_1} - p_1^{a_1-1})(p_2^{a_2} - p_2^{a_2-1}) \cdots (p_k^{a_k} - p_k^{a_k-1}).$$

• **Example.** Find a positive number b so that

$$77^b \equiv 1 \pmod{200}.$$

 $b = \phi(200) = \phi(2^35^2) = (2^3 - 2^2)(5^2 - 5^1) = \boxed{80}$

3. EUCLID'S ALGORITHM

Two problems:

- (a) Find gcd(153, 442) = d.
- (b) Find *r* and *s* such that r(153) + s(442) = d.

Euclid's Algorithm, also know as the Euclidean Algorithm, answers both of these questions quickly.

$$442 = 2.153 + 136$$
 $d = gcd(153, 136)$ Why?

 $d|153 \text{ and } d|442 \implies d|(442 - 2.153) = 136.$ Conversely, $d|153 \text{ and } d|136 \implies d|442.$ So the pairs (153, 442) and (153, 136) have the same sets of divisors and so the same gcd.

$$153 = 1.136 + 17$$
 $d = gcd(136, 17)$ $136 = 8.17 + 0$ $d = gcd(17, 0) = \boxed{17}$

Now work backwards to find *r* and *s*:

$$17 = 153 - 1.136$$

= $153 - (442 - 2.153)$
= $3.153 - 442.$

Answer: r = 3 and s = -1

Problem 2. Find k so that $77k \equiv 1 \pmod{100}$. (Compare with $77^k \equiv 1 \pmod{100}$.)

Solution.

Claim. If gcd(m, n) = 1, then there exists r with

 $rm \equiv 1 \pmod{n}$.

Proof of Claim. By Euclid's Algorithm, 1 = rm + sn for some r and s.

Therefore, $rm \equiv 1 - sn \equiv 1 \pmod{n}$, as required.

In seats. Use Euclid's Algorithm on 100 and 77 to solve Problem 2.

$$100 = 1.77 + 23$$

 $77 = 3.23 + 8$
 $23 = 2.8 + 7$
 $8 = 1.7 + 1$
 $7 = 7.1 + 0$

Now work backwards:

1 = 8 - 7= 8 - (23 - 2.8) = 3.8 - 23 = 3.(77 - 3.23) - 23 = 3.77 - 10.23 = 3.77 - 10(100 - 77) = 13.77 - 10.100

Thus

$$13.77 \equiv 1 + 10.100 \equiv 1 \pmod{100}$$
.

Answer: 13

For the road...

Problem 4. If *a* and *b* are relatively prime, Euclid's Algorithm gives us a way to find *r* and *s* such that ra + sb = 1. Show the converse: if there exist *r* and *s* such that ra + sb = 1, then *a* and *b* are relatively prime.

Problem 5. Show that gcd(3k+2, 5k+3) = 1 for any integer k.

Problem 6. Suppose you have a cup of that holds 51 ml and another that holds 23 ml, and a one liter jug. Show that by adding a removing full cups from the jug, there is a way to measure out 500 ml.

Problem 7. In Problem 2, we learned that 77 \cdot 13 \equiv 1 (mod 100). Use this to solve Problem 1 again, this time starting with

$$77^{\phi(100)} \equiv 1 \pmod{100}$$
.

Problem 8 (IMO 1978, Q1). Let *m* and *n* be natural numbers with $1 \le m < n$. In their decimal representations the last 3 digits of 1978^{*m*} and 1978^{*n*} are equal. Find *m* and *n* such that m + n is as small as possible.