Laser Hardening of Grey Cast Iron using a High Power Diode Laser

E. Kennedy, G. Byrne, R. Byrne

The Process
- Thermal hardening process where high intensity laser radiation heats the workpiece surface above a critical transformation temperature

Heat transfer solution:
- Finite element method used to solve (ABAQUS)
- Rapid cooling by conduction causes self-quenching to form hard martensite on surface

Thermodynamic modeling
- **Aim:** To create a tool for predicting the outputs from the laser hardening process using a high power diode laser, for a given set of input parameters
- **Heat transfer problem:**
 - Heat flow in 3 dimensions
 - Moving heat source
 - Variable thermal properties
 - Transient heat conduction

Experimental Work
- **Aim:** To validate the thermal model and to determine the link between wear resistance of the hardened surface and its material properties
- Samples of cast iron laser hardened using a range of processing conditions and output characteristics such as hardness profile measured

Fig. 1 Schematic of laser hardening process

Fig. 2 Interaction time vs. irradiance for a number of common laser applications

Fig. 3 Visualisation of FEM model using ABAQUS software

Fig. 4 High power diode laser hardening at UCD

Fig. 5 Typical plot of hardness vs. hardened depth in laser hardening of cast iron