The Development of Next-Generation Ultrasonic and Vibration Assisted Surgical Tools for Bone Cutting (VIBONE)

Cathal Heavey, Prof. Gerry Byrne, Dr. Eamonn Ahearne
Advanced Manufacturing Science (AMS) Research Centre, Mechanical Engineering, University College Dublin, Belfield, Dublin 4, Ireland

Collaborating Company: Stryker Instruments

Abstract
Bone cutting is one of the oldest procedures in surgical medicine. However the design of saws and drills has not advanced significantly in recent decades. Non-conventional processes are being developed to overcome the shortcomings of today’s tools. One such process is ultrasonic/vibration assisted bone cutting. Reported benefits include reduced reaction forces, and less collateral damage and fiber tearing.

Conventional Bone Cutting Tools

![Examples of conventional bone cutting tools](image1.png)

Shortcomings include:
- Reduced Control
- High Cutting Force
- Elevated Temperatures
- Soft Tissue Damage due to snagging

Bone Structure

![Bone structure](image2.png)

Components of an Ultrasonic Bone Cutting System & Challenges

![Current Ultrasonic Cutting Device](image3.png)

- Amplifier and Control System
- Ultrasonic Transducer
- Horn and Vibrating Cutting Tip

![Thermal Necrosis of Bone](image4.png)

![Undesirable Vibrations](image5.png)

![Low Material Removal Rate](image6.png)

Project Objectives

Variables
- Frequency
- Amplitude
- Force
- Cutting tip Design

Effects
- Chip Formation
- Soft Tissue
- Micro Fractures
- Thermal
- Bone Cells

Outcomes
- Understand the fundamental mechanism of material removal for ultrasonic tools
- Design a tool that utilises the optimum parameters for the cutting of bone

References: