MODULAR ARITHMETIC III

PETER MCNAMARA

Bucknell University and Trinity College Dublin

Main definition

 $a \equiv b \pmod{m}$ if $m \mid a - b$ i.e. *m* divides a - b.

This is equivalent to a and b having the same remainder under division by m.

Motivating Problem.

We know how to find k that satisfies $77^k \equiv 1 \pmod{100}$. How?

Now find k that satisfies $77k \equiv 1 \pmod{100}$.

1. EUCLID'S ALGORITHM

Two problems:

- (a) Find gcd(153, 442) = d.
- (b) Find *r* and *s* such that r(153) + s(442) = d.

Euclid's Algorithm, also know as the Euclidean Algorithm, answers both of these questions quickly.

$$442 = 2.153 + 136$$
 $d = gcd(153, 136)$ $153 = 1.136 + 17$ $d = gcd(136, 17)$ $136 = 8.17 + 0$ $d = gcd(17, 0) = \boxed{17}$

Now work backwards to find *r* and *s*:

$$egin{aligned} 17 &= 153 - 1 \, . \, 136 \ &= 153 - (442 - 2 \, . \, 153) \ &= 3 \, . \, 153 - 442. \end{aligned}$$

Answer: r = 3 and s = -1

Problem 1. Find some k so that $77k \equiv 1 \pmod{100}$.

Solution.

Claim. If gcd(m, n) = 1, then there exists r with $rm \equiv 1 \pmod{n}$. **Proof of Claim.** By Euclid's Algorithm, 1 = rm + sn for some r and s.

Therefore, $rm \equiv 1 - sn \equiv 1 \pmod{n}$, as required.

In seats. Use Euclid's Algorithm on 100 and 77 to solve Problem 1.

$$100 = 1.77 + 23$$

 $77 = 3.23 + 8$
 $23 = 2.8 + 7$
 $8 = 1.7 + 1$
 $7 = 7.1 + 0$

Now work backwards:

1 = 8 - 7= 8 - (23 - 2.8) = 3.8 - 23 = 3(77 - 3.23) - 23 = 3.77 - 10.23 = 3.77 - 10(100 - 77) = 13.77 - 10.100

Thus

$$13.77 \equiv 1 + 10.100 \equiv 1 \pmod{100}$$
.

Answer: 13

Problem 2. Using the result of Problem 1, find 77^{77} (mod 100) in a fancier way than before.

Solution. 2 things we know:

1. 77.13 \equiv 1 (mod 100). 2. 77^{$\phi(100)$} \equiv 1 (mod 100). What's $\phi(100)$? $\phi(100) = \phi(4.25) = \phi(2^25^2) = (2^2 - 2)(5^2 - 5) = 40.$

We get

 $77^{40} \equiv 1 \pmod{100}$ $77^{80} \equiv 1 \pmod{100}$ $13.77^{80} \equiv 13 \pmod{100}$ $13.77^{79} \equiv 13 \pmod{100}$ $1.77^{79} \equiv 13 \pmod{100}$

Multiply twice more by 13 to wither it down to

$$77^{77} \equiv 13^3 \pmod{100}$$

 $\equiv 97 \pmod{100}.$

2. CHINESE REMAINDER THEOREM

6, 10, 15 are coprime since gcd(6, 10, 15) = 1 but they are **not pairwise coprime** since

gcd(6, 10) = 2,gcd(6, 15) = 3,gcd(10, 15) = 5.

Chinese Remainder Theorem. Given integers $n_1, n_2, ..., n_k$ that are pairwise coprime and any integers $a_1, a_2, ..., a_k$, then there exists an integer x such that

```
x \equiv a_1 \pmod{n_1},

x \equiv a_2 \pmod{n_2},

x \equiv a_3 \pmod{n_3},

\vdots \vdots \vdots

x \equiv a_k \pmod{n_k}.
```

Furthermore, if x' is another solution of this system then $x' \equiv x \pmod{n_1 n_2 \cdots n_k}$. **Proof** (as time permits). Since n_1 and n_2 are coprime, we can find r and s such that

$$1=$$
 r n $_1+$ s n $_2$.

So

$$s n_2 \equiv 1 - r n_1 \equiv 1 \pmod{n_1},$$

 $r n_1 \equiv 1 - s n_2 \equiv 1 \pmod{n_2}.$

The trick: let $x = a_1 s n_2 + a_2 r n_1$. $x \equiv a_1 s n_2 + 0 \equiv a_1 \pmod{n_1}$, $x \equiv 0 + a_2 r n_1 \equiv a_2 \pmod{n_2}$.

Now consider n_3 , and use the same technique to find y such that

$$y \equiv a_3 \pmod{n_3},$$

 $y \equiv x \pmod{n_1 n_2},$

SO

$$y \equiv x \equiv a_1 \pmod{n_1},$$

 $y \equiv x \equiv a_2 \pmod{n_2}.$

And so on...

If x' is another solution, then x'-x is divisible by $n_1, n_2, ..., n_k$. Since the n_i have no common factors, x'-x is divisible by $n_1n_2 \cdots n_k$, i.e.,

$$x' \equiv x \pmod{n_1 n_2 \cdots n_k}$$
.

Example. Find the smallest positive integer *n* such that *n* leaves a remainder of 10 on division by 33 and *n* leaves a remainder of 13 on division by 47.

In other words,

$$n \equiv 10 \pmod{33},$$

 $n \equiv 13 \pmod{47}.$

As before, can work out that

1 = 10.33 - 7.47.

In seats:

$$n = a_1 s n_2 + a_2 r n_1$$

= 10.(-7).47 + 13.10.33
= 10(13.33 - 7.47)
= 10(429 - 329)
= 1000.

Important: is this the smallest solution?

Any other solution x satisfies

$$x \equiv 1000 \pmod{33.47} = 1551$$
.

Since $0 \le 1000 < 1551$, it must be that 1000 is the smallest positive solution.

 $n \equiv 1 \pmod{2},$ $n \equiv 2 \pmod{3},$ $n \equiv 2 \pmod{3},$ $n \equiv 3 \pmod{4},$ $n \equiv 4 \pmod{5},$ $n \equiv 5 \pmod{6},$ $n \equiv 5 \pmod{6},$ $n \equiv 6 \pmod{7},$ $n \equiv 7 \pmod{8},$ $n \equiv 8 \pmod{9},$ $n \equiv 9 \pmod{10}.$

Solution. One solution is -1, except that it is not positive. We know that *n* must satisfy

$$n \equiv -1 \pmod{n_1 n_2 \cdots n_k}$$

except that 2, 3, ..., 10 are not pairwise relatively prime. Instead consider the system

```
n \equiv 4 \pmod{5},

n \equiv 6 \pmod{7},

n \equiv 7 \pmod{8},

n \equiv 8 \pmod{9}.
```

We check that every solution of this new system is a solution of the original system, and vice versa. Now we have that our moduli of 5, 7, 8, 9 are pairwise relatively prime. So

$$n \equiv -1 \pmod{5.7.8.9}$$

•

The first positive solution is n = -1 + 5.7.8.9 = -1 + 2520 = 2519.