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We study a charge two-channel Kondo model, demonstrating that recent experiments [Z. Iftikhar et al,
Nature (London) 526, 233 (2015)] realize an essentially perfect quantum simulation—not just of its
universal physics, but also nonuniversal effects away from the scaling limit. Numerical renormalization
group (RG) calculations yield conductance line shapes encoding RG flow to a critical point involving a free
Majorana fermion. By mimicking the experimental protocol, the experimental curve is reproduced
quantitatively over 9 orders of magnitude, although we show that far greater bandwidth/temperature
separation is required to obtain the universal result. Fermi liquid instabilities are also studied: In particular,
our exact analytic results for nonlinear conductance provide predictions away from thermal equilibrium, in
the regime of existing experiments.

DOI: 10.1103/PhysRevLett.116.157202

Introduction and results.—The Kondo effect provides a
paradigmatic example for universality: systems with very
different microscopic details exhibit the same behavior in
terms of rescaled temperature T=TK , where the Kondo
temperature TK is an emergent low-energy scale character-
istic of the particular system [1]. Scaling collapse of data to
a single universal curve has been demonstrated in diverse
contexts, ranging from magnetic impurities in metals [1],
semiconductor [2], or nanotube [3] quantum dots, and
molecules in break junctions [4]. Although simplified,
the Kondo model, comprising a single spin-1=2 quantum
“impurity” exchange coupled to a single conduction
electron channel, describes accurately the low-energy
physics of many such systems due to the single-parameter
scaling—provided TK is much smaller than bare energy
scales, such as the conduction electron bandwidth D.
In the two-channel Kondo (2CK) effect [5], two spinful

channels compete to screen a single impurity, leading to a
frustrated non-Fermi liquid (NFL) quantum critical point
involving a free Majorana fermion [6]. At the critical point,
there is again universality in terms of T=TK when
TK=D ≪ 1. However, on detuning away from the critical
point, the frustration is relieved by a Fermi liquid (FL)
instability, which drives the system toward a FL ground
state on the scale T�. Provided T� ≪ TK ≪ D, there are
two successive crossovers on reducing temperature: first to
the NFL critical point, and then away from it [7,8]. The FL
crossover is then a universal function of T=T�.
While these issues of universality and quantum criticality

are being explored in bulk strongly correlated materials
(e.g., high-Tc superconductors or heavy fermion systems)
[9], the 2CK effect can be realized in highly controllable
and tunable semiconductor quantum dot devices [10–12].
The experimental observation of critical NFL physics in
such devices depends on minimizing T� and exploring the

regime T ≫ T�. In particular, the measured conductance
encodes a nontrivial renormalization group (RG) flow on
reducing temperature.
A novel charge 2CK device [13] was studied recently in

the remarkable experiments of Ref. [12] (see Fig. 1). The
results shed new light on scaling and universality in the
2CK effect from an unusual perspective: the electronic spin
degrees of freedom are quenched by a field, while two
nearly degenerate macroscopic charge states of a large
quantum dot play the role of a pseudospin [14]. The dot is
connected to two metallic leads via quantum point contacts
(QPCs), with transmissions 0 ≤ τ1;2 ≤ 1. Pseudospin flips
are caused by tunneling through the QPCs; the Kondo
exchange is therefore first order in the tunneling, and
becomes large when the QPCs are opened (by contrast, spin
flips are virtual second-order processes in conventional
spin-Kondo devices). Conductance across the dot, due to a
bias voltage between the leads, involves successively
flipping the pseudospin by tunneling at one QPC and then
flipping it back by tunneling at the other. The finite dot
capacitance prevents charge buildup, suppressing transi-
tions out of the pseudospin-1=2 manifold and strongly
correlating tunneling events.

FIG. 1. Schematic of the charge 2CK device. Two QPCs, with
transmissions τ1;2 controlled by V1;2, connect the quantum dot to
two leads. Gate voltage Vg controls the dot charge.
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The experiment provides compelling evidence for 2CK
RG flow: tuning τ1 ≈ τ2, the measured conductance and
effective transmissions increase on decreasing temperature.
The low-temperature proliferation of pseudospin flips
driving this conductance enhancement is the classic hall-
mark of Kondo physics. At large transmission τ1;2 ∼ 1, the
conductance approaches G ¼ e2=ð2hÞ, the limit for two
quantum resistors in series. Furthermore, the competition
between screening channels that characterizes the 2CK
effect is observed in the experiment upon detuning τ1 ≠ τ2,
whence the frustration of the 2CK state is relieved and the
conductance drops again.
A key result of Ref. [12] is the seemingly universal NFL

conductance crossover [which we denote ~GðT=TKÞ], which
spans an unprecedented range of T=TK over 9 orders of
magnitude. Although the experiment is confined to a
narrow temperature range 11.5–80 mK, the entire curve
is uncovered by patching together data for different
systems, each with a different transmission and hence
TK . The wide range of T=TK follows from the exponential
dependence of the Kondo temperature on transmission. The
reconstruction of ~GðT=TKÞ is shown in Fig. 2.
This approach assumes single-parameter scaling of the

conductance, GðT=TKÞ. However, this universality arises
strictly only for TK=D → 0 (the “scaling limit”). In general,
the conductance GðT=TK; TK=DÞ is a function of both
T=TK and TK=D. In this Letter, we show that this has
significant consequences for the interpretation of exper-
imental results: data collected at large transmission (i.e.,
large TK) are not in the universal regime and belong to a
nonuniversal cut through the surface of GðT=TK; TK=DÞ.
We show that the experimental curve ~GðT=TKÞ does not
match the true universal curve GðT=TKÞ, obtained by
solving the charge 2CK model using the numerical
renormalization group (NRG) [15,16].
However, by mimicking the experimental protocol, we

quantitatively reproduce the entire experimental curve—
see lower panel of Fig. 2. Not only does this substantiate the
above scaling arguments, but it also demonstrates that the
experimental system of Ref. [12] is an essentially perfect
quantum simulation of the charge 2CK model, describing
faithfully not just its asymptotic universal physics (which is
blind to microscopic details), but also including nonuni-
versal effects of the finite bandwidth.
As with the experiment, we also study the FL crossover,

generated either by transmission asymmetry τ1 ≠ τ2 or by
moving away from the dot charge degeneracy point—see
Fig. 3. The conductance GðT=TK; T=T�; TK=DÞ is now
also a function of T=T�. Even in the scaling limit TK ≪ D
there is now a family of universal curves for different ratios
of T�=TK , which we explore with NRG. Agreement is
found with experiment at weak transmission where uni-
versality is expected.
Furthermore, in the case of good scale separation

T� ≪ TK , the FL crossover exhibits single-parameter

scaling in T=T�. Herewe use Abelian bosonizationmethods
[6] to obtain an exact analytic result for GðT=T�;eV=T�Þ,
which remarkably also describes the nonequilibrium con-
ductance at finite bias V. We show that this result does not
require TK ≪ D, meaning that the same line shape is
obtained at large transmission. Therefore, the physics of
the charge 2CK model away from thermal equilibrium can
be explored in the parameter regime of existing experiments,
at realistic base temperatures; see Fig. 4.
Model and experiment.—The experiment Ref. [12] con-

sists of a large metallic quantum dot connected via single-
channel quantum point contacts to two leads in the
quantum Hall regime (Fig. 1). The effective Hamiltonian is

HK ¼
X
α¼1;2

�
Jα
X
k;k0

ðc†α↑kcα↓k0 Ŝ− þ c†α↓kcα↑k0 Ŝ
þÞ

þ
X
k;σ

ϵασkc
†
ασkcασk

�
þ ΔEŜz; ð1Þ

FIG. 2. Conductance GðTÞ of the charge 2CK device along the
NFL crossover. Upper panel: NRG results (lines) for different
transmissions from τ1 ¼ τ2 ≃ 0.1 to 1 (J=D ¼ 0.1 to 0.6) as an
entire function of temperature T=D. Points are the experimental
data of Ref. [12], fit using D ¼ 2.3 K. Lower panel: Universal
NFL crossover GðT=TKÞ from NRG in the scaling limit (solid
line), compared with rescaled experimental data (points) and
rescaled NRG data (dashed lines) from the temperature window
T1 < T < T2, with T2 ¼ 10T1 ¼ 0.04D. Both curves have the
same asymptotes GðTÞ ∼ ln−2ðT=TKÞ for T ≫ TK and Gð0Þ −
GðTÞ ∼ ðT=TKÞ for T ≪ TK. Inset: TK versus τ for NRG (circles)
and experiment (crosses). Dotted line is TK ∼DνJ exp½−π=4νJ�,
with νJ related to τ via Eq. (2).
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where σ ¼ ↑ denotes spinless electrons in the two leads
(labeled α ¼ 1, 2), while σ ¼ ↓ denotes spinless electrons
on the dot. The two QPCs are described by independent
electronic systems labeled α ¼ 1, 2. Neglecting coherent
transport of electrons between the QPCs is justified [17]
for large quantum dots with level spacing δ ≪ T (in
Ref. [12], δ ∼ 0.2 μK < 10−4T).
The total number of dot electrons N↓ ¼ P

αNα↓ [18] is
changed when an electron tunnels through either QPC,
such that Ŝ�jN↓i ¼ jN↓ � 1i. However, the dot is in
the Coulomb blockade regime, with charging energy
Ec ≅ 290 mK. By tuning the gate voltage Vg → V0

g to
the edge of a Coulomb blockade step, dot states with N↓ ¼
N0 and N0 þ 1 electrons are degenerate, while N↓ < N0

and N↓ > N0 þ 1 are much higher in energy and essen-
tially inaccessible at experimentally relevant temperatures
T ≪ Ec (our results are unchanged by including more
charge states). The two degenerate charge states form a
pseudospin-1=2, with Ŝz¼ 1

2
ðjN0þ1ihN0þ1j− jN0ihN0jÞ.

Detuning the gate splits the states by an energy
ΔE ∝ ðVg − V0

gÞ, equivalent to the pseudospin field
ΔEŜz in Eq. (1).
Equation (1) is a spin anisotropic 2CK model, with two

electronic channels α ¼ 1, 2 defined around the left and

right QPCs, and two macroscopic dot charge states playing
the role of the impurity spin-1=2. The QPC transmissions
τα determine the spin-flip Kondo couplings Jα via [16]

τα ¼ 4ðπναJαÞ2=½1þ ðπναJαÞ2�2; ð2Þ
where the effective density of states να ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

να↑να↓
p relevant

for spin flips at QPC α depends on both the lead (σ ¼ ↑)
and dot (σ ¼ ↓) densities. Although νασ will depend on
α and σ in a real device, ναJα depends only on τα via
Eq. (2), and can be manipulated by gate Vα in experiment.
να itself is immaterial since the Kondo physics is controlled
by ναJα. Since the leads comprise chiral 1D fermions
in quantum Hall edge states [12], the role of interactions
[19] is suppressed, and the low-energy density of state
is constant [20]; for simplicity, we take νασðωÞ∝P

kδðϵασk−ωÞ¼ νΘðD− jωjÞ, with ν ¼ 1=ð2DÞ and D
the conduction electron bandwidth.
Conductance.—Our primary interest is in the experi-

mentally observable serial differential conductance across
the dot, due to a voltage difference between leads 1 and 2
(i.e., σ ¼ ↑ electrons only). The geometry does not allow a
simple formulation in terms of Green’s functions, as for
standard (single-channel) devices [21]. The ac conductance
Gðω; TÞ at zero bias V → 0 can, however, be obtained
within linear response from the Kubo formula [22],

Gðω; TÞ ¼
�
e2

h

��
2πℏ2ImKðω; TÞ

ℏω

�
; ð3Þ

where Kðω; TÞ is the Fourier transform of
Kðt; TÞ ¼ iΘðtÞh½Ω̂ðtÞ; Ω̂ð0Þ�iT , with Ω̂¼1

2
ð _N1↑− _N2↑Þ¼

1
2

P
k;k0 ½ðJ1c†1↑kc1↓k0−J2c†2↑kc2↓k0 ÞŜ−−H:c:�. Here Kðω; TÞ

is calculated numerically exactly on the real axis using full-
density-matrix NRG [23,24]. The desired dc conductance is
obtained as GðTÞ ¼ Gðω → 0; TÞ.
Figure 2 (upper panel) shows the calculated conductance

GðTÞ versus T=D along the NFL crossover (lines) for
systems with different transmissions ranging from τ1 ¼
τ2 ≡ τ ≃ 0.1 to 1, yielding Kondo temperatures TK=D in
the range 10−8 to > 1 (TK is defined as the HWHM,
GðTKÞ ¼ 1

4
, as in the experiment). The sequence of lines

shows the onset of nonuniversal effects at higher energies,
which become very pronounced at large transmission
where the scaling condition TK ≪ D is strongly violated.
Also shown are the experimental data of Ref. [12] (points)
fit using D ¼ 2.3 K.
Figure 2 (lower panel) shows the experimental data now

rescaled in terms of T=TK , precisely as in Ref. [12],
compared with rescaled NRG data (dashed lines) taken
from the upper panel in the temperature window
T1 < T < T2, mimicking the experimental protocol. The
evolution of TK is plotted in the inset. We find excellent
agreement between the theory and experimental curves.
However, they are rather different from the true universal
curve GðT=TKÞ, obtained by NRG in the scaling limit (in

FIG. 3. Upper panel: Low-temperature universal FL conduct-
ance crossover as a function of T=T� (valid when T� ≪ TK).
Points are NRG data; solid line is the exact analytic result,
Eq. (6). Lower panel: Coulomb blockade peaks at various
temperatures, obtained from NRG. The universal result is shown
as the black line. Inset: Experimental data at weak transmission
τ ¼ 0.06 from Ref. [12] (points) compared with NRG fit (solid
line) and Eq. (5) (dashed line).
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practice, τ ¼ 0.07). We emphasize that the discrepancy
between the experimental and universal theory curves is
neither a shortcoming of the model or theoretical analysis
nor the experiment, but is fully consistent once nonuni-
versal effects of finite bandwidth are accounted for.
The universal curve obtained at small transmission is

independent of the specific value of τ (or equivalently νJ).
This universality goes beyond the specific model: For
example, we also computed the conductance in a gener-
alized model [16] including up to 20 higher-energy charge
states, in addition to the degenerate pair of ground states,
which takes into account the finite charging energy term
4EcŜ

2
z . In this case we find that TK is suppressed at small

Ec, since Ec sets the effective bandwidth below which the
two-level impurity model is valid. However, the universal
crossover function GðT=TKÞ obtained by NRG is
unchanged in the scaling regime TK ≪ D;Ec.
By contrast, conductance line shapes obtained at large

transmission do not exhibit universal scaling. Experimental
data at τ ¼ 0.93 with TK on the order of the bandwidth (set
by Ec) belong to a nonuniversal curve.
Fermi liquid instability.—Inherent to the 2CK physics is

its quantum critical structure. The NFL state is delicate and
unstable to various symmetry breaking perturbations [25],
including channel anisotropy ΔJ ¼ J1 − J2 (controlled by
gates V1 and V2), and deviations from the charge degen-
eracy point ΔE (controlled by Vg). These perturbations
generate a new energy scale T�, controlling the crossover to
the FL ground state [7,26]. For small perturbations ΔJ,
ΔE < TK , then T� ≪ TK , viz.

T� ¼ c1TKðνΔJÞ2 þ c2ðΔEÞ2=TK: ð4Þ
In this case, the FL crossover is a universal function of
T=T� only, controlled by leading dimension-1=2 operators.
Symmetry breaking perturbations grow under RG to reduce
the conductance along the FL crossover.
Figure 3 (upper panel) shows the universal NRG result

(points) for the FL conductance crossover, GðT=T�Þ (see
also analytic form below). We have confirmed that the same
crossover is obtained for ΔJ and ΔE (or any combination
of the two); only the emergent scale T� enters. The
universality of GðT=T�Þ, together with Eq. (4), can be
used to make experimental scaling predictions. For exam-
ple, conductance data should exhibit scaling collapse in
terms of ðΔE=TKÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
TK=T

p
∝ ðT=T�Þ−1=2 at low temper-

atures. NRG results in Fig. 3 (lower panel) show the ΔE
dependence of the conductance as T is decreased. We find
that in practice the universal result (black line) is essentially
recovered for T=TK ∼ 10−4.
On the other hand, the experiments at small transmission

τ ¼ 0.06 were performed in the regime T ≫ TK . Here the
classical sequential tunneling result should hold:

GðTÞ ¼T≫TK

�
e2=h

τ−11 þ τ−12

�
ΔE=T

sinhðΔE=TÞ ; ð5Þ

with Kondo-renormalized transmissions, as also confirmed
by the fit to NRG in the inset of Fig. 3.
Focusing now on the universal regime T� ≪ TK, we can

also obtain exact analytic results for the FL crossover using
Abelian bosonization methods [6], exploiting the effective
free-fermion structure of the relevant dimension-1=2 oper-
ators. References [8] used such methods to make predic-
tions for the FL crossovers occurring in a spin 2CK device
(with different device geometry), which were recently
confirmed in the experiments of Ref. [11]. For the charge
2CK device geometry, we adapt instead the methods
of Schiller and Hershfield [27] (see also Ref. [28]).
Remarkably, the nonequilibrium crossover at finite
bias voltage V can be obtained, which holds for arbitrary
temperatures (provided eV; T ≪ TK). Our exact result is

GðT; VÞ ¼ e2

2h

�
1 −

T�

2πT
Reψ ð1Þ

�
1

2
þ T� þ ieV

2πT

��
; ð6Þ

where ψ ð1Þ ¼ ∂zψðzÞ is the trigamma function. The zero-
bias limit V → 0 coincides with the result obtained starting
from a completely different state of perfect transmission
[13]. It also agrees perfectly with NRG results at large or
small transmission (solid black lines in Fig. 3) [29].
Nonequilibrium transport.—Our exact result for the

conductance away from thermal equilibrium, Eq. (6), is
a universal function of eV=T� and T=T�. Importantly, it is
applicable whenever T� ≪ TK, irrespective of TK=D.
Unlike its NFL counterpart, the universal FL crossover
can, therefore, be observed in experiments performed at
large transmissions—a unique feature of charge-Kondo
devices. With TK ∼ Ec near perfect transmission, the FL
crossover can realistically be explored over a sizable range
of T and eV, while still ensuring T� ≪ TK .
Our predictions for the nonequilibrium quantum critical

conductance along the FL crossover are summarized in
Fig. 4, taking the experimental value Ec ¼ 290 mK [12].
When maxfT; eVg ≫ T�, finite ΔE or ΔJ give negligible
corrections to the NFL conductance G ∼ ðe2=2hÞ. But for

FIG. 4. Nonequilibrium critical behavior. Left: Nonlinear
conductance at T ¼ 1 mK, for various T�. Top right: Same
but for experimental base temperature T ¼ 11.5 mK. Bottom
right: FL crossover (blue arrow) controlled by eV=T�.
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T ≪ eV, the RG flow is cut by the nonequilibrium scale
eV. As shown in the main panel of Fig. 4, the conductance
reduces to zero as eV is reduced (the FL fixed point is
reached when eV ≪ T�; see bottom right panel). By tuning
the gates closer to criticality, T� reduces, causing the width
of the antipeak to reduce. However, this reduction is cut off
when eV ∼ T, as shown in the top right-hand panel at the
experimental base temperature T ¼ 11.5 mK. These direct
signatures of nonequilibrium criticality should therefore be
observable under the present experimental conditions [12].
Concluding remarks.—Our analysis of the charge 2CK

device provides a stringent test for universality and scaling
in nanoscale devices, demonstrating the importance of
being in the scaling regime to extract true universal results.
We showed that the experiment of Ref. [12] precisely
realizes the charge 2CK model, including both universal
and nonuniversal properties. The device is a rare example in
which the long-sought nonequilibrium structure of a NFL
critical point can be explored experimentally and compared
with exact theoretical results.
Finally, we highlight a perspective on these results,

connected with the ongoing search for Majorana fermions.
The quantitative agreement between theory and experiment
over 9 orders of magnitude in T=TK proves that this device
realizes a non-Fermi liquid state involving a free Majorana
localized on the dot, described by the 2CK critical fixed
point. These results therefore unambiguously establish the
existence of Majorana fermions in this frustrated strongly
interacting system.
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