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Signatures of Weyl semimetals in quasiparticle interference
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Impurities act as in situ probes of nontrivial electronic structure, causing real-space modulations in the density
of states detected by scanning tunneling spectroscopy on the sample surface. We show that distinctive topological
features of Weyl semimetals can be revealed in the Fourier transform of this map, interpreted in terms of
quasiparticle interference (QPI). We develop an exact Green’s function formalism and apply it to generalized
models of Weyl semimetals with an explicit surface. The type of perturbation lifting the Dirac node degeneracy to
produce the three-dimensional bulk Weyl phase determines the specific QPI signatures appearing on the surface.
QPI Fermi arcs may or may not appear, depending on the relative surface orientation and quantum interference
effects. Line nodes give rise to tube projections of width controlled by the bias voltage. We consider the effect of
crystal warping, distinguishing dispersive arclike features from true Fermi arcs. Finally, we demonstrate that the
commonly used joint-density-of-states approach fails qualitatively, and cannot describe QPI extinction.
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I. INTRODUCTION

Weyl semimetals (WSMs) are topologically nontrivial
states of quantum matter characterized by the existence of
three-dimensional (3D) chiral Dirac nodes [1–12]. Unlike
3D Dirac semimetals, Weyl nodes of different chirality are
nondegenerate, and separated in momentum space. As such,
they act as sources and sinks of Berry curvature [1]. WSMs
have been likened [9] to “3D graphene,” but also exhibit a
range of fascinating properties not observed in graphene or
other topological semimetallic systems, such as the chiral
anomaly in quantum transport [13–16] and the appearance
of open surface Fermi arcs in photoemission measurements
[6–11]. The latter are the result of topologically protected
chiral states connecting bulk Weyl nodes of opposite chirality,
projected onto the surface. Information about the bulk topology
can therefore be obtained from the surface-projected Fermi
arcs. Such topological properties are predicted to be robust to
weak perturbations, including disorder from dilute impurities
[17], since the Weyl nodes can only be annihilated in pairs of
opposite chirality [1].

A Weyl phase is realized by splitting degenerate nodes in
a 3D Dirac semimetal in momentum and/or energy space,
and necessarily involves breaking either inversion or time-
reversal (TR) symmetry. This can be done in a number of
different ways [18]; the microscopic details in real WSM
systems can translate to different types of perturbations
in the pristine low-energy Dirac theory. Depending on the
particular perturbation arising in a given WSM, and the relative
orientation of the material surface to the internode vector, it
is to be expected that a range of distinctive features could
appear in surface measurements. Such surface probes could
therefore be used to identify and fingerprint properties of the
bulk.

A family of WSMs was predicted from band structure calcu-
lations in the monopnictide class [3,4], and very recently Weyl
fermion states have been discovered experimentally in the
noncentrosymmetric (but time-reversal-invariant) materials
TaAs, NbAs, TaP, and NbP [6–12]. In particular, surface Fermi
arcs have been observed in angle-resolved photoemission
spectroscopy (ARPES) experiments on these systems.

Another powerful technique for probing surface states is
scanning tunneling spectroscopy (STS) [19,20]. Impurities or
potential defects in materials produce real-space modulations
(Friedel oscillations [21]) in the surface density of states, and
can be detected by STS. In the case of magnetic impurities
(such as transition metal adatoms), Kondo effects [22] can lead
to different electronic scattering mechanisms and distinctive
spectroscopic signatures [18,23]. For systems with either
static Born-type impurities [24] or dynamic Kondo impurities
[25,26], the Fourier transform of the real-space STS density
map (FT-STS) can be interpreted in terms of quasiparticle
interference (QPI). The impurity-induced scattering of quasi-
particles is both energy and momentum dependent. At a given
energy (set by the bias voltage in an STS experiment [27]), the
quantum interference between different scattering processes
produces the patterns observed in QPI. The scattering, and
therefore the QPI, is entirely characteristic of the host material,
meaning that impurities act as sensitive in situ probes of its
electronic structure.

Important insights into various materials have been gained
from QPI, including systems with nontrivial topology, such
as 3D topological insulators [28–30]. Indeed, Fermi arcs
in the cuprate superconductors have also been extensively
investigated with QPI [20,31,32] (albeit that their physical
origin is very different from that of WSMs). Experimental
QPI patterns for the 3D Dirac semimetal Cd3As2 were also
obtained in Ref. [33], complementing ARPES results. Very
recently, the first atomic-scale visualization of a WSM surface
was obtained by STS for the material NbP in Ref. [34]. The
detailed study of topological Weyl systems, using QPI as a
sensitive surface probe, is now a possibility.

In this paper, we examine theoretically the different types of
topological signature that can appear in QPI for Weyl systems.
For example, it is generally expected that distinctive features,
such as the Fermi arcs observed in ARPES, could also be found
in QPI [35,36]. We find that intense inter-arc scattering indeed
produces QPI Fermi arcs, although intra-arc scattering can be
comparatively weak due to quantum interference effects. We
present a generalized and exact formulation for calculation of
QPI in terms of Green’s functions and the scattering t matrix

2469-9950/2016/93(3)/035137(10) 035137-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.035137


ANDREW K. MITCHELL AND LARS FRITZ PHYSICAL REVIEW B 93, 035137 (2016)

for topological WSM models with an explicit surface, in the
presence of one or more impurities. Here, we do not attempt
to make realistic material-specific predictions, but rather we
focus on generic effective models whose exact solutions enable
us to establish how particular types of bulk structures in Weyl
systems can be characterized in terms of their distinctive QPI
patterns. We show, however, that lattice effects such as crystal
warping can be simply incorporated in a phenomenological
way, so that contact can be made with future experiments.

We note that the popular and appealingly simple “joint-
density-of-states” (JDOS) interpretation of QPI [20,35,36]
is in fact only applicable in the simplest one-band case
with a single static impurity [25]. The JDOS can yield
qualitatively incorrect results for Weyl systems because it
neglects quantum interference effects and does not account
for the matrix structure of the scattering problem in spin
space (the JDOS approach is known to fail, e.g., for graphene
[37], for similar reasons). The full (complex, dynamical)
Green’s functions must therefore be used, preserving the
matrix structure inherent to topological multiband systems.

In Sec. II, we specify the basic degenerate 3D Dirac theory,
and discuss briefly the effect of the different perturbations,
classified exhaustively in Ref. [18], which separate the nodes
in momentum space to produce a Weyl phase. We then employ
a semi-infinite 3D model of coupled layers with an explicit
surface, which yields the desired degenerate Dirac theory at
low energies. We identify representative physical perturbations
following Refs. [38,39] that produce either TR-broken or TR-
invariant Weyl phases, and also line-node semimetals.

Based on a matrix generalization of the equations of motion
method [40], exact analytic expressions for the surface Green’s
functions of the WSM models are found in Sec. III. The t

matrix, describing scattering from one or more impurities is
formulated, and used to obtain the full QPI in Sec. IV.

In Sec. V we consider explicitly QPI signatures of Dirac
cones in WSMs, with crystal warping effects explored in
Sec. VI. QPI Fermi arcs are discussed in Sec. VII for the
IS-broken but TR-invariant case relevant to the monopnictide
Weyl materials. QPI signatures of more exotic line-node
WSMs are examined in Sec. VIII. The failure of the JDOS
approach is discussed in Sec. IX.

II. MODELS FOR WEYL SEMIMETALS

We first consider the minimal low-energy Bloch theory for
a pristine 3D Dirac semimetal,

ĤD(k) = vF τ̂z ⊗ k · �̂σ , (1)

where σ̂ and τ̂ are Pauli matrices acting respectively in spin and
orbital space, and vF is the effective Fermi velocity. This model
possesses both time-reversal symmetry (TRS) and inversion
symmetry (IS), meaning T ĤD(k)T −1 = ĤD(−k) in terms of
the time-reversal operator T = τ̂0 ⊗ (iσ̂y)K (with complex
conjugation denoted by K), and PĤD(k)P−1 = ĤD(−k), in
terms of the inversion operator P = τ̂x ⊗ σ̂0.

As discussed recently in Ref. [18], perturbations to Eq. (1)
that yield a WSM can be classified according to the symmetries
they break. To leading order at low energies, perturbations must
be of the generic form δĤ = (�a · �̂τ + a0τ̂0) ⊗ (�b · �̂σ + b0σ̂0).

In its most general form, the parameters �a, a0, �b, and
b0 can also be momentum dependent, allowing, e.g., for
additional crystal warping effects of the underlying lattice,
or the cone tilting/tipping phenomenon discussed recently in
Refs. [41,42]. Any microscopic model describing Dirac/Weyl
systems must therefore map onto ĤD(k) + δĤ at low energies.

For simplicity in the following, we take �a, a0, �b, and b0

to be pure constants, independent of momentum. Note that
δĤ1 = a0τ̂0 ⊗ �b · �̂σ breaks TRS and splits the Weyl nodes
in momentum space along �b, whereas δĤ2 = axτ̂x ⊗ �b · �̂σ
and δĤ3 = ayτ̂y ⊗ �b · �̂σ produce line nodes in the plane
perpendicular to �b, with either IS or TRS. With sufficiently
strong crystal warping, the rotational symmetry of line nodes
is spoiled, and pairs of Weyl nodes appear instead (see also
Sec. VIII).

The bulk 3D host is described by HWSM =∫
d3k

(2π)3 �
†(k)[ĤD(k) + δĤ ]�(k), in terms of the

four-component conduction electron operators �(k),
living in τ and σ space.

A. Explicit surface formulation

To describe surface spectroscopic signatures and QPI, we
now employ a semi-infinite 3D model with an explicit 2D
surface. Rather than resorting to a full tight-binding model, we
instead use a compactified prescription [38] based on coupled
layers (each a 2D Dirac theory), terminating at the surface,
which we take to be perpendicular to ẑ. The pseudospin τz = ±
can refer to two different bands in each layer, with opposite
Fermi velocity ±vF . A term in the dispersion such as sin(dkz)
then leads to the desired linear dependence on kz in the bulk
at low energies (hereafter, we take the lattice constant d ≡ 1).
The full Hamiltonian is given by

HWSM =
∫

d2k‖
(2π )2

ĤWSM(k‖), (2)

with

ĤWSM(k‖) =
∞∑

j=0

[ ∑
τz=±

(�c†k‖,jτz
Ĥτz

(k‖)�ck‖,jτz

)

+�T (k‖)
(�c†k‖,j−�ck‖,j+ + H.c.

)

+�N (k‖)
(�c†k‖,j−�ck‖,(j+1)+ + H.c.

)]
, (3)

where �c†k‖,jτz
≡ [c†k‖,jτz↑,c

†
k‖,jτz↓] are two-component operators

for conduction electrons in layer j � 0 with orbital pseudospin
index τz = ± and momentum k‖ = (kx,ky) in the 2D plane
parallel to the surface. As before, σ = ↑/↓ labels the physical
electron spin. Each layer is described by

Ĥ±(k‖) = ±vF (σ̂xky − σ̂ykx) + �m · �̂σ ± δ(k‖)σ̂0. (4)

The terms proportional to �m and δ(k‖) break TRS and IS,
respectively, allowing the Weyl phase to be realized.

This setup can also be thought of as a generalization of
the topological insulator (TI) multilayer system discussed in
Refs. [38,39]. In that case, the pseudospin τz = ± is to be
understood as the upper/lower surfaces of a thin slice of a
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3D TI. The heterostructure comprises alternating layers of the
TI and ordinary-insulator spacer layers. �T (k‖) and �N (k‖)
are then the tunneling amplitudes through the topological
insulator layers and the normal insulator layers, respectively.
The perturbation �m would correspond to TRS-breaking net
magnetization (due, e.g., to ordered magnetic impurities),
while δ(k‖) is a staggered potential, breaking IS.

B. Crystal warping effects

For the purposes of this paper, we simply take Eqs. (2)–(4)
as a concrete compactified model for generic 3D WSMs, with
a two-dimensional (2D) surface at j = 0 and τz = +. We will
use it to study the surface QPI signatures that might arise
due to different types of topological bulk structure. However,
to some extent, material-specific features and details of real
WSMs can be reproduced phenomenologically in this model
(at least at low energies) through the momentum dependence
of �T (k‖), �N (k‖), and δ(k‖). In real materials, the continuous
rotational symmetry of the Dirac cones is reduced to discrete
symmetries due to the underlying crystal lattice structure. For
example, the cubic warping common in 3D TI surfaces can be
encoded through [43]

δ(k‖) = δ + W3[(vF k+)3 + (vF k−)3], (5)

where k± = kx ± iky as usual. Similarly, properties of crystal
structures with twofold and fourfold symmetry could be
approximated by the expansion [39]

�T,N (k‖) = �
(0)
T ,N + �

(2)
T ,N [(vF k+)2 + (vF k−)2]

+�
(4)
T ,N [(vF k+)4 + (vF k−)4] + · · · . (6)

In particular, note that the monopnictide Weyl materials [6,7]
have the fourfold point group symmetry C4v . The effect of
crystal warping on the QPI is considered in Sec. VI (see also
Fig. 2).

C. Weyl phases

For | �m| = 0 and δ(k‖) = 0, Eqs. (2)–(4) describe a degener-
ate 3D Dirac semimetal in the bulk (i.e., away from the surface,
j 	 1). Breaking TRS through finite mz (magnetization along
the layer stacking direction) splits the nodes to realize a
Weyl phase. Specifically, for constant �T,N (k‖) ≡ �

(0)
T ,N [and

δ(k‖) = 0], the Weyl nodes are split along the ẑ direction when

[38] [�(0)
N − �

(0)
T ]

2
< m2

z < [�(0)
N + �

(0)
T ]

2
. This perturbation

is equivalent to the generic case of δĤ1 discussed in relation to
Eq. (1) above. A key question considered in Sec. V and Fig. 1
is “what signatures of this appear in QPI on the surface, which
is perpendicular to ẑ?”

Generalizing to arbitrary magnetization direction �m leads
to other, qualitatively distinct, possibilities. For example, any
finite mx leads to a line-node semimetallic state. The line node
is a ring in the yz plane perpendicular to the x̂ magnetization
direction. The surface-projected QPI signatures of this kind
of topological structure are discussed in Sec. VIII and Fig. 4.
This case is equivalent to the generic perturbation δĤ2.

Finally, we focus on the IS-breaking case (but with TRS
intact). This is the situation relevant to the recently discovered
monopnictide Weyl materials, where surface QPI Fermi arcs

FIG. 1. Weyl semimetal realized by breaking TRS. Plotted
for �T (k‖) = �N (k‖) ≡ � and δ(k‖) = 0, with mz = � = 1

2 . (a)
Bulk band structure, showing a single pair of separated 3D Weyl
nodes at k ≡ (kx,ky,kz) = (0,0, ± 2π

3 ). (b) Momentum-resolved
DOS ρ0(k‖,ω) at the surface in the kxky plane, at bias volt-
age (scanning energy) ω = 0.3. (c) Corresponding QPI, �ρ(q,ω).
(d) Stack plot showing the Dirac cone structure in the QPI mapped
out on increasing bias voltage. Fermi arcs are not observed in either
the surface DOS or QPI because the internode vector is perpendicular
to the surface.

might be expected. In our effective model, this symmetry
breaking is implemented via the finite perturbation δ(k‖) ≡ δ.
This case is equivalent to the generic perturbation δĤ3. In
the context of the TI multilayer system in Ref. [39], a (ring)
line node was found in the xy plane parallel to the surface.
However, it was also noted that sufficiently strong crystal
warping (due to, e.g., finite �

(2)
N ) spoils the rotational symmetry

around the ring node, leading instead to the formation of two
pairs of Weyl nodes. In fact, we show that additional Weyl
node pairs can be generated on further increasing the crystal
warping strength. In Sec. VII we study the QPI Fermi arcs on
the surface, resulting from the appearance of these bulk Weyl
node pairs (see Fig. 3). In the following, we set the Fermi
velocity vF ≡ 1 for convenience.

III. GREEN’S FUNCTIONS AND IMPURITY SCATTERING

Electronic properties of the WSM material can be
characterized by the Green’s functions G

jτzσ

j ′τ ′
zσ

′(k‖,ω) =
〈〈ck‖,jτzσ

; c†k‖,j ′τ ′
zσ

′ 〉〉0

ω
, where 〈〈Â; B̂〉〉ω is the Fourier trans-

form of the retarded correlator −iθ (t)〈{Â(t),B̂(0)}〉, and
the superscript “0” denotes the clean (impurity-free) sys-
tem. We define a 2 × 2 Green’s function matrix in spin
space, [Gjτz

j ′τ ′
z
(k‖,ω)]

σ,σ ′ = G
jτzσ

j ′τ ′
zσ

′(k‖,ω). In particular, we are
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interested in the surface Green’s functions with j = 0 and
τz = +, since sites on the surface are probed by STS in
experiment.

A matrix formulation of standard equations of motion
provides simple exact relations between Green’s functions in
this system. The surface Green’s functions are expressed as

G0+
0+(k‖,ω)[(ω + i0+)I − H+(k‖)]

= I + �T (k‖)G0−
0+(k‖,ω). (7)

Away from the surface [(jτz) = (0+)], we obtain, generally,

Gjτz

j ′τ ′
z
(k‖,ω)[(ω + i0+)I − Hτz

(k‖)]

= δjj ′δτzτ ′
z
I + �T (k‖)Gj τ̄z

j ′τ ′
z
(k‖,ω)

+�N (k‖)G(j−τz)τ̄z

j ′τ ′
z

(k‖,ω), (8)

where τ̄z = −τz and (j − τz) ≡ (j ∓ 1) for τz = ±. The
surface Green’s functions in the semi-infinite system are then
given as solutions of a matrix quadratic equation, obtained by
recursive application of Eq. (8):

G0+
0+(k‖,ω) = [

(ω + i0+)I − H+(k‖)

−�T (k‖)2[(ω + i0+)I − H−(k‖)

−�N (k‖)2G0+
0+(k‖,ω)

]−1]−1
. (9)

Surface Green’s functions can always be evaluated efficiently
numerically by iterating Eq. (9). In certain cases (as shown
below), simple analytic expressions can be found in closed
form from Eq. (9). Although Eq. (9) is specific to the present
model, the matrix equations of motion technique used to obtain
it is widely applicable.

A. Bulk-boundary relation for Green’s functions

Bulk Green’s functions (with j → ∞) can similarly be
obtained from Eq. (8). However, the bulk can also be realized
by coupling together the boundaries of two semi-infinite
systems. This allows surface and bulk Green’s functions to
be related:[
G∞+

∞+(k‖,ω)
]−1 = [

G0+
0+(k‖,ω)

]−1 − �N (k‖)2G0+
0+(−k‖,ω).

(10)

The surface propagator for one of the two subsystems being
joined can therefore be viewed as a self-energy correction to
the other.

B. Impurity problem and t matrix

The clean host Weyl semimetal described above will in-
evitably be subject to some degree of disorder in real samples.
Impurities or defects on the surface cause potential scattering,
whose effect can be probed by quasiparticle interference (QPI),
as described in the following sections. The full Hamiltonian
is then H = HWSM + ∑

γ H
γ
imp, where each impurity γ is

located at real-space site rγ . The dominant source of electronic
scattering on the surface is from surface impurities. For
simplicity, we therefore consider only surface impurities here
(j = 0 and τz = +), although the generalization to include
bulk impurities is straightforward. The impurities are taken to

be local in space,

Hγ
imp = �c†rγ ,0+V γ �crγ ,0+, (11)

with �c†rγ ,jτz
= [c†rγ ,jτz↑,c

†
rγ ,jτz↓], and where

c
†
rγ ,jτzσ

=
∫

d2k‖
2π

eirγ ·k‖c
†
k‖,jτzσ

(12)

creates an electron localized at site rγ with spin σ in
orbital/surface τz of layer j .

The 2 × 2 matrix V γ describing the local potential due to
impurity γ has elements V

γ

σσ ′ . The specific form of V γ can
affect the type of scattering, as discussed in Ref. [44], and so
in this general formulation we leave it unconstrained.

C. Surface density of states

The surface local density of states (LDOS) develops
pronounced spatial inhomogeneities due to the impurities
(Friedel oscillations, as discussed for WSMs in Ref. [21]).
The total (spin-summed) surface LDOS at site ri relative to
that of the clean system is given by

�ρ(ri ,ω) = − 1

π
Im Tr �G0+

0+(ri ,ri ,ω), (13)

in terms of the surface Green’s function difference
�G0+

0+(ri ,ri ,ω) = [G0+
0+(ri ,ri ,ω) − G0+

0+(ri ,ri ,ω)], where

[Gjτz

j ′τ ′
z
(ra,rb,ω)]

σσ ′ ≡ 〈〈cra ,jτzσ
; c†rb,j ′τ ′

zσ
′ 〉〉0

ω
is a local

real-space Green’s function for the clean system, while
[Gjτz

j ′τ ′
z
(ra,rb,ω)]

σσ ′ is the corresponding full Green’s function,
defined in the presence of the impurities.

The 2D Fourier transformation, Eq. (12), yields a surface
momentum-space representation,

�G0+
0+(ri ,ri ,ω) =

∫
d2k‖d2k′

‖
(2π )2

eiri ·(k′
‖−k‖)�G0+

0+(k‖,k′
‖,ω).

(14)
The momentum-resolved surface density of states of the clean
system is given by

ρ0(k‖,ω) = − 1

π
Im Tr G0+

0+(k‖,ω). (15)

D. Surface t-matrix equation for single or multiple impurities

Surface quasiparticles of the clean system with well-defined
momentum k‖ are scattered by impurities in disordered
systems. This effect is described exactly by the scattering
t-matrix equation. Here, we formulate the t matrix in terms of
the scattering of surface quasiparticles as required for QPI
[25], and generalize to the case of many impurities. One
must retain the 2 × 2 matrix spin-space structure inherent to
the description of Dirac/Weyl systems. The surface t-matrix
equation reads

�G0+
0+(k‖,k′

‖,ω) = G0+
0+(k‖,ω)T (k‖,k′

‖,ω)G0+
0+(k′

‖,ω), (16)

where G0+
0+(k‖,ω) is obtained from Eq. (9), and T (k‖,k′

‖,ω) is
the t matrix itself. For multiple generalized potential scattering
impurities described by Eq. (11), the t matrix can be expressed
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in terms of an infinite series of scattering events,

T (k‖,k′
‖,ω)

= 1

(2π )2

∑
γ0

[
V γ0

k‖k′
‖
+ 1

(2π )2

∑
γ1,k1

[
V γ1

k‖k1
+ 1

(2π )2

×
∑
γ2,k2

[
V γ2

k‖k2
+ · · · ]G0+

0+(k2,ω)V γ1

k2k1

]
G0+

0+(k1,ω)V γ0

k1k′
‖

]
,

(17)

where γi are impurity labels, and V γi

kakb
= V γi eirγi

·(ka−kb). The
infinite matrix series in Eq. (17) can be summed to give a
compact exact expression,

T (k‖,k′
‖,ω) = 1

(2π )2

∑
γ,γ ′

ei(rγ ·k′
‖−rγ ′ ·k‖) × [T(ω)]γ γ ′ , (18)

where T(ω) is an N × N matrix for an N -impurity system,
with elements [T(ω)]γ γ ′ that are themselves 2 × 2 matrices. It
is given by

T(ω) = V[I − G(ω)V]−1, (19)

where [V]γ γ ′ = V γ δγ γ ′ and [G(ω)]γ γ ′ = G0+
0+(rγ ,rγ ′ ,ω) for

impurities γ and γ ′.
In the dilute impurity limit with just a single impurity

located at r0 on the surface, Eq. (18) reduces to

T (k‖,k′
‖,ω) = 1

(2π )2
V 0

[
I − G0+

0+(r0,r0,ω)V 0
]−1

. (20)

In the weak-scattering “Born” limit, one approximates the
full complex and dynamical t matrix by the real static quantity
T (k‖,k′

‖,ω) ≈ 1
(2π)2 V 0. In the following numerical calcula-

tions, there is no need to resort to the Born approximation, and
the full expression for a single impurity, Eq. (20), is used. For
concreteness, we now take V 0 = V I , with V = 0.01.

E. Magnetic (Kondo) impurities

The physics of (dynamic) magnetic impurities, such as
transition metal adatoms, is of course very rich due to strong
electron correlations and the Kondo effect [22,45]. In 3D
Weyl systems, various unusual Kondo variants can occur, as
discussed recently in Ref. [18]. The t matrix then develops
nontrivial dynamics, requiring a sophisticated many-body
treatment. In particular, Kondo-enhanced spin-flip scattering
can lead to low-energy resonances, characterized by a t

matrix with a large imaginary part (the Born approximation
is therefore totally inapplicable). However, if the t matrix is
obtained for a given Kondo system (e.g., from a numerical
renormalization group calculation [18]), it can simply be used
instead of Eq. (20) in the following.

IV. QUASIPARTICLE INTERFERENCE (QPI)

QPI is obtained experimentally via FT-STS [20,34]. It
involves local measurements on the surface using STS to
produce the real-space LDOS map ρ(ri ,ω) at a given tip-
sample bias voltage ∝ ω. Due to the presence of impurities,
this LDOS map shows pronounced spatial inhomogeneities. Its
2D Fourier transform yields the QPI, which characterizes the
scattering of surface quasiparticles of the WSM material due

to the impurities. The preferred QPI scattering vectors reveal
the electronic structure of the Weyl system, and as we show in
the following, the QPI also reveals its topological structures.
The QPI is defined as

�ρ(q,ω) =
∑

i

e−iq·ri �ρ(ri ,ω), (21)

in terms of the LDOS difference, Eq. (13). The QPI can be
alternatively expressed in terms of momentum-space surface
Green’s functions by using Eqs. (13) and (14) in Eq. (21). For
the WSM, it can be shown that

�ρ(q,ω) = − 1

2πi
Tr[Q(q,ω) − Q(−q,ω)∗], (22)

with

Q(q,ω) = Tr
∫

d2k‖�G0+
0+(k‖,k‖ − q,ω),

= Tr
∫

d2k‖G0+
0+(k‖,ω)T (k‖,k‖−q)G0+

0+(k‖−q,ω),

(23)

where the second line follows from the definition of the t

matrix in Eq. (16).
Although FT-STS and QPI probe the surface, it is important

that the Green’s functions G0+
0+(k‖,ω) that enter Eq. (23)

are defined for the full 3D system. Unlike 3D topological
insulators, where the Dirac cones live on the 2D surface and
an effective surface continuum theory can be constructed (al-
though a two-dimensional lattice formulation is not possible),
there is, for instance, no simple effective surface theory for the
Fermi arc since it can be viewed as one Fermi surface, split
over the upper and lower surfaces of the material. Importantly,
surface Green’s functions for a 3D system contain information
about electronic propagation from the surface, into the bulk,
and back to the surface. The fact that surface quasiparticles
in WSMs are “dephased” by coupling to the bulk allows for
richer QPI structures, such as open Fermi arcs, that cannot
arise in pure 2D systems.

Note also that the matrix structure of Eq. (23) implies that
both spin-diagonal and spin-off-diagonal elements of the 2 × 2
Green’s function matrix G0+

0+(k‖,ω) enter. Furthermore, both
real and imaginary parts of the Green’s functions are important
in obtaining the correct QPI. Clearly, more information is
contained in the QPI than simply the total surface density
of states ρ0(k‖,ω), as extracted from ARPES experiments. As
highlighted in Ref. [25], the QPI cannot be understood in terms
of the joint density of states except in the simplest of cases;
it is certainly not applicable to dynamical multiband systems
and topological materials such as WSMs (see Sec. IX).

In this paper, we obtain the exact QPI from Eqs. (22) and
(23), using the surface Green’s functions G0+

0+(k‖,ω) from
Eq. (9), and the t matrix T (k‖,k′

‖) due to a single potential
scattering impurity from Eq. (20). Throughout, we show the
QPI as a color plot on a scale relative to the most intense
scattering vector. Generally, the overall intensity increases
with scanning energy, and is proportional to the static impurity
scattering potential, V .

Scattering from multiple (uncorrelated) impurities leads
to an overlaid moiré pattern in the QPI (see, e.g., the
explicit calculations of Ref. [26]). When the real-space surface
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region probed by STS is large enough that many randomly
distributed impurities contribute to the measured scattering,
these additional QPI structures average out and yield a good
approximation to the pristine single-impurity result considered
here.

V. WEYL NODES AND DIRAC CONES IN QPI

We consider now a Weyl system featuring a single pair of
nodes in the 3D bulk. For the system described by Eqs. (2)–(4),
the TRS-breaking perturbation mz can render the Weyl nodes
nondegenerate, separating them in momentum space along kz.

We take the inversion symmetric case δ(k‖) = 0, and
assume for simplicity rotational symmetry with �N (k‖) =
�T (k‖) ≡ �. For � = mz = 1

2 , the Weyl nodes are located
at k = (0,0, ± 2π

3 ), as shown from the bulk band structure in
Fig. 1(a). In this case, analysis of Eq. (9) yields a simple exact
expression for the surface Green’s functions,

G
0+↑
0+↑(k‖,z) = 1

8mz�2(k2 − z2)

{
4mz(z − mz)(k

2 − z2)

− [k2 − (z − mz)
2 + 4�2 − φ]

×
√

2(k2 − z2)
(
k2 − z2 − m2

z + 4�2 + φ
)}

,

(24)

where z = ω + i0+, k = vF |k‖|, and φ2 =
[k2 − z2 + (mz − 2�)2][k2 − z2 + (mz + 2�)2]. Note that
by symmetry G

0+↑
0+↑(k‖,ω + i0+) = G

0+↓
0+↓(k‖, − ω + i0+).

Expressions for the off-diagonal elements of G0+
0+(k‖,z) can

also be simply obtained.
The singular structure of the surface states is already

apparent from the denominator of Eq. (24). The classic Dirac
cone structure appears in the surface Green’s functions, with
divergent rings vF |k‖| = |ω| at a given energy (surface-tip
bias) ω, and strictly excluded spectral weight for all vF |k‖| >

|ω|. The momentum-resolved surface density of states for the
clean system, ρ0(k‖,ω), is plotted in Fig. 1(b) for bias voltage
ω = 0.3. No Fermi arcs are observed in this system because
the internode vector along ẑ is perpendicular to the surface in
the xy plane.

Figure 1(c) shows the corresponding QPI at the same bias
voltage (but note the doubled axis scales). A cross section
through the Dirac cone is observed, with the ring vF |q| = 2|ω|
corresponding to the most intense scattering. However, unlike
the surface density of states in Fig. 1(b), there is finite scattering
for all q [the difference is due to the matrix structure of Eq.
(23), which also involves complex Green’s functions rather
than spectral densities].

The full surface-projected Dirac cone structure associated
with bulk Weyl nodes can be mapped by scanning the bias
voltage, as demonstrated in Fig. 1(d). FT-STS can therefore
be considered as a complementary probe to ARPES, where
similar structures have been observed in 3D Dirac [33,46] and
Weyl [6–11] systems.

VI. CRYSTAL WARPING OF DIRAC CONES IN QPI

At low energies, bulk Weyl nodes are characterized by the
rotational symmetry of Eq. (1) (an anisotropic Fermi velocity
vF → �vF leads only to a simple rescaling). Crystal warping,

FIG. 2. Effect of crystal warping on the Dirac cone structure of
QPI in Weyl semimetals. Plotted for the TRS-breaking case with
mz = 0.1 and �

(0)
N,T = 1

2 , including tunneling anisotropy �
(2)
N,T = 1

(left panels) and cubic warping W3 = 5 (right panels) for increasing
bias voltages ω = 0.1,0.2,0.3,0.4 (top to bottom). The rotational
symmetry of the Dirac cone seen at low energies is strongly modified
at higher energies. The dispersive arclike features are not Fermi arcs.

due to the underlying lattice structure of the material, does
not destroy the Weyl nodes by opening a gap, but it does
spoil the rotational symmetry of the Dirac cones at higher
energies. Experiments on the 3D Dirac semimetal system
Cd3As2 in Ref. [33] appear to show crystal warping effects in
the measured QPI. Such effects might similarly be important
in interpreting QPI patterns for Weyl systems away from the
Fermi energy [34].

As discussed in Sec. II B, a twofold symmetry of the
lattice in the xy plane can be phenomenologically encoded
in the effective Hamiltonian via finite �

(2)
N,T , while cubic

warping implies finite W3. The Weyl nodes are topologically
robust to such perturbations. The effect on QPI of each is
illustrated in Fig. 2 for the TRS-broken Weyl system of Fig. 1
(mz > 0). The surface Green’s functions are only described
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by Eq. (24) in the low-bias limit; the full QPI was therefore
computed numerically in these cases. �

(2)
N,T > 0 is shown in

the left panels, while W3 > 0 is shown in the right panels,
with increasing bias voltage from top to bottom. At low
energies ω = 0.1, the cross section of the Dirac cone is
essentially circular in both cases. However, at higher energies
the symmetry of the underlying lattice reveals itself through
the preferred QPI scattering vectors.

Note that Fermi arcs are not seen in this case because of the
relative orientation of the surface to the internode vector: At the
Fermi energy, scattering of surface quasiparticles is confined
to the point q = 0. By contrast, dispersive arclike features can
be observed in QPI at higher energies due to crystal warping
(e.g., finite �

(2)
N,T > 0—see the bottom left panels of Fig. 2).

These are not topological features, since they disappear at low
energies.

VII. FERMI ARCS IN QPI

Arguably the most distinctive feature of WSMs is the
existence of Fermi arcs in the surface DOS [1], due to
topologically protected zero-energy states connecting bulk
Weyl nodes of opposite chirality, projected onto the surface.
Fermi arcs have recently been observed experimentally in
the monopnictide Weyl materials using ARPES to probe the
momentum-resolved surface DOS [6–11]. We now discuss
how impurity-induced quasiparticle scattering from these
surface states at the Fermi energy also produces intense and
characteristic signatures in QPI.

Since the present experimental WSM candidates break IS
rather than TRS, we now examine IS-broken but TR-invariant
Weyl systems, characterized at low energies by finite δ(k‖) ≡
δ. We focus on experimentally relevant situations where the
system supports several pairs of Weyl nodes. The relative
contribution from interarc and intra-arc scattering can then
be assessed.

Specifically, we take �
(0)
N = �

(0)
T = 1

2 and | �m| = 0. In the
rotationally symmetric case with no crystal warping �

(n>0)
N,T =

0, the system supports a bulk line node in the kxky plane
parallel to the surface. Surface Green’s functions exhibit a
singular structure in a ring with vF |k‖| = |ω − δ|. The surface
DOS, related to the imaginary part of the surface Green’s
functions, diverges on approaching this ring. The real part of
the surface Green’s function has a definite sign in the region
enclosed by the ring (the complementary region is of opposite
sign).

As noted in Ref. [39], such a line node is delicate and can be
destroyed when the continuous rotational symmetry is reduced
to a discrete point symmetry, realizing chiral pairs of Weyl
nodes. This is naturally achieved by tunneling anisotropy, as
might be expected in real crystals, and we now take �

(2)
N > 0.

In Fig. 3(a) we consider �
(2)
N = 5, while stronger anisotropy

�
(2)
N = 15 is used for Fig. 3(b). The bulk band structure in

the kxky plane at kz = π and 0 is shown on the left in each
case. For �

(2)
N = 5 in Fig. 3(a), two pairs of Weyl nodes are

seen at kz = π . On increasing the anisotropy, we find that two
additional pairs of degenerate (Dirac) nodes appear at kz = 0
when δ2 = �(0)/�

(2)
N . The degeneracy is lifted as the Weyl

FIG. 3. QPI Fermi arcs in time-reversal-invariant Weyl semimetals. Shown for | �m| = 0, δ(k‖) ≡ δ = 0.3 and �
(0)
N,T = 1

2 . Left: Bulk band
structure in the kxky plane parallel to the surface at kz = π and 0. Black points indicate Weyl points. Center: Singular structures in the surface
Green’s functions at the Fermi energy, Eq. (25) (blue lines). Black lines show vF k‖ = δ, the line node ring in the isotropic case. Black dots
show the surface projection of the Weyl points, while the overlaid thick red lines indicate Fermi arcs. Right: QPI plotted in the qxqy plane
at very low bias voltage ω = 0.01. (a) �

(2)
N = 5: Two pairs of Weyl nodes at kz = π , manifest on the surface in QPI as two Fermi arcs. (b)

�
(2)
N = 15: Two pairs of Weyl nodes at kz = π and another two pairs at kz = 0, producing four QPI Fermi arcs.
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nodes are split in momentum space on further increasing the
anisotropy, as shown in Fig. 3(b) for �

(2)
N = 15. The Weyl

nodes are indicated with black points for clarity.
The exact surface Green’s functions, obtained from solu-

tions of Eq. (9), can again be found analytically in closed form.
In the present case they are rather complicated and so we do
not give them in full. At the Fermi energy ω = 0, however,
analysis reveals a singular structure along the line

8
(
vF �

(2)
N

)2[
k2
x − k2

y

] + 4�
(2)
N �(0) − 1

= ±
√

1 − 8�
(2)
N �(0) + 16

(
�

(2)
N

)2[
(�(0))2 − 2v2

F k2
x + δ2

]
,

(25)

shown as the blue lines in the center column panels of Fig. 3.
This singular line is identified from zeros of the denominator
of the surface Green’s functions. The real part of the Green’s
function in the region enclosed by this line again has a definite
sign; the sign changes as the blue line is crossed. For δ2 <

�(0)/�
(2)
N in Fig. 3(a), the singular line crosses vF k‖ = δ at

four points; two pairs of Weyl points arise at these intersections
(marked as black points). This is consistent with the bulk
band structure calculations shown in the left panel, where the
Weyl points are found at kz = π . When δ2 > �(0)/�

(2)
N , as in

Fig. 3(b), two further pairs of Weyl points appear (from the
bulk band structure in the corresponding left panel, the new
Weyl points can be associated with kz = 0).

Fermi arcs are found to exist in regions with a definite
parity of the real part of the Green’s functions, and are
therefore terminated on intersection with the blue line, at
surface projections of the Weyl points. The Fermi arcs connect
chiral pairs of Weyl points, and are indicated in the center
panels of Fig. 3 by the red lines. The appearance of the second
pair of Fermi arcs on increasing the anisotropy �

(2)
N therefore

signals the topological change in the system as additional Weyl
node pairs are created.

The right panels of Fig. 3 show the calculated QPI for
these cases, close to the Fermi energy at ω = 0.01. QPI Fermi
arcs of intense scattering are observed, connecting projections

of the Weyl nodes to the surface. As the anisotropy is tuned
through δ2 = �(0)/�

(2)
N , two additional QPI Fermi arcs appear,

connecting the new Weyl points.
We note that there is intense inter-arc scattering here

(producing QPI Fermi arcs at doubled q vectors), but
comparatively very weak intra-arc scattering (which might
be expected to produce QPI features around q = 0). This
‘extinction’ of quasiparticle scattering can be attributed to
quantum interference effects; see also Sec. IX below.

VIII. LINE NODES IN QPI

Finally, we consider the case of line node semimetals,
realized here by breaking TRS through finite mx > 0. For
δ(k‖) = 0 and �N,T (k‖) ≡ �, the line node is a ring in the
kykz plane centered on k = 0. This is shown as the red line
at zero energy in the band structure diagram on the right of
Fig. 4. The plane containing the line node is perpendicular to
the surface.

To understand the signatures of this kind of bulk topological
structure on the surface in QPI, we first consider the surface
Green’s functions from Eq. (9). Analysis shows that these
Green’s functions contain singular lines that satisfy

(
v2

F k2
x − ω2

)[
v2

F k2
x + (vF ky ± mx)2 − ω2

] = 0. (26)

Interestingly, there are structures resembling Dirac cones,
centered on vF k‖ = (0, ± mx), and connected by lines at
vF kx = ±ω. These lead to lines of intense scattering in QPI.

The full numerically calculated QPI is shown in Fig. 4 for
mx = 0.1,0.2,0.3 (left to right panels) at bias voltages ω =
0.01 and 0.1 (upper and lower panels, respectively). At low
energies, the surface projection of the line node leads to a line
in QPI connecting vF q = (0, ± 2mx). However, quasiparticle
scattering is only intense at the terminal points—see the upper
panels. This distinguishes them from the QPI Fermi arcs
arising for separated Weyl nodes. At higher energies (lower
panels), tubelike projections of the bulk structure appear in the
surface QPI. These line-node signatures can be distinguished

FIG. 4. QPI for a line-node semimetal. Plotted for the TRS-broken case mx > 0, with �
(0)
N,T = 1

2 and δ(k‖) = 0. The band structure shown
on the right is characterized by a line-node ring (indicated in red) at kx = 0 in the kykz plane perpendicular to the surface. The surface projection
in QPI is shown for mx = 0.1,0.2,0.3 (left to right), at scanning energy ω = 0.01 (upper panels) and 0.1 (lower panels).
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FIG. 5. Comparison of the full QPI (left) and JDOS (right) for the
system in Fig. 3(a), which hosts two surface Fermi arcs. The JDOS
was obtained using Eq. (27).

from those of Dirac cones since scattering is intense for all
[v2

F k2
x + (vF ky ± mx)2] � ω2.

IX. FAILURE OF THE JOINT-DENSITY-OF-STATES
APPROACH AND ‘EXTINCTION’

QPI data are often interpreted in terms of the phe-
nomenological JDOS approach, which can provide an intuitive
rationalization of the preferred QPI scattering vectors. The
JDOS is defined as

J (q,ω) =
∫

d2k‖ρ0(k‖,ω)ρ0(k‖ + q,ω), (27)

in terms of the momentum-resolved surface DOS of the clean
system, given by Eq. (15).

However, we stress that FT-STS experiments measure the
QPI, not the JDOS. The JDOS, Eq. (27), cannot be derived
from the full QPI, Eq. (22), in any limit. In the special case of
a single static impurity in a one-band, particle-hole symmetric
host, the JDOS and QPI are related by a Kramers-Kronig
transformation and so do share some common features [25],
but this is not the case for general multiband problems, such
as those of the WSMs.

To fully capture quantum interference effects of different
scattering pathways in the QPI, one must account for the phase
of the complex Green’s functions in Eq. (23) (rather than
using only the imaginary part, as in the JDOS). Furthermore,
the matrix structure of Eq. (23) means that spin-off-diagonal
scattering is included, whereas the trace in Eq. (15) neglects
this information. Finally, we note that the t matrix itself can
be complex.

We demonstrate explicitly the failure of the JDOS approach
in Fig. 5, where we compare the full QPI to the JDOS, for a
system with two Fermi arcs [using the same parameters as
Fig. 3(a)]. The JDOS correctly predicts the existence of QPI
Fermi arcs, due to inter-arc scattering, but also spuriously
predicts a figure-of-eight structure around q = 0, attributable

to intra-arc scattering. This feature is absent in the true QPI,
and is therefore an example of ‘extinction’ of quasiparticle
scattering.

Recently, it was shown in Ref. [47] that such pinch-point
structures appear ubiquitously in the JDOS for Weyl systems
with Fermi arcs in their surface DOS. However, we point
out that they may or may not appear in the measurable QPI,
depending on quantum interference effects.

In general, the JDOS should not be expected to reproduce
(even qualitatively) the QPI for such materials. We have also
verified that the spin-dependent scattering probability (SSP)
[47] similarly fails for this model.

X. CONCLUSION

Quasiparticle interference, obtained experimentally
through FT-STS, is a powerful and sensitive tool for detecting,
imaging, and distinguishing topological features in Weyl
systems. Although FT-STS is a surface probe, the QPI reveals
surface projections of nontrivial bulk topology. Furthermore,
QPI offers simultaneous momentum and energy resolution,
and contains more information on the band structure than is
contained just in the density of states.

We presented a general framework for calculation of QPI
in systems with an explicit surface, based on a Green’s
function formalism. The scattering problem due to a single
impurity (dilute limit), or disorder from many impurities, is
characterized in terms of the t matrix. The approach goes
beyond the “joint-density-of-states” approximation, which
cannot in general reproduce the complexities of the true QPI
for multiband topological systems.

The QPI is shown to exhibit distinctive and characteristic
features for WSMs, depending on the topology of the bulk, and
the relative surface orientation. We studied a range of systems,
including, in particular, a time-reversal-invariant model with
broken inversion symmetry, hosting several pairs of Weyl
nodes. QPI Fermi arcs, resulting from intense inter-arc scatter-
ing, were found to appear in this case, although (in our model)
there was extinction of intra-arc quasiparticle scattering due
to quantum interference effects. We also showed how Dirac
cone structures can be mapped out in QPI as a function of bias
voltage; we studied the effect of crystal warping at higher
energies, and investigated the possible signatures of more
exotic line node WSMs. FT-STS experiments should therefore
provide valuable new insights into topological Weyl materials
such as the monopnictides.
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