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1 Abstract

I prove the linear independence of q−3
2 relations of the pre-Bloch group over a field Fq with

Char(Fq) 6= 2 using only elementary methods. It is known for a pre-Bloch group over a finite

field that q − 2 relations are linearly independent, however this result has previously been shown

using techniques which originate from Homology and K-Theory. This result places a lower bound

on the number of linearly independent relations, and may serve as a stepping-stone towards an

elementary proof that the pre-Bloch group over a finite field is itself finite.
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2 Introduction

It has been shown by Hutchinson [6] that the pre-Bloch group of a finite field of order q is iso-

morphic to a cyclic group of order q + 1. This fact tells us that the pre-Bloch group of a finite

field is finite and thus a presentation matrix of the pre-Bloch group must have maximal rank. The

motivating questions for this study are the following:

It has been shown that the presentation matrix of a pre-Bloch group over a finite field has maximal

rank.

• Is it possible to systematically find an explict list of q−2 relations of the total (q−2) · (q−3)

relations which are linearly independent?

• Furthermore, can it be shown that the pre-Bloch group is cyclic via explicit means?

• If we can show that the pre-Bloch group is cyclic, can we explicitly find a generator?

• Are there any explicit identities amongst the relations which can be systematically found?

In this section we will introduce the pre-Bloch group over a finite field, provide a motivation for its

study, and provide some known results. As the structure of the pre-Bloch group is fundamentally

tied to the arithmetic of the underlying field, we will review what we mean by a field and detail

some essential results which will prove necessary to our study of the pre-Bloch group. Finally, as

the concept of free modules and presentation matrices are intrinsically linked to our exploration of

the pre-Bloch group over a finite field, we will provide a brief revision of these topics.
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2.1 Review of Fields

In this section, we will review what we mean by a finite field, and we will explore the key results

which are required to examine the pre-Bloch group. As the underlying arithmetic of the finite field

is largely responsible for the structure of the pre-Bloch group over that field, it is essential that

the reader is deeply familiar with these results and the notation associated with finite fields. We

present these well-known results without proof so that the reader may recall them. The exposition

here is based on [1].

Definition: Field

We say that a commutative ring (R,+, ·, 0R, 1R) in which every non-zero element has a multiplica-

tive inverse is a field, denoted F. We denote the multiplicative group of a field F∗.

Definition: Finite Field and Infinite Field.

We say that a field with a finite number of elements is a finite field. We call the number of elements

in a finite field the order of the field. If a field is not finite, we say it is an infinite field.

Proposition:

The commutative ring (Z/nZ,+, ·) is a field if and only if n = p is prime. This is the unique field

with p elements. We denote Fp := Z/pZ

Theorem:

For every finite field |Fq| = q = pn with p ∈ N prime, and n ∈ N.

Definition: Multiplicative order

Let r ∈ Fq. We call the multiplicative order of r, denoted ord(r), the smallest a ∈ N such that

ra = 1Fq .

Definition: The Prime Subfield of a Field

We call the smallest subset P of F which is itself a field the prime subfield of F.

Proposition:

For p prime and Char(Fq) = p, the prime subfield P of Fpn is isomorphic to Fp.

Definition: Generator

For r ∈ F such that < r >= {r1, r2, r3, . . . , rq−2, rq−1 = 1} = (F∗q , ·, 1F) then we call r the generator

of F∗. Here, r is a primitive root of F.

Lemma:

For every finite field, there exists at least one generator.

Proposition:

There exists a field ∀q = pn such that Fq is a field. Furthermore, if F and G are finite fields such

that |F| = |G| = q, then F ∼= G

Question:

4



We know that fields of the form pn are possible, but how do we construct fields where n > 1?

Answer:

We will demonstrate that this can be done by adjoining a root of an irreducible polynomial of

degree d to Fp[x]. This new field is an ’extension’ of Fp and contains pd elements.

Example:

Construct the field F4.

Solution to Example:

First, we take the field F2 = {0, 1}, and examine the polynomial ring F2[X]. We define S := {p(x) :

p(x) ∈ F2[X] and deg(p(x)) ≤ 2}. Then:

S = {0, 1, x+ 0, x+ 1, x2 + 1, x2 + 0, x2 + x+ 0, x2 + x+ 1}

Secondly, we observe that the polynomial x2 + x + 1 is the only irreducible polynomial in F2[X]

with deg(p(x)) ≤ 2 and neither 0 nor 1 is a root of the polynomial. We will call i the root of the

polynomial

By taking F2[X]/ < x2 + x+ 1 > we see that the elements are:

F2[X]/ < x+ 2 + x+ 1 >= {0, 1, i, 1 + i}

We can verify that this is indeed a field, that this field has four elements, and we see that this field

has characteristic 2 with a prime subfield of F2
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2.2 Free Modules, Presentation Matrices, and Group Generators

In this section we will examine free modules and presentation matrices. These topics will be essen-

tial in justifying our analysis of the pre-Bloch group over a finite field. This will also allow us to

justify our usage of linear algebraic techniques to identify identities and to attempt to determine

the size of this group by examining the properties of certain matrices. The exposition in this section

is based on Chapter 14 of [1]. Throughout this section we will go with the convention that unless

otherwise stated, R refers to a non-zero ring.

Definition: Free Module

Let R be a ring. Let M be an R-Module. We say that M is a free module if there exists a basis,

with the usual definition which we will explicity give below, of M .

Example:

Let R be a ring. Then R is a free module as any unit of R is a basis, and thus the module is of rank 1.

Definition: Span and Generator:

Let R be a ring, and let M be an R-module. We say that for m1, . . .mn ∈ M , the span of

m1, . . . ,mn is the set:

Span(m1, . . . ,mn) := {r1m1 + . . .+ rnmn : r1, . . . , rn ∈ R}

If ∃m1, . . . ,mn ∈M such that Span(m1, . . . ,mn) = M , then we say that m1, . . . ,mn are generators

of M , and that M is finitely generated.

Definition: Linear Independance

Let R be a ring, and let M be an R-module. We say that m1, . . . ,mn ∈M are linearly independent

if given r1, . . . rn ∈ R:

r1m1 + r2m2 + . . . rn−1mn−1 + rnmn = 0 =⇒ r1 = . . . = rn = 0

Definition: Basis

Let R be a ring, and let M be an R-module. We say that

B := {m1,m2, . . . ,mn : mi ∈M ∀i ≤ n}

is a basis of M if the follow criteria are met:

• Span(B) = M

• The elements of B are linearly independent.

Definition: Relation

LetM be an R-module. Let B = {m1,m2, . . . ,mn} ⊆M , we can associate B with a homomorphism

of modules, φB, as :

φB : Rn →M

φB(r1, . . . , rn) = (r1, r2, . . . , rn)


m1

m2
...

mn

 =

n∑
i=1

rimi
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We say that (r1, . . . , rn) ∈ Ker(φB) is a relation.

Note:

B is a basis of an R-module M if and only if the homomorphism φB (as defined above) is isomorphic.

Definition: Complete Set of Relations

Let M be an R-Module. Let B be a set such that Span(B) = M . Let φB be the homomorphism

previously defined. We say that a set of relations S is a complete set of relations if:

Span(S) = Ker(φB)

Theorem:

If A is an integer matrix, then there are elementary integer matrices Q and P , which originate from

row and column operations, such that:

A′ = Q−1 ·A · P

where A′ is of the form:

A′ =


 d1

. . .

dk


0


with d1|d2|d3| . . . |dk and k ≤ n

Proof:

The proof shall be omitted, but may be found in [1] as the Proof of Theorem 14.4.6

Note:

When diagonalising integer matrices, as we do not have inverses ∀z ∈ Z, the row and column

operations we can do are restricted. As highlighted in [1] (page 418) row and column operations

are restricted to the following:

• Multiply a column or row by −1

• Add an integer multiple of a row to another, or an integer multiple of a column to another.

• Swap the position of two rows or columns

Example:

We will diagonalise the following integer matrix:

M =

 3 0 −1 1 0 −1

−2 1 0 2 1 0

0 0 2 −2 0 2


We will add the second and third row to the first row.

M =

 1 1 1 1 1 1

−2 1 0 2 1 0

0 0 2 −2 0 2


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We will subtract the first column from the remaining columns.

M =

 1 0 0 0 0 0

−2 3 2 4 3 2

0 0 2 −2 0 2


We will add twice the first row to the second row.

M =

 1 0 0 0 0 0

0 3 2 4 3 2

0 0 2 −2 0 2


We will rearrange the columns so that the values in the second row are ordered.

M =

 1 0 0 0 0 0

0 2 2 3 3 4

0 2 2 0 0 −2


We will subtract the highest multiple of a2,2 ≤ a2,j times the second column from column j

M =

 1 0 0 0 0 0

0 2 0 1 1 0

0 2 0 −2 −2 −6


We will reorder the columns such that the second row is ordered.

M =

 1 0 0 0 0 0

0 0 0 1 1 2

0 0 −6 −2 −2 2


We will subtract the highest multiple of a2,4 ≤ a2,j times the fourth column from column j.

M =

 1 0 0 0 0 0

0 0 0 1 0 0

0 0 −6 −2 0 6


We’ll subtract the highest multiple of a2,4 ≤ ai,4 from row i.

M =

 1 0 0 0 0 0

0 0 0 1 0 0

0 0 −6 0 0 6


We’ll rearrange to place zero columns in the final columns of the matrix and 1 in a2,2.

M =

 1 0 0 0 0 0

0 1 0 0 0 0

0 0 −6 6 0 0


We multiply all columns containing a negative value by −1 and subtract the third column from

the fourth column to arrive at our final answer

M =

 1 0 0 0 0 0

0 1 0 0 0 0

0 0 6 0 0 0


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Note:

We note that when we are dealing with rings, not all modules are free. There are modules which

simply do not have a basis. To describe some of these modules we will use matrices referred to as

”Presentation Matrices”. These matrices shall be fundamental in our examination of the pre-Bloch

group over a finite field.

Definition: Presentation Matrix

Let A denote an m× n R-matrix. Then A defines a homomorphism of R-Modules:

A : Rn → Rm

A ·


x1
x2
...

xn

 = (x1, x2, . . . , xm)

We note that the image of this map is all linear combinations of the columns in A with coefficients

in R, and thus we denote Im(A) by A ·Rn.

The quotient module Rm/Im(A) = Rm/A · Rn is then ”presented” by the matrix A, and we

call A a presentation matrix of M . More formally, we state:

If ∃f : Rm/A · Rn → M such that f is an isomorphism, and A is an m × n matrix, we call f

a presentation of the module M , and say that A is a presentation matrix of M .

Example:

What is a presentation matrix of C5 and C7?

We note that C5
∼= Z/5Z with 5 ∈ Z, and likewise C7

∼= Z/7Z with 7 ∈ Z. Hence the matrix

[5] presents C5 and the matrix [7] presents C7.

Note:

As the concept of relations is one which will be essential to the study of the pre-Bloch group, we

will provide an example.

Example:

Consider the Z-module generated by {x1, x2, x3} with the relations:

• x1 + x2 + x3 = 0

• 2x1 +−1x2 + 3x3 = 0

• −2x1 + 4x2 + x3 = 0

This is then presented by the matrix with the coefficients of the relations in the columns:

A =

 1 2 −2

1 −1 4

1 3 1


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Theorem:

Let A be a matrix associated with the homomorphism:

φA : Zn → Zm

Then the following conditions are equivalent

• ∃n linearly independent columns of A

• rank(A) = n

• Zm/A · Zn is finite.

Proof:

To begin, we note that simply by the definition, the first two conditions are equivalent. So we need

to show:

rank(A) = n ⇐⇒ Zm/A · Zn(the cokernel of A) is finite.

We recall our theorem previously mentioned theorem that if A is an integer matrix, then there are

elementary integer matrices Q and P , which originate from row and column operations, such that:

A′ = Q−1 ·A · P

where A′ is of the form:

A′ =


 d1

. . .

dk


0


with d1|d2|d3| . . . |dk and k ≤ n

Hence we can assume that A has been already diagonalised, as if not it is possible to find row

and column operations to diagonalise it. Therefore A is of the form A′ in the above recollection of

the diagonalisation theorem.

Hence by the structure theorem we can write:

Zm/AZn ∼= Z/d1Z⊕ Z/d2Z⊕ · · · ⊕ Z/dkZ⊕ Z/dk+1Z/⊕ · · · ⊕ Z/dnZ

→ If rank(A) = n then the cokernel is isomorphic to the direct sum of finite sets, and is therefore

finite.

← If Zm/AZn is finite, then as A can be diagonalised, we have:

Zm/AZn ∼= Z/d1Z⊕ Z/d2Z⊕ · · · ⊕ Z/dkZ⊕ Z/dk+1Z/⊕ · · · ⊕ Z/dnZ

If rank(A) = k < n then,

Zm/AZn ∼= Z/d1Z⊕ Z/d2Z⊕ · · · ⊕ Z/dkZ⊕ Z/0Z

And thus coker(A) is isomorphic to an infinite set, and thus is not finite, so we must have that

rank(A) = n.
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Note:

It is this result which shall play a crucial role in our examination of the pre-Bloch group, and allow

us to justify whether the pre-Bloch group is finite by examination of a matrix which presents it.

This connection shall be further outlined in the next section.
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2.3 Pre-Bloch Group

The relations of the pre-Bloch group over a Finite Field is the main topic of study in this pa-

per. Inff this section we will give a brief overview of the pre-Bloch group, motivate its study, and

provide some results which serve as the basis for our investigation. The study of pre-Bloch group

stems from its intricate relation with hyperbolic geometry, in particular its relation to ideal tetrahe-

dra and the dilogarithm function. An exposition on these connections may be found in: [2] and [13].

Definition: The pre-Bloch group, P(F).

Let R(x, y), such that x, y ∈ F\{0, 1} and x 6= y, be an element in Z[F\{0, 1}] such that:

R(x, y) = [x]− [y] + [
y

x
]− [

1− x−1

1− y−1
] + [

1− x
1− y

]

We will call this the ”five term relation”, where the terms are those of the dilogarithm function

in [13].

The pre-Bloch group P(F) is the abelian group generated by the symbols [x], with x ∈ F\{0, 1},
subject to the relation R(x, y) = 0 [3].

The Bloch Group, B(F) is then taken to be the kernel of the map:

f : P(F)→ F∗ ∧ F∗

f([z]) = z ∧ (1− z)

Note:

We note that P(F) is a finitely generated Z-module when F = Fq, with a finite set of relations (of

size (q−2) ·(q−3) as x 6= y). Therefore P(F) has a presentation matrix which we can use to analyse

P(F). It is this approach that shall form the basis of this study. We will start by giving an example.

Example:

Let us consider the relations for F5. We have the following list of relations:

R(2, 3) = [2]− [3] + [
3

2
]− [

1− 2−1

1− 3−1
] + [

1− 2

1− 3
] = 0[2] + 0[3] + 1[4]

R(2, 4) = [2]− [4] + [
4

2
]− [

1− 2−1

1− 4−1
] + [

1− 2

1− 4
] = 3[2] + 0[3]− 2[4] + 0[3]

R(3, 2) = [3]− [2] + [
2

3
]− [

1− 3−1

1− 2−1
] + [

1− 3

1− 2
] = 0[2] + 0[3] + 1[4]

R(3, 4) = [3]− [4] + [
4

3
]− [

1− 3−1

1− 4−1
] + [

1− 3

1− 4
] = −1[2] + 2[3] + 0[4]

R(4, 2) = [4]− [2] + [
2

4
]− [

1− 4−1

1− 2−1
] + [

1− 4

1− 2
] = −1[2] + 2[3] + 0[4]

R(4, 3) = [4]− [3] + [
3

4
]− [

1− 4−1

1− 3−1
] + [

1− 4

1− 3
] = 1[2]− 2[3] + 2[4]
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Thus the presentation matrix of P(F5) is:

M =

 0 3 0 −1 −1 1

0 0 0 2 2 −2

1 −2 1 0 0 2


Note:

As F∗q is generated by some r ∈ F∗q , we can rewrite the function as powers of some primitive root r as:

R(ri, rj) = [ri]− [rj ] + [rj−i]− [
1− r−i

1− r−j
] + [

1− ri

1− rj
]

This allows us to enumerate the elements as powers of a primitive element r ∈ F∗q .

Example: We observe that < 2 > = {2, 4, 3, 1} = F∗5. So the list of relations for F5, as seen

before (now in terms of a generator), are:

R(r1, r2) = [r1]− [r2] + [r2−1]− [
1− r−1

1− r−2
] + [

1− r1

1− r2
] = 3[r1]− 2[r2] + 0[r3] = {3,−2, 0}

R(r1, r3) = [r1]− [r3] + [r3−1]− [
1− r−1

1− r−3
] + [

1− r1

1− r3
] = 0[r1] + 1[r2] + 0[r3] = {0, 1, 0}

R(r2, r1) = [r2]− [r1] + [r2−1]− [
1− r−2

1− r−1
] + [

1− r2

1− r1
] = −1[r1] + 0[r2] + 2[r3] = {−1, 0, 2}

R(r2, r3) = [r2]− [r3] + [r2−3]− [
1− r−2

1− r−3
] + [

1− r2

1− r3
] = 1[r1] + 2[r2] +−2[r3] = {1, 2,−2}

R(r3, r1) = [r3]− [r1] + [r3−1]− [
1− r−3

1− r−1
] + [

1− r3

1− r1
] = 0[r1] + 1[r2] + 0[r3] = {0, 1, 0}

R(r3, r2) = [r3]− [r2] + [r3−2]− [
1− r−3

1− r−2
] + [

1− r3

1− r2
] = −1[r1] + 0[r2] + 2[r3] = {−1, 0, 2}

and thus our presentation matrix, now with re-ordered rows and columns, is:

M =

 3 0 −1 1 0 −1

−2 1 0 2 1 0

0 0 2 −2 0 2


Definition: {x}
For x ∈ F∗, we define:

{x} :=

{
[x] + [x−1] if x 6= 1

0 if x = 1
∈ P(F)

Note:

Through an abuse of notation, we will later use this same notation to refer to an element in

Z[F\{0, 1}]. We will explicitly note when we are working in Z[F\{0, 1}].

Proposition:

It is a well-known result of Suslin [8] that the map f : x→ {x} is a homomorphism from F∗ to the
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elements of order dividing 2 in P(F).

Proof:

We note that in the group P(F) we have the following identities:

R(x, y) = [x]− [y] + [
y

x
]− [

1− x−1

1− y−1
] + [

1− x
1− y

] = 0

R(x−1, y−1) = [x−1]− [y−1] + [
y−1

x−1
]− [

1− x1

1− y1
] + [

1− x−1

1− y−1
] = 0

By adding these equations we see:

R(x, y)+R(x−1, y−1) = [x]−[y]+[
y

x
]−[

1− x−1

1− y−1
]+[

1− x
1− y

]+[x−1]−[y−1]+[
y−1

x−1
]−[

1− x1

1− y1
]+[

1− x−1

1− y−1
] = 0

and by rearranging and simplifying we get:

R(x, y) +R(x−1, y−1) = ([x] + [x−1])− ([y] + [y−1]) + ([
y

x
] + [

x

y
]) = 0

and by using our definition of {x} we get:

R(x, y) +R(x−1, y−1) = {x} − {y}+ {z} = 0

However, now observe that we can also interchange x and y to get the relation:

R(y, x) +R(y−1, x−1) = {y} − {x}+ {z−1} = 0

And by adding both relations we get:

2{z} = 0

We thus verify that 2{x} = 0 ∀x ∈ F∗q

Corollary:

From the above, we also see that the relation {x} + { yx} = {y} holds. This is valid as if x = y,

x = 1, the relation is trivial. If y = 1 then as {x} = {x−1} we retrieve the relation 2{x} = 0.

Proposition:

It is also well-known result of Suslin [8] that in P(F), cF = [x] + [1− x] is constant ∀x ∈ F\{0, 1}.

Proof:

We note that in the group P(F) we have the following identities:

R(x, y) = [x]− [y] + [
y

x
]− [

1− x−1

1− y−1
] + [

1− x
1− y

] = 0

R(1− y, 1− x) = [1− y]− [1− x] + [
1− x
1− y

]− [
1− (1− y)−1

1− (1− x)−1
] + [

1− (1− y)

1− (1− x)
] = 0

By subtracting the two relations, we see:

R(x, y)−R(1− y, 1− x) = [x] + [1− x]− ([y] + [1− y]) = 0
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and thus we get our desired equality that

[x] + [1− x] = [y] + [1− y]

Corollary:

3cF = {−1}

Proof:

We have from the above:

3cF = [x] + [1− x] + [x−1] + [1− x−1] + [(1− x)−1] + [1− (1− x)−1]

3cF = {x}+ {1− x}+ {1− x−1} = {−(1− x)2} = {−1}

Corollary:

6cF = 0

Proof:

Recall we have:

3cF = {−1}

Thus:

6cF = {−1}+ {−1} = 2{−1}

And as 2{x} = 0 we have our result that:

6cF = {−1}+ {−1} = 0

Proposition:

P(F) ∼= Cq+1 and thus, because this is finite, the rank of the presentation matrix of P(F) is maximal.

Proof:

This was proved by Hutchinson [6].

Note:

This proof is what shall form the basis of our research. The proof is based primarily on techniques

from homological algebra. It is highly desirable to find a more direct proof of this result so we can

get to the essence of the pre-Bloch group to try and determine what precisely is responsible for its

structure. In particular, this proof also tell us that the pre-Bloch group over a finite field is itself

finite, and thus of maximal rank. This tells us that out of the total (q − 2) · (q − 3) relations for

a finite field Fq, there are in fact q − 2 of these which are linearly independent. It would be quite

interesting to determine which relations, and why, are the linearly independent relations, as these

are going to determine the entire pre-Bloch group.
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3 Main Body

We recall our motivating question for this study:

Question: Is it possible to explicitly and systematically describe q − 2 relations of the total

(q − 2) · (q − 3) which are linearly independent as q varies?

There are a number of challenges, detailed below, which make this question difficult to answer.

Challenge 1: The first immediate difficulty one encounters is that the number of relations for

a finite field Fq is (q − 2) · (q − 3). As the the size of the field increases, the total number of rela-

tions grows quadratically, while the number of elements in Fq grows linearly. Even when the field

contains only 13 elements, there are already a total of 110 relations, and of these we are looking for

10 linearly independent relations. As we wish to find a consistent set of relations which are linearly

independent regardless of the field, it is necessary to be able to examine a set of relations across

a number of fields, to try and identify any pattern which may arise in which relations are linearly

independent to one another. As the total number of relations increases very quickly, the size of the

matrix becomes very large (as it has dimensions (q− 2)× (q− 2) · (q− 3)), and it quickly becomes

inefficient to compute all relations by hand, the first step in our study was to write a programme

to automate this process.

Challenge 2: The second difficulty which arises is how we should try to choose which relations to

select. Ideally, we would like to arrange our presentation matrix such that the first q − 2 columns

(which correspond to a relation) are linearly independent, and the remaining columns are those

which are linearly dependant (and thus may be removed).There are two obvious methods which

can be used to order elements of a finite field. The first method consists of a simple lexographic

ordering. The second method consists of considering the elements in finite field as powers of a

generator of the multiplicative group of the finite field, and ordering them according to the power

of this generator. We need to determine some way to choose which elements of the finite field to

select for our relations, and this is something which is non-obvious.

Challenge 3: The third challenge which presents itself is the lack of information we have about

the connection between addition and multiplication in a finite field. This proves to be an important

point as determing what the terms

[
1− x−1

1− y−1
] and [

1− x
1− y

]

from the five term relation will be as a power of a generator in the field is important to determing

what the coefficient is of each element of the field for a given relation. These terms are highly

variable to what elements in the field we choose for the relation. Finding identities that allow us

to restrict what these terms can be, and impose further conditions on the relations will be particu-

larly important. Because of how variable a relation is depending on which elements of the field are

selected, it is entirely possible that there may not be a consistent set of relations which are linearly

independent in every field; it may simply depend entirely on the field that we choose.

Challenge 4: The fourth and final difficulty which presents itself is that while we know the entire
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group is generated by a single element, we do not have a description as to what this element is.

This problem is comparable to determining what element of a finite field is a generator, a problem

for which we currently have no general solution for.

Various methods of attacking this problem were tried over the course of this study. We will

provide details on the main results which we achieved, including a lower bound on the rank of the

presentation matrix, and the main techniques which were used below.
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3.1 Program to Calculate the Pre-Bloch Group

As the number of relations grows very quickly with the size of the field, the beginning of this

investigation necessitated the creation of a computer program which would allow the underlying

relations of the pre-Bloch group of a finite field to be quickly determined.

To accomplish this, I used Mathematica, a computational program based on the programming

language known as ”Wolfram Language”, which is designed to ’automate away’ some of the ’lower

level structure’ of other programming languages [12]. The main motivators for using Mathematica

over other computational programs was the support for ”Finite Fields” through the ”Finite Fields

Package” [11], and the author’s own familiarity with the program. The author is confident that

similar computational programs which support finite fields, such as ”Sage Math” or ”Matlab”,

could implement a similar algorithm. Similarly, the program has not been optimised for efficiency

as its primary purpose was to simply allow for the quick calculation of the presentation matrix. It

is very likely that there are a number of optimisations which could be made to this program.

Our program is as follows. We will supply and explain each piece of the code individually, and we

will then at the end provide the program in its entirety

Code Input:

Needs["FiniteFields‘"]

Needs["IntegerSmithNormalForm‘"]

Code Output:

-Not Applicable-

Explanation: The first package loaded allows for the manipulation of finite fields. The second pack-

age provides an implementation which allows matrices to be put in Smith Normal Form using only

the row and column manipulations which are allowed to be used for an integer matrix. This pacak-

age was written by Dr. Jabon and is available at (http : // library.wolfram.com/infocenter/MathSource/682/).

Code Input:

FieldPowers[m_] := PowerList[GF[m]]

Table[PowerListQ[GF[Prime[i]]] = True, {i, 80}]

PowerListQ[GF[5]]

Table[PowerListQ[GF[Prime[i]^2]] = True, {i, 20}]

Table[PowerListQ[GF[Prime[i]^3]] = True, {i, 15}]

Table[PowerListQ[GF[Prime[i]^4]] = True, {i, 10}]

Code Output:

{Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, \

Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, \

Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, \

Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, \
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Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, \

Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, \

Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, \

Null, Null, Null}

True

{Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, \

Null, Null, Null, Null, Null, Null, Null, Null, Null}

{Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, \

Null, Null, Null, Null}

{Null, Null, Null, Null, Null, Null, Null, Null, Null, Null}

Explanation: We start by defining a function called ”FieldPowers[m]”, where m refers to the order

of the field. This function outputs the result as a vector whose length corresponds to the degree of

the polynomial used to generate the elements of the field. This function outputs the elements of

a given field by determining a generator of the field and returning the element as powers of that

generator, where the first element corresponds to rq−1, the second element corresponds to r1, etc.

Further details on which polynomials and generators Mathematica uses to generate these elements

may be found in the documentation of the finite fields package [11]. The convention Mathematica

uses is that a vector {v0, v1, v2} corresponds to the polynomial v0 + v1x
1 + v2x

2.

We next begin by enabling the ability to take the discrete logarithm of an element of a given

field. This must be manually enabled for every field. To take ”Table[PowerListQ[GF[Prime[i]]] =

True, i, 80]” as an example, this enables the ability to take the discrete logarithm of the fields Fp

where p is one of the first 80 prime numbers. Subsequent instances enable the ability to take the

discrete logarithm of extensions of a set number of fields. This function is computationally heavy,

but it can easily be adjusted to enable the discrete logarithm for as many fields as one is interested

in by increasing the bound of each line to include the desired number of fields.

Code Input:

FieldPowers[4]

Print["The above is the list of F4"]

FieldPowers[5]

Print["The above is the list of F5"]

FieldPowers[7]

Print["The above is the list of F7"]

Code Output:

{{1, 0}, {0, 1}, {1, 1}}

The above is the list of F4
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{{1}, {2}, {4}, {3}}

The above is the list of F5

{{1}, {3}, {2}, {6}, {4}, {5}}

The above is the list of F7

Explanation: Here we see examples to verify that the function ”FieldPowers[x]” correctly returns

the vectors associated with the elements in the field Fx. One important point here is that these

vectors are not returned as elements in the field. This means addition between two vectors, say 3

and 4 in ”FieldPowers[5]” will return 7, rather than the desired 2. We verify that these are indeed

the elements of the fields F4,F5, and F7.

Code Input:

Id[x_] := First[FieldPowers[x]]

Id[4]

Id[5]

Id[7]

Code Output:

{1, 0}

{1}

{1}

Explanation: This defines a new function called ”Id[x]” which takes as an input the order of our

field, and returns as an output the identity of that field by taking the first element of our function

”FieldPowers[x]” (which recall is ordered such that the first element is the identity, the generator

of the field is the second element, and subsequent elements are successive powers of the generator).

We verify that this correctly returns the identity element for each of F4,F5, and F7.

Code Input:

FL1[x_] := DeleteCases[FieldPowers[x], Id[x]]

FL1[4]

FL1[5]

FL1[7]

20



Code Output:

{{0, 1}, {1, 1}}

{{2}, {4}, {3}}

{{3}, {2}, {6}, {4}, {5}}

Explanation: We define a new function ”FL1[x]” which takes the order of a field as an input,

and returns the elements in Fx\{1}. This is ordered according to powers of a generator, where the

generator is the first element. We verify that FL1[4], FL1[5], and FL[7] return the correct values.

Code Input:

G[p_, a_] :=

If[Mod[a, p - 1] != 0, Part[FL1[p], Mod[a, p - 1]], Id[p]]

(*This is going to give the element of the field which corresponds to \

power a of a generator in a field p*)

G[5, 2]

G[5, 3]

G[5, 4] == Id[5]

Code Output:

{4}

{3}

True

Explanation: We define a new function G[p, a] which takes the order of the field as p and the

power of a generator of that field as a, and then outputs the vector which corresponds to ra. It

does this by first determing if ra is the identity. If it is the identity, it returns the identity. If it

is not the identity, it takes the element in FL1[p] which corresponds to the power of the generator

given. It takes this modulo p− 1 to ensure powers higher than this return correct answers. We see

examples that verify this is working correctly by examining the field F5

Code Input:

FY[p_, a_] := GF[p][G[p, a]]

Field[p_] := Table[FY[p, i], {i, 1, p - 2}]

FOne[p_] := GF[p][Id[p]]

FY[5, 1]

FY[5, 2]
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FY[5, 3]

FY[5, 4]

FY[4, 1]

FY[4, 2]

FY[4, 3]

FY[7, 1]

FY[(Prime[10])^2, 17]

Code Output:

{2}5
{4}5
{3}5
{1}5
{0, 1}2
{1, 0}2
{3}7
{8, 26}29

Explanation: Here we define ”FY[p,x]” to place the element into the field and allow arithmetic

to be done inside that field. In Mathematica, this is accomplished using the function ”GF[p][v]”,

where ”v” corresponds to the vector of the element in that field. Here, we substituted our function

”G[p,a]” for ”v” as this function returns the vector of the element associated with ra in the field

Fp (where p in this case is a prime or a power of a prime). FY[p,a] therefore outputs the element

ra when considered as an elment in the field.

The function ”Field[p]” outputs every element in a field Fp ,where p is the order of the field

(prime, or a power of a prime), considered by Mathematica as an element of the field.

The function ”FOne[p]” outputs the identity in the field as an element in the field.

We compute a number of examples to verify that our function ”FY[p,a]” does indeed give us

the answers which we expect, and one can verify that the output is correct.

We now have the means of selecting every element of any field, by selecting the order of the

field, and choosing every possible power of a generator to provide every element in the field (as

Field[p] does). We will use this to define the five term relation.

Code Input:

R[p_, a_, b_] :=

g[FY[p, a]] - g[FY[p, b]] + g[FY[p, b]/FY[p, a]] -

g[(FY[p, b]/

FY[p, a])*((FOne[p] - FY[p, a])/(FOne[p] - FY[p, b]))] +

g[(FOne[p] - FY[p, a])/(FOne[p] - FY[p, b])]

See[p_, a_, b_] :=
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Print[g[FY[p, a]], " - ", g[FY[p, b]], " + ", g[FY[p, b]/FY[p, a]],

" - ", g[(FY[p, b]/

FY[p, a])*((FOne[p] - FY[p, a])/(FOne[p] - FY[p, b]))], " + ",

g[(FOne[p] - FY[p, a])/(FOne[p] - FY[p, b])]]

Code Output:

-Not Applicable-

Explanation: Here we define the five term relation as R[p,a,b].

We define this function first by recalling that as powers of a generator of a finite field Fq, it

can be written as:

R(ri, rj) = [ri]− [rj ] + [rj−i]− [
1− r−i

1− r−j
] + [

1− ri

1− rj
]

We replace ”[x]” where x ∈ Fq with an undefined function named ”g(x)”, noting that in Mathe-

matica functions are described using square brackets, to give us:

R(ra, rb) = g[ra]− g[rb] + g[rb−a]− g[
1− r−a

1− r−b
] + g[

1− ra

1− rb
]

This function ’g’ exists such that in Mathematica, only terms with the same element from the

finite field add together. Without the undefined function ’g’ inputted, Mathematica will default to

adding the terms inside the finite field and only a single element of the finite field will be outputted.

With this function, we can avoid this situation occuring.

We then translate that function into Mathematica, using ”FY[p,a]” to input ”ra ∈ Fp”, ”FY[p,b]”

to input ”rb ∈ Fp”, and ”FOne[p]” to input 1Fp .

Hence ”R[p,a,b]” allows us to find the relation corresponding to R(ra, rb) for the field Fp where p

is a prime or a power of a prime.

We also define the function ”See[p,a,b]” which allows us to see the calculation term-by-term to

allow for easy troubleshooting if needed.

Code Input:

R[5, 1, 3]

See[5, 1, 3]

R[4, 1, 1]

R[4, 1, 2]

R[4, 2, 1]

R[4, 2, 2]

Code Output:

g[{4}5]]
g[{2}5]− g[{3}5] + g[{4}5]− g[{2}5] + g[{3}5]
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g[{1, 0}2]
3g[{0, 1}2]− 2g[{1, 1}2]]
− 2g[{0, 1}2] + 3g[{1, 1}2]
g[{1, 0}2]

Explanation: We calculate a few examples relations to verify this is working correctly. We man-

ually verify that:

R(5, 1, 3) = R(21, 23) = R(2, 3) = g[2]−g[3]+g[
3

2
]−g[

1− 2−1

1− 3−1
]+g[

1− 2

1− 3
] = g[2]−g[3]+g[4]−g[2]+g[3] = g[4]

which is correct

R(4, 1, 1) = R(x, x) = g[x]− g[x] + g[
x

x
]− g[

1− x−1

1− x−1
] + g[

1− x
1− x

] = g[1]

which is not a valid relation as we do not take equal terms, but is correct in F4

R(4, 1, 2) = R(x, x2) = g[x]−g[1+x]+g[
1 + x

x
]−g[

1− (x)−1

1− (1 + x)−1
]+g[

1− (x)

1− (1 + x)
] = 3g[x]−2g[1+x]

which is correct in F4

R(4, 2, 1) = R(x2, x1) = g[1+x]−g[x]+g[
x

1 + x
]−g[

1− (1 + x)−1

1− (x)−1
]+g[

1− (1 + x)

1− (x)
] = −2g[x]−3g[1+x]

which is correct in F4

R(4, 2, 2) = R(x2, x2) = g[1 + x]− g[1 + x] + g[
1 + x

1 + x
]− g[

1− (1 + x)−1

1− (1 + x)−1
] + g[

1− (1 + x)

1− (1 + x)
] = g[1]

which is not a valid relation as we do not take equal terms, but is correct in F4.

And thus is returning correct values for our relations, except for those in which we have R(rx, rx).

Code Input:

AllRR[p_] := Flatten[Table[R[p, i, j], {i, 1, p - 2}, {j, 1, p - 2}]]

AllRR[4]

AllRR[5]

AllRR[7]

Code Output:

{g[{1, 0}2], 3g[{0, 1}2]− 2g[{1, 1}2],−2g[{0, 1}2] + 3g[{1, 1}2], g[{1, 0}2]}
{g[{1}5], 3g[{2}5]−2g[{4}5], g[{4}5],−g[{2}5]+2g[{3}5], g[{1}5], g[{2}5]−2g[{3}5]+2g[{4}5], g[{4}5],−g[{2}5]+
2g[{3}5], g[{1}5]}
{g[{1}7], 2g[{3}7] − g[{6}7], g[{2}7] + g[{3}7] − g[{5}7], 2g[{3}7] − 2g[{4}7] + g[{6}7],−g[{2}7] +

g[{3}7]+2g[{4}7]−g[{5}7], g[{2}7]−g[{3}7]+g[{4}7]+g[{5}7]−g[{6}7], g[{1}7], 2g[{3}7]−g[{6}7], 2g[{2}7]−
g[{3}7]− g[{4}7] + g[{5}7], 2g[{2}7]− 2g[{5}7] + g[{6}7],−2g[{3}7] + g[{4}7] + 2g[{6}7],−g[{2}7]−
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g[{4}7]+2g[{5}7]+g[{6}7], g[{1}7], g[{3}7]−g[{5}7]+g[{6}7], g[{2}7]+g[{3}7]−g[{5}7],−g[{2}7]−
g[{3}7]+g[{4}7]+g[{5}7]+g[{6}7],−g[{2}7]+g[{3}7]+2g[{4}7]]−g[{5}7], g[{2}7]−g[{3}7]+g[{4}7]+
g[{5}7]−g[{6}7], g[{1}7], g[{3}7]−g[[{5}7]]+g[{6}7], 2g[{2}7]−g[{3}7]−g[{4}7]+g[{5}7],−g[{2}7]−
g[{3}7] + g[{4}7] + g[{5}7] + g[{6}7], g[{4}7] + 2g[{5}7]− 2g[{6}7],−g[{2}7]− g[{4}7] + 2g[{5}7] +

g[{6}7], g[{1}7]}

Explanation: We define a function ”AllRR[p] which uses our ”R[p,a,b]” and iterates over all

possible values of ra and rb excluding where ra = 1 or rb = 1, to output all possible relations asso-

ciated with a certain field, including those relations where a = b which will be the only relations

to result in the (invalid) output ”g[1]”. We also verify with examples that ”AllRR[p]” outputs the

correct relations (and the invalid relations which produce ”g[1]”). We use the function ”Flatten[]”

so that the output of AllRR[p] is a vector, with each term of the vector corresponding to a relation.

Code Input:

AR[p_] :=

DeleteCases[AllRR[p],

g[FOne[p]]](*all the relations except when a=b ones*)

DescriptionOfRelations[p_] := {AR[p],

Print["\n The number of Relations:Unique Relations in F", p,

" is: ", Length[AR[p]], " : ",

Length[DeleteDuplicates[Flatten[AR[p]]]]]}

DescriptionOfRelations[4]

DescriptionOfRelations[5]

Code Output:

The number of Relations:Unique Relations in F4 is: 2 : 2

{{3g[{0, 1}2]− 2g[{1, 1}2],−2g[{0, 1}2] + 3g[{1, 1}2]}, Null}

The number of Relations:Unique Relations in F5 is: 6 : 4

{{3g[{2}5]− 2g[{4}5], g[{4}5],−g[{2}5] + 2g[{3}5], g[{2}5]− 2g[{3}5] + 2g[{4}5], g[{4}5],−g[{2}5] +

2g[{3}5]}, Null}

Explanation: First, we define the function ”AR[p]” to be all of the relations, except those where

we are taking the relation of two identical elements, which correspond to the result ”g[1]”). This

function ”AR[p]” outputs all of the relations for a field Fp. Secondly, we define DescriptionOfRe-

lations[p]. This allows us to identify gow many relations there are in total for a field, how many

of these relations are unique (which is to say, it deletes all duplicate relations), and it outputs all

relations. It must be noted that in ”DescriptionOfRelations”, the final entry ”Null” is outputted

where ”g[1]” has been expelled from the list of relations. This ”Null” does not appear in AR[p],

and does not affect the count of the number of unique or total relations. It can be removed by

deleting null cases from ”DescriptionOfRelations”, but has been left simply because it does not
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affect the function which is only designed to get a description of the relations for certain fields. We

can compute a number of examples and we can verify that these do indeed correspond to what we

are expecting, and that the count of the relations, and the unique relations, are accurate as they

should be.

Code Input:

g[x_] := f[FieldInd[x]]

AR[5]

Code Output:

{3 f[1] - 2 f[2], f[2], -f[1] + 2 f[3], f[1] + 2 f[2] - 2 f[3],

f[2], -f[1] + 2 f[3]}

Explanation: We now define our function ”g[x]” by setting it to be another undefined function ”f”

and by taking the discrete logarithm of ”x”. This is necessary because up until now, the elements

are still considered to be elements in the field. By taking the discrete logarithm of each element

we convert it back into an integer where ”f[1]” now corresponds to ”g[r1]”, ’f[2]” corresponds to

”g[r2]” etc.

Code Input:

PresentationMatrixOf[q_] :=

Transpose[D[AR[q], {g /@ Field[q]}]] // MatrixForm

Answer[p_] :=

Transpose[D[AR[p], {g /@ Field[p]}]] // SmithForm // MatrixForm

FinalAnswer[p_] := {Transpose[D[AR[p], {g /@ Field[p]}]] // MatrixForm ,

Transpose[D[AR[p], {g /@ Field[p]}]] // MatrixRank ,

Transpose[D[AR[p], {g /@ Field[p]}]] // SmithForm // MatrixForm}

Code Output:

-Not Applicable-

Explanation: Finally, we define the function ”PresentationMatrixOf[q]” which outputs the matrix:

Mq :=

 ↑ . . . ↑ ↑ . . . ↑ . . . ↑ . . . ↑
R(r1, r2) . . . R(r1, rq−2) R(r2, r1) . . . R(r2, rq−2) . . . R(rq−2, r1) . . . R(rq−2, rq−3)

↓ . . . ↓ ↓ . . . ↓ . . . ↓ . . . ↓


where as,j = as[r

s] in the Relation R corresponding to column j, for the field Fq.

Here, the function ”D” is a differential operator, and using this we can extract the coefficient

for ”f”. In order to use the function ”D”, it is necessary that we are no longer considering the

elements as finite field elements. It is for this reason that it is essential that we took the discrete

logarithm of this element previously. We also define ”Answer[p]” which puts the presentation ma-

trix into Smith Normal Form (using the function ”SmithForm” from the package we loaded), and

the ”FinalAnswer[p]” function which outputs a vector containing the presentation matrix, the rank
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of the matrix, and the Smith Normal Form of the matrix.

We make the observation that it appears for small values the Smith Normal Form appears to

always be of the form:

Mq =


1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 q + 1


However we note that we have very limited evidence of this and thus one should be very cautious

as our program is only able to efficiently calculate the presentation matrix, and the Smith Normal

Form of the presentation matrix, for very small values and thus our evidence is limited.

Conclusion: Our final program is thus:

Code Input 1: Load Packages

Needs["FiniteFields‘"]

Needs["IntegerSmithNormalForm‘"]

Code Input 2: Define the relations in terms of an undefined function ’g’

FieldPowers[m_] := PowerList[GF[m]]

Table[PowerListQ[GF[Prime[i]]] = True, {i, 80}]

Table[PowerListQ[GF[Prime[i]^2]] = True, {i, 20}]

Table[PowerListQ[GF[Prime[i]^3]] = True, {i, 15}]

Table[PowerListQ[GF[Prime[i]^4]] = True, {i, 10}]

Id[x_] := First[FieldPowers[x]]

FL1[x_] := DeleteCases[FieldPowers[x], Id[x]]

G[p_, a_] :=

If[Mod[a, p - 1] != 0, Part[FL1[p], Mod[a, p - 1]], Id[p]]

FY[p_, a_] := GF[p][G[p, a]]

Field[p_] := Table[FY[p, i], {i, 1, p - 2}]

FOne[p_] := GF[p][Id[p]]

R[p_, a_, b_] :=

g[FY[p, a]] - g[FY[p, b]] + g[FY[p, b]/FY[p, a]] -

g[(FY[p, b]/FY[p, a])*((FOne[p] - FY[p, a])/(FOne[p] - FY[p, b]))] +

g[(FOne[p] - FY[p, a])/(FOne[p] - FY[p, b])]
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See[p_, a_, b_] := Print[g[FY[p, a]], " - ", g[FY[p, b]], " + ", g[FY[p, b]/FY[p, a]], " - ",

g[(FY[p, b]/FY[p, a])*((FOne[p] - FY[p, a])/(FOne[p] - FY[p, b]))], " + ",

g[(FOne[p] - FY[p, a])/(FOne[p] - FY[p, b])]]

AllRR[p_] := Flatten[Table[R[p, i, j], {i, 1, p - 2}, {j, 1, p - 2}]]

AR[p_] := DeleteCases[AllRR[p], g[FOne[p]]]

DescriptionOfRelations[p_] := {AR[p],

Print["\n The number of Relations:Unique Relations in F", p,

" is: ", Length[AR[p]], " : ",

Length[DeleteDuplicates[Flatten[AR[p]]]]]}

Code Input 3: Define ’g’ and the presentation matrix.

g[x_] := f[FieldInd[x]]

PresentationMatrixOf[q_] := Transpose[D[AR[q], {g /@ Field[q]}]] // MatrixForm

Answer[p_] := Transpose[D[AR[p], {g /@ Field[p]}]] // SmithForm // MatrixForm

FinalAnswer[p_] := {Transpose[D[AR[p], {g /@ Field[p]}]] // MatrixForm ,

Transpose[D[AR[p], {g /@ Field[p]}]] // MatrixRank ,

Transpose[D[AR[p], {g /@ Field[p]}]] // SmithForm // MatrixForm}
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3.2 Relation Identities

With the Mathematica program complete, it becomes possible to look for patterns among the rela-

tions to try and see if anything can be gleaned which we can use to leverage a proof that the rank

of our matrix is maximal. As it is difficult to tell in advance what coefficients we will get from a

relation, or a set of relations, it becomes useful to look at identities of relations, using our program

to try and assist in finding these. We will outline two identities which were uncovered in this section.

Recall our five term equation:

R(x, y) = [x]− [y] + [
y

x
]− [

1− x−1

1− y−1
] + [

1− x
1− y

]

which can also be written as

R(ri, rj) = [ri]− [rj ] + [rj−i]− [
1− r−i

1− r−j
] + [

1− ri

1− rj
]

and also recall our presentation matrix Mq has the form:

Mq :=

 ↑ . . . ↑ ↑ . . . ↑ . . . ↑ . . . ↑
R(r1, r2) . . . R(r1, rq−2) R(r2, r1) . . . R(r2, rq−2) . . . R(rq−2, r1) . . . R(rq−2, rq−3)

↓ . . . ↓ ↓ . . . ↓ . . . ↓ . . . ↓


where as,j = as[r

s] in the Relation R corresponding to column j.

We are looking for patterns among these matrices as q varies. We will motivate one of these

identities with some examples, but first we will make an important note.

Note:

First, observe that:

R(ri, rj) =

q−2∑
n=1

a(i, j)n[rn] with a(i, j)n ∈ Z

We will, when the meaning is unambiguous, simply refer to a(i, j)n as an for convenience.

By defining the homomorphism:

ε : Z[Fq\{0, 1}]→ Z

ε(

q−2∑
n=1

an[rn]) =

q−2∑
n=1

an

We observing that as there are three positive and two negative terms in our five term relation that

ε(R(ri, rj)) =

q−2∑
n=1

a(i, j)n = 1 with − 2 ≤ ε(a(i, j)n) ≤ 3

These results will prove to be essential to one of our identities.

Using these results, we will begin with some examples to motivate our main result.
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Example:

Take F4\{0, 1}. We observe that < x > = {x, 1 + x, 1} = F∗4. So the relations for F4 are

R(r, r2) = [r]− [r2] + [r2−1]− [
1− (r)−1

1− (r)−2
] + [

1− (r)

1− (r2)
] = 3[r1]− 2[r2]

R(r2, r1) = [r2]− [r1] + [r1−2]− [
1− (r)−2

1− (r)−1
] + [

1− (r2)

1− (r1)
] = −2[r1] + 3[r2]

and thus:

M4 =

(
3 −2

−2 3

)
Observe:

In M4:

((3) + (−2))[r1] = (1)[r1]

((−2) + (3))[r2] = (1)[r2]

So
(4−2)∑
i=1

(
(4−2)∑

j=1,j 6=i

R(ri, rj)) =
(4−2)∑
i=1

(4− 3)[ri].

Example:

Take F5\{0, 1}. Recall as we’ve seen that:

M5 =

 3 0 −1 1 0 −1

−2 1 0 2 1 0

0 0 2 −2 0 2


Thus In M5:

((3 + 0) + (−1 + 1) + (0− 1))[r1] = (2)[r1]

((−2 + 1) + (0 + 2) + (1 + 0))[r2] = (2)[r2]

((0 + 0) + (2− 2) + (0 + 2))[r3] = (2)[r3]

So
(5−2)∑
i=1

(
(5−2)∑

j=1,j 6=i

R(ri, rj)) =
(5−2)∑
i=1

(5− 3)[ri].

We may observe that if we try for F7 that the sum of a row is (7 − 3), if we try for F8 that

the sum of a row is (8 − 3), and for F9 the sum of a row is (9 − 3). It becomes natural to ask if

this pattern continues in general.

Theorem:

Let Fq be a field. Let r ∈ Fq be an element such that < r >= XFq . Then:

(q−2)∑
i=1

(

(q−2)∑
j=1,j 6=i

R(ri, rj)) =

(q−2)∑
i=1

(q − 3)[ri] (1)
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Proof:

We start by recalling:

R(ri, rj) =

(q−2)∑
n=1

an · [rn]

We observe that for a fixed s such that 0 < s < q − 1 we have:

(q−2)∑
j=1,j 6=s

R(rs, rj) =

(q−2)∑
g=1

c(s)g · [rg] =

(q−2)∑
j=1,j 6=s

([rs]− [rj ] + [rj−s]− [
1− r−s

1− r−j
] + [

1− rs

1− rj
])

We note that s is invariant and thus we have:

(q−2)∑
j=1,j 6=s

R(rs, rj) =

(q−2)∑
g=1

c(s)g · [rg] = (q − 3)[rs] +

(q−2)∑
j=1,j 6=s

(−[rj ] + [rj−s]− [
1− r−s

1− r−j
] + [

1− rs

1− rj
])

We also note that:

(q−2)∑
j=1,j 6=s

(−[rj ] + [rj−s]− [
1− r−s

1− r−j
] + [

1− rs

1− rj
]) =

(q−2)∑
t=1

b
(s)
t · [rt]

and by applying ε we have:

(q−2)∑
t=1

b
(s)
t = 0

We therefore note that:

(q−2)∑
j=1,j 6=s

R(rs, rj) =

(q−2)∑
g=1

c(s)g · [rg] = (q − 3)[rs] +

(q−2)∑
t=1

b
(s)
t · [rt]

Aside: We know that the sum of (q − 3) relations should add to (q − 3). We verify:

(q−2)∑
g=1

c(s)g = (q − 3) +

(q−2)∑
t=1

b
(s)
t = q − 3 + 0 = q − 3

By equating coefficients we see that:

c
(s)
i =

{
b
(s)
i i 6= s

(q − 3) + b
(s)
i i = s

Next we add all of the relations together, noting that:

(q−2)∑
s=1

(

(q−2)∑
j=1,j 6=s

R(rs, rj)) =

(q−2)∑
i=1

(di)[r
i] =

(q−2)∑
s=1

(c(s)g · [rg]) =

(q−2)∑
s=1

((q − 3)[rs] +

(q−2)∑
t=1

b
(s)
t · [rt])
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So:

(q−2)∑
i=1

(di)[r
i] =

(q−2)∑
s=1

((q − 3)[rs] +

(q−2)∑
t=1

b
(s)
t · [rt])

Therefore, if we expand this explicitly we observe:

(q−2)∑
i=1

(di)[r
i] = ((q−3+b

(1)
1 )[r1]+(b

(1)
2 )[r2]+. . .+(b

(1)
q−2)[r

1])+. . .+(((b
(q−2)
1 )[r1]+(b

(q−2)
2 )[r2]+. . .+((q−3+b

(1)
q−2)[r

1]))

and by rearranging to match powers of r we have:

(q−2)∑
i=1

(di)[r
i] =

(q−2)∑
i=1

((q − 3)[ri]) +

(q−2)∑
i=1

(

(q−2)∑
s=1

b
(s)
i · [r

i])

and hence:

(q−2)∑
i=1

(di)[r
i] =

(q−2)∑
i=1

((q − 3)[ri]) +

(q−2)∑
s=1

(

(q−2)∑
i=1

b
(s)
i · [r

i])

and likewise:

di = (q − 3) +

(q−2)∑
s=1

b
(s)
i

So to prove our claim we want to show:

(q−2)∑
s=1

b
(s)
i = 0

Aside: We have summed (q − 2) · (q − 3) relations together. Hence we expect that the sum of

the coefficients should be (q − 2) · (q − 3). We verify that:

(q−2)∑
i=1

(di) =

(q−2)∑
i=1

((q − 3) +

(q−2)∑
i=1

(

(q−2)∑
s=1

b
(s)
i ) = (q − 2) · (q − 3) +

(q−2)∑
i=1

(

(q−2)∑
s=1

b
(s)
i )

So:

(q−2)∑
i=1

(di) = (q − 2) · (q − 3) +

(q−2)∑
i=1

(

(q−2)∑
s=1

b
(s)
i ) = (q − 2) · (q − 3) +

(q−2)∑
s=1

(

(q−2)∑
i=1

b
(s)
i ) = (q − 2) · (q − 3)

So now our problem is equivalent to showing:

(q−2)∑
s=1

b
(s)
i = 0 and equivalently

(q−2)∑
i=1

(

(q−2)∑
s=1

b
(s)
i [ri]) = 0
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We’ll focus on the latter. Note that by definition of b
(s)
i we get:

(q−2)∑
s=1

(

(q−2)∑
i=1

b
(s)
i · [r

i]) =

(q−2)∑
s=1

(

(q−2)∑
j=1,j 6=s

(−[rj ] + [rj−s]− [
1− r−s

1− r−j
] + [

1− rs

1− rj
])

So now we can break this sum into four separate components:

(q−2)∑
s=1

(
(q−2)∑
i=1

b
(s)
i ·[ri]) =

(q−2)∑
s=1

(
(q−2)∑

j=1,j 6=s

(−[rj ])+
(q−2)∑
s=1

(
(q−2)∑

j=1,j 6=s

([rj−s])+
(q−2)∑
s=1

(
(q−2)∑

j=1,j 6=s

(−[1−r
−s

1−r−j ])+
(q−2)∑
s=1

(
(q−2)∑

j=1,j 6=s

([1−r
s

1−rj ])

And with this we focus on each term, and pair them off to show that this equals zero.

Observe that in the first term, that because for a fixed s we get every term in our Fq\{0, 1}
except the term where s = j, and we have (q − 2) of these sums, we have:

(q−2)∑
s=1

(

(q−2)∑
j=1,j 6=s

(−[rj ]) = −
(q−2)∑
j=1

((q − 3)[rj ])

Likewise that in the second term, that because for a fixed s we get every term in our Fq\{0, 1}
except the term where s = j, and we have (q − 2) of these sums, we have:

(q−2)∑
s=1

(

(q−2)∑
j=1,j 6=i

([rj−s]) =

(q−2)∑
j=1

((q − 3)[rj ])

Similarly that in the third term, for the same reason we have:

(q−2)∑
s=1

(

(q−2)∑
j=1,j 6=i

(−[
1− r−s

1− r−j
]) = −

(q−2)∑
j=1

((q − 3)[rj ])

And finally, in the fourth and final term, for the same reason we have:

(q−2)∑
s=1

(

(q−2)∑
j=1,j 6=i

([
1− rs

1− rj
]) =

(q−2)∑
j=1

((q − 3)[rj ])

Now we note that:

(q−2)∑
s=1

(

(q−2)∑
i=1

b
(s)
i · [r

i]) =

(q−2)∑
j=1

(q − 3)[rj ]−
(q−2)∑
j=1

(q − 3)[rj ] +

(q−2)∑
j=1

(q − 3)[rj ]−
(q−2)∑
j=1

(q − 3)[rj ] = 0

And therefore:

(q−2)∑
i=1

(di)[r
i] =

(q−2)∑
i=1

((q − 3)[ri]) +

(q−2)∑
s=1

(0) =

(q−2)∑
i=1

((q − 3)[ri])
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And thus:
(q−2)∑
i=1

(di)[r
i] =

(q−2)∑
i=1

(q − 3)[ri]

And therefore as claimed:

(q−2)∑
i=1

(

(q−2)∑
j=1,j 6=i

R(ri, rj)) =

(q−2)∑
i=1

(q − 3)[ri]

which ends our proof of the theorem, and provides our first identity.

For a second identity among relations, we will consider the square terms in Fq. To start, we

will need some quick results

Lemma:

Take a field Fq. Let x ∈ Fq\{0,−1, 1}. Then:

1− x1

1− x2
=

1

1 + x

Proof:

1− x1

1− x2
=

1− x1

(1− x)(1 + x)
=

1

1 + x

Lemma:

Take a field Fq. Let x ∈ Fq\{0,−1, 1}. Then:

1− x−1

1− x−2
=

x

1 + x

Proof:

1− x−1

1− x−2
=

1− 1
x

1− 1
x2

= (
x− 1

x
)(
x2 − 1

x2
)−1 = (

x− 1

x
)(

x2

(x− 1)(x+ 1)
) =

x

1 + x

Corollary: Take a field Fq. Let x ∈ Fq\{0,−1, 1}. Then:

R(x, x2) = 2[x]− [x2]− [
x

1 + x
] + [

1

1 + x
]

Proof:

R(x, x2) = [x]− [x2] + [
x2

x
]− [

x

1 + x
] + [

1

1 + x
]

R(x, x2) = 2[x]− [x2]− [
x

1 + x
] + [

1

1 + x
]
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Corollary:

Take a field Fq. Let x ∈ Fq\{0,−1, 1}. Then:

R(x, x2) +R(x−1, x−2) = 2([x] + [x−1])− ([x2] + [x−2])

Proof:

R(x, x2) = 2[x]− [x2]− [
x

1 + x
] + [

1

1 + x
]

R(x−1, x−2) = 2[x−1]− [x−2]− [
1− x
1− x2

] + [
1− x−1

1− x−2
]

R(x−1, x−2) = 2[x−1]− [x−2]− [
1

1 + x
] + [

x

1 + x
]

R(x, x2) +R(x−1, x−2) = 2[x]− [x2]− [
x

1 + x
] + [

1

1 + x
] + 2[x−1]− [x−2]− [

1

1 + x
] + [

x

1 + x
]

R(x, x2) +R(x−1, x−2) = 2([x] + [x−1])− ([x2] + [x−2])

Theorem:

Take a field Fq. Let x ∈ Fq\{0,−1, 1}. Then:

∑
x∈T

R(x1, x2) =



∑
x∈T\(F∗

q)
2

2[x]− 2[−1] if q = 1 (mod 4)∑
x∈T\(F∗

q)
2

2[x] if q = 3 (mod 4)∑
x∈T

[x] if q = 0 (mod 2)

(2)

where:

T = Fq\{0, 1,−1}/x1 ∼ x−1

Proof:

Let Fq be a field. Let x ∈ Fq\{0,−1, 1}. Then:∑
x∈T

R(x1, x2) =
∑
x∈T

(2[x]− [x2]− [
x

1 + x
] + [

1

1 + x
])

So term-by-term:∑
x∈T

R(x1, x2) =
∑
x∈T

(2[x])−
∑
x∈T

([x2])−
∑
x∈T

([
x

1 + x
]) +

∑
x∈T

([
1

1 + x
])

Now, we define the following for q = 2k or q = 2k + 1:

N1 := {r1, r2, . . . , rk−1 : rn ∈ T and such that < r >= F∗}

N2 := {rk+1, rk+2, . . . , r2k−1 : rn ∈ T and such that < r >= F∗}
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Note that:

T = N1 ∪N2 and N1 ∩N2 = ∅

Furthermore, we observe:

∃f : N1 → N2 : f is bijective, given byf(x) = x−1

Hence we can split the sum into sums of those in N1 and N2.

∑
x∈T

R(x1, x2) =
∑
x∈T

(2[x])−
∑
x∈T

([x2])−
∑
x∈N1

([
x

1 + x
])−

∑
x∈N2

([
x

1 + x
])+

∑
x∈N1

([
1

1 + x
])+

∑
x∈N2

([
1

1 + x
])

So by our lemmas, and sending x ∈ N2 to x ∈ N1 by recalling that all elements in N2 can be

written as x−1 with x ∈ N1:∑
x∈T

R(x1, x2) =
∑
x∈T

(2[x])−
∑
x∈T

([x2])−
∑
x∈N1

([
x

1 + x
])−

∑
x∈N1

([
1

1 + x
])+

∑
x∈N1

([
1

1 + x
])+

∑
x∈N1

([
x

1 + x
])

So by simplifying and cancelling like-terms.∑
x∈T

R(x1, x2) =
∑
x∈T

(2[x])−
∑
x∈T

([x2])

Now we split T into square terms, and non-square terms.∑
x∈T

R(x1, x2) =
∑

x∈T\(F∗
q)

2

(2[x]) +
∑

x∈T∩(F∗
q)

2

(2[x])−
∑
x∈T

([x2])

Case 1: q = 1 (mod 4).

If q = 1 (mod 4), r4k = 1 and thus (rk)2 = −1. So∑
x∈T

R(x1, x2) =
∑

x∈T\(F∗
q)

2

(2[x]) +
∑

x∈T∩(F∗
q)

2

(2[x])−
∑

x∈T∩(F∗
q)

2

(2[x])− (2[−1])

and by simplifying we get: ∑
x∈T

R(x1, x2) =
∑

x∈T\(F∗
q)

2

2[x]− 2[−1]

Case 2: q = 3 (mod 4).

If q = 3 (mod 4), r4k+2 = 1 and thus rk+1 = −1. We note that as Char(F) 6= 2, @rk : (rk)2 = −1.

Hence: ∑
x∈T

R(x1, x2) =
∑

x∈T\(F∗
q)

2

(2[x]) +
∑

x∈T∩(F∗
q)

2

(2[x])−
∑

x∈T∩(F∗
q)

2

(2[x])

and by simplifying we get: ∑
x∈T

R(x1, x2) =
∑

x∈T\(F∗
q)

2

2[x]
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Case 3: q = 0 (mod 2).

We note that for Char(F) = 2:

f : Fq → Fq

f(x) = x2

is bijective. Thus: ∑
x∈T

R(x1, x2) =
∑
x∈T

2[x]−
∑
x∈T

[x2] =
∑
x∈T

2[x]−
∑
x∈T

[x]

And by simplifying: ∑
x∈T

R(x1, x2) =
∑
x∈T

[x]
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3.3 Linearly Independant Relations

We now turn our attention towards trying to find q−2 linearly independent relations. The relations

which we will consider are largely motivated from our previous exploration of identities amongst

the relations. While we have successfully explicitly found a set of q−3
2 relations which are linearly

independent, I have been unable to achieve better than this result which holds over any field. We

will also provide counterexamples to a number of sets of relations which may initially seem promis-

ing.

Theorem:

Suppose Char(Fq) 6= 2. Then:

B = {R(x, x2) +R(x−1, x−2) : x ∈ F∗q\{−1, 1}} ⊆ Z[Fq\{0, 1}]

is a set of linearly independent elements. We note that the cardinality of B is q−3
2 .

Proof:

First, we note we are working in Z[F ∗q \{1}].

We will use the following notations throughout

q := 2k + 1

r := r ∈ Fq :< r >= (F∗q , ·, 1F)

T := F∗q\{−1, 1}

{x} := [x] + [x−1] = {x−1} ∈ Z[Fq\{0, 1}]

L := {r1, r2, r3, . . . , rk−1}

L−1 := {r2k−1, r2k−2, r2k−3, . . . , rk+1}

We note from these that:

T = L ∪ L−1 and L ∩ L−1 = ∅

and that the following map is a bijection:

f : L→ L−1

f(x) = x−1

We also note

{{x}x∈L}

are linearly independent when we take {x} ∈ Z[Fq\{0, 1}].

We will also recall the quick results which will prove essential to our results:

1− x1

1− x2
=

1

1 + x

1− x−1

1− x−2
=

x

1 + x
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R(x, x2) = 2[x]− [x2]− [
x

1 + x
] + [

1

1 + x
]

R(x, x2) +R(x−1, x−2) = 2([x] + [x−1])− ([x2] + [x−2])

Then: ∑
b∈B

λbb =
∑
x∈T

λx(R(x, x2) +R(x−1, x−2))

and by our results:∑
x∈T

λx(R(x, x2) +R(x−1, x−2)) =
∑
x∈T

λx2([x] + [x−1])− ([x2] + [x−2]) =
∑
x∈T

λx(2{x} − {x2})

So now we wish to show: ∑
x∈T

λx(2{x} − {x2}) = 0 =⇒ λx = 0 ∀x ∈ T

Comment: We observe that the second term here contains all square terms of T , whereas the first

term contains all terms in T .

Now we define:

L(0) := L, L(1) := L ∩ (F∗q)2
1
, L(2) := L ∩ (F∗q)2

2
, L(3) := L ∩ (F∗q)2

3
. . .

Comment: We see that L(0) is all terms in L. We see that L(1) is all square terms, etc. We care

for these terms as equality of {x} and {t2} can only occur when x = t2 or x = t−2 for some t ∈ L.

Hereafter, we will consider x ∼ x−1.

Note that:

T = (L\L(i)) ∪ L(i) and that (L\L(i)) ∩ L(i) = ∅

Now, we split our sum according to which square values they contain.∑
x∈T

λx(2{x} − {x2}) =
∑

x∈L\L(i)

λx(2{x} − {x2}) +
∑

x∈L(i)

λx(2{x} − {x2})

and by splitting this term-by-term and rearranging:∑
x∈T

λx(2{x} − {x2}) =
∑

x∈L\L(i)

λx2{x} −
∑

x∈L\L(i)

λx{x2}+
∑

x∈L(i)

λx2{x} −
∑

x∈L(i)

λx{x2} = 0

We will prove using induction on i that λx = 0 for x ∈ L\L(i).

Proof by Induction: By induction on i, we will show that λx = 0 for x ∈ L\L(i).

Base Case: For i = 1, we have that.∑
x∈T

λx(2{x} − {x2}) =
∑

x∈L\L(1)

λx2{x} −
∑

x∈L\L(1)

λx{x2}+
∑

x∈L(1)

λx2{x} −
∑

x∈L(1)

λx{x2} = 0
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However, we note that none of the terms in {x} with L\L(1) can occur in any of the other terms

in our sum. Thus we have that:∑
x∈L\L(1)

λx2{x} = 0 =⇒ λx = 0 ∀x ∈ L\L(1) as {x}x∈L is linearly independent.

Hence we have that:

λx = 0 ∀x ∈ L\L(1)

as claimed, and our base case is true.

Assumption: We assume it is true for i that λx = 0 ∀x ∈ L\L(i)

Proof for Successor: We will now prove it is true that by assuming:

λx = 0 ∀x ∈ L\L(i)

that it is true that:

λx = 0 ∀x ∈ L\L(i+1)

We have that:∑
x∈T

λx(2{x} − {x2}) =
∑

x∈L\L(i)

λx2{x} −
∑

x∈L\L(i)

λx{x2}+
∑

x∈L(i)

λx2{x} −
∑

x∈L(i)

λx{x2} = 0

And therefore: ∑
x∈T

λx(2{x} − {x2}) =
∑

x∈L(i)

λx2{x} −
∑

x∈L(i)

λx{x2} = 0

Now we note that either x ∈ L(i)\L(i+1) or x ∈ L(i+1). Hence we can split out sum as:∑
x∈T

λx(2{x} − {x2}) =
∑

x∈L(i+1)

λx2{x} −
∑

x∈L(i)

λx{x2}+
∑

x∈L(i)\L(i+1)

λx2{x} = 0

And thus as x2 ∈ L(i+1) for x ∈ L(i), we therefore have:∑
x∈L(i)\L(i+1)

λx2{x} = 0 =⇒ λx = 0 ∀x ∈ L(i)\L(i+1) =⇒ λx = 0 ∀x ∈ L\L(i+1)

Hence our proof by induction is complete, and we have that

λx = 0 ∀x ∈ L\L(i) ∀i ∈ N

With this result, our sum now becomes:∑
x∈T

λx(2{x} − {x2}) =
∑

x∈L(i)

λx2{x} −
∑

x∈L(i)

λx{x2} = 0

However we note that:

L = L(0) ⊇ L(1) ⊇ L(2) ⊇ L(3) ⊇ . . .

and thus, as L is finite and thus Noetherian, there must be some g in N such that:

L = L(0) ⊇ L(1) ⊇ L(2) ⊇ L(3) ⊇ . . . ⊇ L(g) = L(g+1) = L(g+2) = L(g+3) = . . .
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Hence as λx = 0 ∀x ∈ L\L(g) our sum becomes:∑
x∈T

λx(2{x} − {x2}) =
∑

x∈L(g)

λx2{x} −
∑

x∈L(g)

λx{x2} = 0

Observe that at this point:

f : L(g) → L(g+1)

f(x) = x2

is in fact a bijection, as L(g+1) = L(g). Hence we can rewrite our sum in terms of elements in L(g)

with: ∑
x∈T

λx(2{x} − {x2}) =
∑

x∈L(g)

λx22{x2} −
∑

x∈L(g)

λx{x2} =
∑

x∈L(g)

(2λx2 − λx){x2} = 0

However, note that {x2}x∈L is linearly independent, and thus we have that:∑
x∈L(g)

(2λx2 − λx){x2} = 0 =⇒ (2λx2 − λx) = 0 ∀x ∈ L(g)

Hence we have, ∀x ∈ L(g) that:

λx = 2λx2 = 4λx4 = 8λx8 = . . .

However, note that because L(g) is finite, and because squaring is a bijection, we must at some

stage acquire:

λx = 2λx2 = 4λx4 = 8λx8 = . . . = 2nλx =⇒ λx = 0

As this holds ∀x ∈ L(g), we have that

λx = 0 ∀x ∈ L(g) and also λx = 0 ∀x ∈ L\L(g)

And thus as :∑
x∈T

λx(2{x} − {x2}) =
∑

x∈L(g)

λx(2{x} − {x2}) = 0 =⇒ λx = 0 ∀x ∈ L(g)

Thus: ∑
x∈T

λx(2{x} − {x2}) = 0 =⇒ λx = 0 ∀x ∈ T

Which proves our claim that for

B := {R(x, x2) +R(x−1, x−2) : x ∈ F∗q\{−1, 1},Char(Fq) 6= 2}

Then: ∑
b∈B

λbb = 0 =⇒ λb = 0 ∀b ∈ B and |B| = q − 3

2

Note:

It is quite natural for us to now ask, can we do better than this set, and can we find a larger set

of linearly independent relations? One set of relations which one may suspect to try is to simply

take the first q− 2, or q− 3 (and then attempt to find one relation among the rest which is linearly
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independent to each of those relations for a total of q− 2 linearly independent relations) relations,

when the relations are ordered lexographically or by the power of a generator.

Question:

If we let

S := {R(r1, rj) : r ∈ Fq such that < r >= XF, 2 ≤ j ≤ q − 2}

is it true that: ∑
a∈S

λaa = 0 =⇒ λa = 0 ∀a ∈ S

Answer:

No. This set contains a counter example for F13, as the set is not maximal. Similarly, at F19 we

find a counterexample.

Question:

If we order the relations lexographically, are the first q − 2 linearly independent?

Answer:

No, we get an immediate counter example. Consider F5. If we order it lexographically, our first 3

relations are:

R(2, 3) = 0[2] + 0[3] + 1[4]

R(2, 4) = 3[2] + 0[3]− 2[4]

R(3, 1) = 0[2] + 0[3] + 1[4]

and we have that R(2, 3) = R(3, 2).

Note:

This eliminates the two most ’obvious’ or immediate sets to consider. However, we can weaken our

initial question.

Question:

Let

Ss := {R(rs, rj) : r ∈ Fq such that < r >= F∗, j ≤ q − 2 and j 6= s}

Is it true that ∃g : 1 ≤ g ≤ q − 2 such that:∑
a∈Sg

λaa = 0 =⇒ λa = 0 ∀a ∈ Sg

Answer:

This is uncertain.

While I have been unable to find a counterexample, and one might suspect that this would in-

dicate it is true, the program which was developed for this search is quite inefficient. Similarly, as

this search was conducted on a relatively weak computer, and time was an important factor, it was

only possible to check for relatively small fields and our evidence is very limited. One thing which

makes this a particularly tricky question to answer is that there are a very large amount of variable
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factors which have a significant influence. For example, it is not immediately clear how one would

even begin to choose such an s. Even if one could find such an s, it is not immediately obvious how

one should go about proving linear independence, as our five term relation is highly dependant on

the arithmetic of the underlying field, and thus it is not immediately obvious which terms will be

equal as we vary j.

The idea would be to somehow prove that this is true (or find a counterexample), and to then

find some additional relaton (as |Ss| = q−3), say P which will consistently be linearly independent

to those in Ss, and to then take Ss ∪ P which will consist of q − 2 linearly independent relations

and prove that the rank of the presentation matrix is thus maximal, but it is not clear to me how

one would approach this or if indeed it will hold for very large fields.

This approach suggests another way to tackle the problem of finding q − 2 linearly independent

relations. One could gradually build a set B by first starting with B = ∅. One could find some

relation which is linearly independent to all the others, and take the union of this relation and B.

One could then repeat this process until we have q−2 linearly independent relations. Alternatively,

we could repeatedly find sets of relations which are linearly independent to one another, and then

gradually take the union of these sets.

Ultimately, there is to the author no clear or obvious way to try and find which q− 2 relations are

linearly independent.

43



3.4 The Matrix MTq

Motivated by the difficulty in finding q − 2 linearly independent relations for the pre-Bloch group

over a finite field Fq, I began to look at:

MTq := Mq · (Mq)
T

where

Mq :=

 ↑ . . . ↑ ↑ . . . ↑ . . . ↑ . . . ↑
R(r1, r2) . . . R(r1, rq−2) R(r2, r1) . . . R(r2, rq−2) . . . R(rq−2, r1) . . . R(rq−2, rq−3)

↓ . . . ↓ ↓ . . . ↓ . . . ↓ . . . ↓


for some field Fq.

While this matrix MTq (named to indicate ”The Matrix Mq times its Transpose”) was initially

examined because its dimension is q − 2× q − 2 and thus one only needs to prove either the rows

or columns are linearly independent, a number of very interesting and highly unexpected (conjec-

tured) properties quickly became apparent. While these properties hold for small fields, and thus

our evidence that these properties (which this section will explain in detail, in addition to a number

of experiments which were conducted) hold in general is weak, they are of significant interest to

the author and certainly warrant further study.

I will detail my work thus far, and cautiously provide some conjectured properties of MTq be-

low. To begin, and justify the exploration of this matrix, we will need the following result:

Theorem:

Let A be a real-valued m× n matrix. Then

rank(A) = rank(A ·AT )

Proof:

We will use the rank-nullity theorem.

First, observe that for a vector x ∈ Rm:

(AT )x = 0 =⇒ (A ·AT )x = 0

Thus Ker(A ·AT ) ⊇ Ker(AT ). ( })

Next, note that if we have x ∈ Ker(A ·AT ):

(A ·AT )x = 0

Then:

xT (A ·AT )x = 0

Then we can rewrite this as:

(ATx)T · (ATx) = 0

44



Thus as A is real-valued:

(ATx) = 0

And hence we have Ker(A ·AT ) ⊆ Ker(AT ). (?)

Therefore by (}) and (?), we get Ker(A ·AT ) = Ker(AT )

The rank-nullity theorem states that:

m = rank(AT ) + nul(AT )

By recalling the well-known result that rank(A) = rank(AT ) we get:

m = rank(A) + nul(AT )

We note that A ·AT is an (m× n)× (n×m) = m×m matrix and therefore

m = rank(A ·AT ) + nul(A ·AT )

Hence by combining both results we have:

rank(A) + nul(AT ) = m = rank(A ·AT ) + nul(A ·AT )

Finally, as Ker(A · AT ) = Ker(AT ), we get that nul(AT ) = nul(A · AT ). We denote nul(AT ) = h.

Thus:

rank(A) = m− h = rank(A ·AT )

And hence conclude with our result that

rank(A) = rank(A ·AT )

Notation: For this section, we will define v := (q − 2)(q − 3) for convenience.

Definition: MTq
Let Fq be a field. Let Mq be the matrix defined as:

Mq :=

 ↑ . . . ↑ ↑ . . . ↑ . . . ↑ . . . ↑
R(r1, r2) . . . R(r1, rq−2) R(r2, r1) . . . R(r2, rq−2) . . . R(rq−2, r1) . . . R(rq−2, rq−3)

↓ . . . ↓ ↓ . . . ↓ . . . ↓ . . . ↓


for some field Fq where as,j corresponds to as[r

s] in the relation given by column j, where:

R(ri, rj) = [ri]− [rj ] + [rj−i]− [
1− r−i

1− r−j
] + [

1− ri

1− rj
]

Then:

MTq := Mq · (Mq)
T

Note:

It is clear that MTq ∈Mq−2(Z) and that MTq is a symmetric matrix.
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Note:

Explicitly, we have:

MTq =



v∑
j=1

(a1,j)
2

v∑
j=1

a1,ja2,j · · ·
v∑

j=1
a1,jaq−2,j

v∑
j=1

a2,ja1,j
v∑

j=1
(a2,j)

2 · · ·
v∑

j=1
a2,jaq−2,j

...
...

. . .
...

v∑
j=1

aq−2,ja1,j
v∑

j=1
aq−2,ja2,j · · ·

v∑
j=1

(aq−2,j)
2


which can also be written as a Gramian Matrix [9] as:

MTq =


< a1,j , a1,j > < a1,j , a2,j > · · · < a1,j , aq−2,j >

< a2,j , a1,j > < a2,j , a2,j > · · · < a2,j , aq−2,j >
...

...
. . .

...

< aq−2,j , a1,j > < aq−2,j , a2,j > · · · < aq−2,j , aq−2,j >


Notation:

For this section, to avoid confusion, we will use the following conventions:

mi,j will refer to the entry of the matrix MTq in row i and column j.

ai,j will refer to the entry of the matrix Mq in row i and column j.

Example:

We will compute MT5:

MT5 =

 3 0 −1 1 0 −1

−2 1 0 2 1 0

0 0 2 −2 0 2

 ·


3 −2 0

0 1 0

−1 0 2

1 2 −2

0 1 0

−1 0 2


And thus, written somewhat suggestively:

m1,1 = (3 · 3 + 0 · 0) + ((−1) · (−1) + 1 · 1) + (0 · 0 + (−1) · (−1)) = 9 + 2 + 1 = 12

m1,2 = (3 · (−2) + 0 · 1) + ((−1) · (0) + 1 · 2) + (0 · 1 + (−1) · (0)) = −6 + 2 + 0 = −4

m1,3 = (3 · (0) + 0 · 0) + ((−1) · (2) + 1 · (−2)) + (0 · 0 + (−1) · (2)) = 0− 4− 2 = −6

m2,1 = ((−2) · (3) + (1) · (0)) + ((0) · (−1) + (2) · (1)) + ((1) · (0) + (0) · (−1)) = −6 + 2 + 0 = −4

m2,2 = ((−2) · (−2) + (1) · (1)) + ((0) · (0) + (2) · (2)) + ((1) · (1) + (0) · (0)) = 5 + 4 + 1 = 10
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m2,3 = ((−2) · (0) + (1) · (0)) + ((0) · (2) + (2) · (−2)) + ((1) · (0) + (0) · (2)) = 0− 4 + 0 = −4

m3,1 = ((0) · (3) + (0) · (0)) + ((2) · (−1) + (−2) · (1)) + ((0) · (0) + (2) · (−1)) = 0− 4− 2 = −6

m3,2 = ((0) · (−2) + (0) · (1)) + ((2) · (0) + (−2) · (2)) + ((0) · (1) + (2) · (0)) = 0− 4 + 0 = −4

m3,3 = ((0) · (0) + (0) · (0)) + ((2) · (2) + (−2) · (−2)) + ((0) · (0) + (2) · (2)) = 0 + 8 + 4 = 12

To give:

MT5 =

 12 −4 −6

−4 10 −4

−6 −4 12


Example:

We will leave it to the reader to verify MT4:(
13 −12

−12 13

)

Example:

We will leave it to the reader to verify MT7:
28 −4 −4 −4 −12

−4 22 −4 −6 −4

−4 −4 20 −4 −4

−4 −6 −4 22 −4

−12 −4 −4 −4 28


Example:

We will leave it to the reader to verify MT8:

29 −2 −6 −2 −6 −8

−2 29 −6 −2 −8 −6

−6 −6 29 −8 −2 −2

−2 −2 −8 29 −6 −6

−6 −8 −2 −6 29 −2

−8 −6 −2 −6 −2 29


Example:
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We will leave it to the reader to verify MT9:

34 −6 −6 −4 −2 −2 −8

−6 34 −2 −4 −6 −8 −2

−6 −2 34 −4 −8 −6 −2

−4 −4 −4 30 −4 −4 −4

−2 −6 −8 −4 34 −2 −6

−2 −8 −6 −4 −2 34 −6

−8 −2 −2 −4 −6 −6 34


Example:

We will leave it to the reader to verify MT11:

42 −4 −4 −4 −4 −4 −4 −4 −6

−4 44 −6 −6 −4 −2 −2 −8 −4

−4 −6 44 −2 −4 −6 −8 −2 −4

−4 −6 −2 44 −4 −8 −6 −2 −4

−4 −4 −4 −4 40 −4 −4 −4 −4

−4 −2 −6 −8 −4 44 −2 −6 −4

−4 −2 −8 −6 −4 −2 44 −6 −4

−4 −8 −2 −2 −4 −6 −6 44 −4

−6 −4 −4 −4 −4 −4 −4 −4 42


Example:

We will compute MT13:

52 −4 −4 −4 −4 −4 −4 −4 −4 −4 −6

−4 58 −4 −4 −4 −4 −4 −4 −4 −12 −4

−4 −4 54 −6 −6 −4 −2 −2 −8 −4 −4

−4 −4 −6 54 −2 −4 −6 −8 −2 −4 −4

−4 −4 −6 −2 54 −4 −8 −6 −2 −4 −4

−4 −4 −4 −4 −4 50 −4 −4 −4 −4 −4

−4 −4 −2 −6 −8 −4 54 −2 −6 −4 −4

−4 −4 −2 −8 −6 −4 −2 54 −6 −4 −4

−4 −4 −8 −2 −2 −4 −6 −6 54 −4 −4

−4 −12 −4 −4 −4 −4 −4 −4 −4 58 −4

−6 −4 −4 −4 −4 −4 −4 −4 −4 −4 52


Example:
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We will leave it to the reader to verify MT16:

69 −4 −2 −6 −4 −4 −4 −4 −4 −4 −2 −6 −4 −8

−4 69 −4 −4 −4 −2 −2 −6 −6 −4 −4 −4 −8 −4

−2 −4 69 −6 −4 −4 −4 −4 −4 −4 −2 −8 −4 −6

−6 −4 −6 69 −4 −4 −4 −4 −4 −4 −8 −2 −4 −2

−4 −4 −4 −4 73 −4 −4 −4 −4 −12 −4 −4 −4 −4

−4 −2 −4 −4 −4 69 −2 −6 −8 −4 −4 −4 −6 −4

−4 −2 −4 −4 −4 −2 69 −8 −6 −4 −4 −4 −6 −4

−4 −6 −4 −4 −4 −6 −8 69 −2 −4 −4 −4 −2 −4

−4 −6 −4 −4 −4 −8 −6 −2 69 −4 −4 −4 −2 −4

−4 −4 −4 −4 −12 −4 −4 −4 −4 73 −4 −4 −4 −4

−2 −4 −2 −8 −4 −4 −4 −4 −4 −4 69 −6 −4 −6

−6 −4 −8 −2 −4 −4 −4 −4 −4 −4 −6 69 −4 −2

−4 −8 −4 −4 −4 −6 −6 −2 −2 −4 −4 −4 69 −4

−8 −4 −6 −2 −4 −4 −4 −4 −4 −4 −6 −2 −4 69


Example:

We will leave it to the reader to verify MT17:

74 −4 −6 −4 −4 −6 −4 −4 −4 −2 −4 −4 −2 −4 −8

−4 72 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −6 −4

−6 −4 74 −4 −4 −2 −4 −4 −4 −6 −4 −4 −8 −4 −2

−4 −4 −4 74 −6 −4 −6 −4 −2 −4 −2 −8 −4 −4 −4

−4 −4 −4 −6 74 −4 −2 −4 −6 −4 −8 −2 −4 −4 −4

−6 −4 −2 −4 −4 74 −4 −4 −4 −8 −4 −4 −6 −4 −2

−4 −4 −4 −6 −2 −4 74 −4 −8 −4 −6 −2 −4 −4 −4

−4 −4 −4 −4 −4 −4 −4 70 −4 −4 −4 −4 −4 −4 −4

−4 −4 −4 −2 −6 −4 −8 −4 74 −4 −2 −6 −4 −4 −4

−2 −4 −6 −4 −4 −8 −4 −4 −4 74 −4 −4 −2 −4 −6

−4 −4 −4 −2 −8 −4 −6 −4 −2 −4 74 −6 −4 −4 −4

−4 −4 −4 −8 −2 −4 −2 −4 −6 −4 −6 74 −4 −4 −4

−2 −4 −8 −4 −4 −6 −4 −4 −4 −2 −4 −4 74 −4 −6

−4 −6 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 72 −4

−8 −4 −2 −4 −4 −2 −4 −4 −4 −6 −4 −4 −6 −4 74


Conjecture:

One may observe that in each of our matrices above, some very strong patterns may be found. In

particular, one may note that the following holds for all the matrices above. We conjecture that

these hold in general:

•
q−2∑
i=1

mi,j =
q−2∑
j=1

mi,j =
q−2∑
i=1

(
v∑

j=1
as,jai,j) = q − 3 for a fixed s.

• rank(MTq) = q − 2 (Maximal rank) ⇐⇒ det(MTq) 6= 0 (Invertible matrix)
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• xT (MTq)x > 0 ∀x ∈ Rq−3 (Positive-definite matrix)

• For Eq := {λ : λ is an eigenvalue of MTq}, min(Eq) = q − 3

• mi,j =
v∑

p=1
ai,paj,p

{
> 0 if i = j

< 0 if i 6= j
(note it is trivial that the diagonal entries are positive)

• 2|
v∑

j=1
(as,j)

2| >
q−2∑
i=1
|(

v∑
j=1

as,jai,j)| (Strictly diagonally dominant matrix)

• |
v∑

j=1
(as,j)

2| −
q−2∑
i=1
|(

v∑
j=1

as,jai,j)| = q − 3

• MTq is bisymmetric (we know it’s symmetric, so we need to show it’s antisymmetric).

While this is very limited evidence, we naturally ask do these properties hold in general?

For the remainder of this section, we will begin working on proving these claims. Before we do, we

note that some of these properties are very strong.

We note that if the minimal eigenvalue is q − 3, that our matrix is positive definite. We note

that if it’s positive definite, our matrix has maximum rank. We also note that if our matrix is

strictly diagonally dominant, that the matrix is positive definite. As such, proving some of these

results could serve as an effective way of showing that the rank of Mq is maximal using only ele-

mentary means.

Proposition:

For mi,j in MTq, ai,j in Mq, and a fixed s:

q−2∑
i=1

mi,j =

q−2∑
j=1

mi,j =

q−2∑
i=1

(
v∑

j=1

as,jai,j) = q − 3

Proof:

Let mi,j in MTq, ai,j in Mq, and take a fixed s. Then:

q−2∑
i=1

mi,j =

q−2∑
i=1

(

v∑
j=1

as,jai,j)

But
q−2∑
i=1

(
v∑

j=1

as,jai,j) =
v∑

j=1

(

q−2∑
i=1

as,jai,j)

But as,j is invariant to i so:

q−2∑
i=1

(

v∑
j=1

as,jai,j) =

v∑
j=1

(as,j(

q−2∑
i=1

ai,j))
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However we know the sum of the coefficients of a relation is 1. Thus:

q−2∑
i=1

(

v∑
j=1

as,jai,j) =

v∑
j=1

as,j

And we’ve shown that the sum of the coefficients of a row vector is q − 3

v∑
j=1

as,j = q − 3

So by symmetry we get our claim that:

q−2∑
i=1

mi,j =

q−2∑
j=1

mi,j = q − 3

This corresponds to the fact that the vector {1, 1, 1, . . . , 1} ∈ Zq−3 is an eigenvector of MTq, with

an eigenvalue of q − 3.

Definition: s-Submatrix of Mq

Let Fq be a field. Let Mq be as previously defined. We will call the ”s-Submatrix of Mq”, which

we will denote by SMs,q the matrix:

SMs,q :=

 ↑ . . . ↑ ↑ . . . ↑
R(rs, r1) . . . R(rs, rs−1) R(rs, rs+1) . . . R(rs, rq−2)

↓ . . . ↓ ↓ . . . ↓


Example:

For F5

SM1,5 :=

 3 0

−2 1

0 0



SM2,5 :=

 −1 1

0 2

2 −2



SM3,5 :=

 0 −1

1 0

0 2


Definition: s-Submatrix of Mq Times its Transpose

Let Fq be a field. Let Mq be as previously defined. Let SMs,q as previously defined. Then we call

the ”s-Submatrix of Mq Times its Transpose”, denoted SMTs,q, the matrix:

SMTs,q := (SMs,q) · (SMs,q)
T

Proposition:
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MTq =
q−2∑
s=1

SMTs,q

Proof:

This follows quite trivially from the definition of MTq and SMs,q

Observe that:

MTq =
(
SM1,q SM2,q · · · SMq−2,q

)
·


(SM1,q)

T

(SM2,q)
T

...

(SMq−2,q)
T

 =

q−2∑
s=1

(SMs,q)·(SMs,q)
T =

q−2∑
s=1

(SMTs,q)

as claimed.

Definition: Extended s-Submatrix of Mq

Let Fq be a field. Let Mq be as previously defined. We will call the ”Extended s-Submatrix of

Mq”, which we will denote by ESMs,q the (q − 2)× (q − 2) · (q − 3) matrix:

ESMs,q :=

 ↑ . . . ↑ ↑ . . . ↑ ↑ . . . ↑ ↑ . . . ↑
0 · · · 0 R(rs, r1) . . . R(rs, rs−1) R(rs, rs+1) . . . R(rs, rq−2) 0 · · · 0

↓ . . . ↓ ↓ . . . ↓ ↓ . . . ↓ ↓ . . . ↓


Proposition:

ESMs,q · (ESMs,q)
T = SMTs,q

Proof:

The proof trivially follows from the definition of ESMs,q and SMTs,q, and follows the proof that

MTq =
q−2∑
s=1

SMTs,q.

Proposition:

rank(M) ≤
q−2∑
s=1

SMTs,q

Proof:

rank(M) = rank(Mq · (Mq)
T )

Mq · (Mq)
T =

q−2∑
s=1

SMTs,q

rank(Mq · (Mq)
T ) ≤

q−2∑
s=1

rank(SMTs,q)
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rank(Mq) ≤
q−2∑
s=1

rank(SMTs,q)

Proposition:

rank(M) ≥ SMs,q ∀s ≤ q − 2

Proof:

We have that SMs,q is a submatrix of Mq of dimension (q − 2)× (q − 3). Hence

rank(M) = a ≤ q − 2 and rank(SMs,q) = b ≤ q − 3

If b > a then there are b linearly independent columns of SMs,q. But this is a submatrix of Mq,

hence there are at least b linearly independent columns of Mq. But then a ≥ b, contradicting that

b > a. Hence our claim is proven.

Note:

This is very much related to our question of whether there always exists some s such that rank(SMs,q)

is maximal, and if we can show via elementary means that the matrix Mq has maximum rank (as

we know it does). If we can show (i.e. if it’s true) that rank(M) > rank(SMs,q), and if we can

show (i.e. if it is true) that there always exists some s such that rank(SMs,q) = q − 3, then we

would have proven that rank(M) = q − 2. From this point forward, we will assume this result to

show that the matrix MTq is indeed positive definite. The author would much prefer if this result

could be shown either via elementary means, or if the result that the rank is maximal could first

be shown via elementary means.

We also wish to note that if one could prove strict diagonal dominance via elementary means,

this automatically implies the matrix is positive definite and thus has maximum rank. This is a

consequence of the Gershgorin Circle Theorem.

Theorem: The Gershgorin Circle Theorem

The Gershgorin Circle Theorem is a well known result by Gershgorin originating in 1931 [4] and [10]

which states if

Ri =

n∑
j=1,j 6=i

|ai,j |

then all eigenvalues of an n× n complex-valued matrix A lie in at least one of the disks:

Di = {z : |z − ai,i| ≤ Ri}

Proof: Omitted, but the proof of this well-known result may be found at [4]

Theorem: All eigenvalues of a Hermitian (or symmetric) matrix are strictly positive if and only if

the matrix is positive definite

Proof: Omitted, but this proof may be found in chapter seven of [5]

Note: Observe if 0 ∈ Di for some i ∈ N, then

∃Di : 0 ∈ Di = {z : |z − ai,i| ≤ Ri}
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and hence

|0− ai,i| = | − ai,i| = |ai,i| ≤
n∑

j=1,j 6=i

|ai,j |

If 0 /∈ Di for any i ∈ N then:

|ai,i| >
n∑

j=1,j 6=i

|ai,j |

and thus all eigenvalues are strictly positive, and thus the matrix is positive definite.

Proposition:

rank(MTq) = q − 2

Proof:

Hutchinson [6] has shown rank(Mq) = q − 2. We also have rank(M) = rank(Mq · (Mq)
T ). Thus

rank(MTq) = q − 2

Theorem:

MTq is positive semi-definite.

Proof:

From [7] we have ”Theorem 12.10. All Gram matrices are positive semi-definite.” Here, we note

that MTq = M ·MT is a Gram Matrix and hence is positive semidefinite.

Theorem:

MTq is positive definite.

Proof:

From [5] we have ”Corollary 7.1.7. A positive semidefinite matrix is positive definite if and only

if it is nonsingular.”. From the above, we have that MTq is positive semi-definite. We know from

Hutchinson [6] that the rank is maximal. We know a square matrix has maximal rank if and only

if it is nonsingular. We know the matrix is symmetric. Hence we have that MTq is positive definite.

Note:

It remains to be shown

• mi,j =
v∑

p=1
ai,paj,p

{
> 0 if i = j

< 0 if i 6= j

• 2|
v∑

j=1
(as,j)

2| >
q−2∑
i=1
|(

v∑
j=1

as,jai,j)|

• For Eq := {λ : λ is an eigenvalue of MTq}, min(Eq) = q − 3

• MTq is bisymmetric (we know it’s symmetric, so we need to show it’s antisymmetric).
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Proving or disproving these properties remain open. We note in particular that by our identity:

q−2∑
i=1

mi,j =

q−2∑
j=1

mi,j = q − 3

if one could prove via only elementary means that the off-diagonal entries were negative, one would

prove as a corollary that the matrix is diagonally dominant (since mi,i+
q−2∑

j=1,j 6=i

mi,j = q−3 > 0 and

the off-diagonals are negative), and therefore is positive definite, and hence has maximum rank.

This would therefore be a highly desirable result.
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4 Conclusion

While we were unable to prove using only elementary means that the rank of the presentation

matrix of a pre-Bloch-group over a finite field is maximal using only elementary means, we have

placed a lower bound on the rank. While it seems unlikely that there may be a consistent and

explicit set of q − 2 linearly independent relations, the possibility remains open that more sophis-

ticated searches for linearly independent relations may be fruitful. An explicit set of q − 2 linearly

independent relations remains highly desirable.

We have also proven a number of identities which may aid in a complete description of the pre-

Bloch group over a finite field. While we are skeptical that these are significant, and believe that

they most likely are only minor results, it is possible that they may serve as stepping-stones to

something more impactful.

Finally, we have uncovered some very intriguing patterns in the matrix which we have defined

as MTq. This matrix is one which we believe to be quite interesting, and as such is a strong can-

didate for further study.

We sumarise our main results below:

Recall the five term relation:

R(x, y) = [x]− [y] + [
y

x
]− [

1− x−1

1− y−1
] + [

1− x
1− y

]

Theorem:

Let Fq be a field. Let r ∈ Fq be a primitive element. Then:

(q−2)∑
i=1

(

(q−2)∑
j=1,j 6=i

R(ri, rj)) =

(q−2)∑
i=1

(q − 3)[ri] in Z[F\{0, 1}]

Theorem:

Let Fq be a field with. Let x ∈ Fq\{0, 1,−1}. Then:

∑
x∈T

R(x1, x2) =



∑
x∈T\(F∗

q)
2

2[x]− 2[−1] if q = 1 (mod 4)∑
x∈T\(F∗

q)
2

2[x] if q = 3 (mod 4)∑
x∈T

[x] if q = 0 (mod 2)

in Z[F\{0, 1}]

Theorem:

Suppose Char(Fq) 6= 2. Let:

B = {R(x, x2) +R(x−1, x−2) : x ∈ F∗q\{−1, 1}} ⊆ Z[F\{0, 1}]

Then the elements of B are linearly independent to one another.

Theorem:

MTq is positive definite.
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5 Further Study

As we were unable to find q − 2 linearly independent relations, it warrants further investigation as

to whether it is indeed possible to show that the rank is maximal by finding an explicit set of q− 2

linearly independent relations through a systematic means.

We feel that the question of whether there must always exist some s for Fq such that the set:

Ss = {R(rs, rj) : r ∈ Fq such that < r >= F∗q , j ≤ q − 2 and j 6= s}

is linearly independent also to be something worth exploring. This question is one which also has

ties to our exploration of the matrix MTq and if it is true, it may serve as a means to prove using

only elementary means that the rank of Mq is maximal, a question which is equivalent to whether

it can be shown through elementary means that rank(MTq) = q − 2.

Finally, the matrix MTq is particularly interesting due to the number of very strong patterns and

conditions which we have observed via experimental evidence. We believe there is sufficient here to

warrant further investigation, to either prove or disprove whether certain conditions hold in general.

We summarise some of the most interesting questions left to explore below:

Question:

Let

Ss := {R(rs, rj) : r ∈ Fq such that < r >= F∗q , j ≤ q − 2 and j 6= s}

Is it true that ∃g : 1 ≤ g ≤ q − 2 such that:∑
a∈Sg

λaa = 0 =⇒ λa = 0 ∀a ∈ Sg

i.e.

rank(SMg,q) = q − 3

Question:

Let Fq be a field. Let Mq be the matrix as previously defined. Let MTq as previously defined. Is

it true and can it be shown via only elementary means that the following properties are satisfied

• rank(MTq) = q − 2 (Maximal rank) via only elementary means.

• xT (MTq)x > 0 ∀x ∈ Rq−3 (Positive-definite matrix)

• mi,j =
v∑

p=1
ai,paj,p

{
> 0 if i = j

< 0 if i 6= j

• 2|
v∑

j=1
(as,j)

2| >
q−2∑
i=1
|(

v∑
j=1

as,jai,j)|

• For Eq := {λ : λ is an eigenvalue of MTq}, min(Eq) = q − 3
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• MTq is bisymmetric (we know it’s symmetric, so we need to show it’s antisymmetric).

Recall that a proof that MTq is strictly diagonally dominant via elementary means would subse-

quently prove that the matrix is positive definite and thus has maximal rank. Similarly, proving

that the minimal eigenvalue is q − 3 would suffice to show the matrix is positive definite and has

maximal rank as desired. Finally, if one can show that the off-diagonal terms are negative, by our

identity concerning the sum of row-entries, one would show strict diagonal dominance.
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7 Notation Reference:

Fq := a field of order q

F∗ := the multiplicative group of a field.

r := r ∈ Fq :< r >= F∗

R(x, y) := [x]− [y] + [
y

x
]− [

1− x−1

1− y−1
] + [

1− x
1− y

]

R(ri, rj) = [ri]− [rj ] + [rj−i]− [
1− r−i

1− r−j
] + [

1− ri

1− rj
]

Mq :=

 ↑ . . . ↑ ↑ . . . ↑ . . . ↑ . . . ↑
R(r1, r2) . . . R(r1, rq−2) R(r2, r1) . . . R(r2, rq−2) . . . R(rq−2, r1) . . . R(rq−2, rq−3)

↓ . . . ↓ ↓ . . . ↓ . . . ↓ . . . ↓



MTq := Mq · (Mq)
T

SMs,q :=

 ↑ . . . ↑ ↑ . . . ↑
R(rs, r1) . . . R(rs, rs−1) R(rs, rs+1) . . . R(rs, rq−2)

↓ . . . ↓ ↓ . . . ↓



SMTs,q := (SMs,q) · (SMs,q)
T

ESMs,q :=

 ↑ . . . ↑ ↑ . . . ↑ ↑ . . . ↑ ↑ . . . ↑
0 · · · 0 R(rs, r1) . . . R(rs, rs−1) R(rs, rs+1) . . . R(rs, rq−2) 0 · · · 0

↓ . . . ↓ ↓ . . . ↓ ↓ . . . ↓ ↓ . . . ↓


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